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Preface

Advanced High School Statistics covers a first course in statistics, providing an introduction to
applied statistics that is clear, concise, and accessible. This book was written to align with the AP®

Statistics Course Description1, but it’s also popular in non-AP courses and community colleges.

This book may be downloaded as a free PDF at openintro.org/ahss.

We hope readers will take away three ideas from this book in addition to forming a foundation of
statistical thinking and methods.

(1) Statistics is an applied field with a wide range of practical applications.

(2) You don’t have to be a math guru to learn from real, interesting data.

(3) Data are messy, and statistical tools are imperfect. But, when you understand the strengths
and weaknesses of these tools, you can use them to learn about the real world.

Textbook overview

The chapters of this book are as follows:

1. Data collection. Data structures, variables, and basic data collection techniques; experimental
designs and sampling methods are presented and compared.

2. Summarizing data. Data summaries and graphics; includes normal approximation for data.

3. Probability and probability distributions. The basic principles of probability and random
variables, as well as an introduction to the geometric and binomial distributions.

4. Sampling distributions. Sampling distributions for a sample proportion and a sample mean;
also includes distributions for a difference of sample means and a difference of sample propor-
tions.

5. Foundations for inference. General ideas for statistical inference in the context of estimating
a population proportion.

6. Inference for categorical data. Inference for proportions and contingency tables using the
normal and chi-square distributions.

7. Inference for numerical data. Inference for one or two sample means using the t-distribution.

8. Introduction to linear regression. An introduction to regression with two variables; includes
inference on the slope of the regression line.

Online resources

OpenIntro is focused on increasing access to education by developing free, high-quality education
materials. In addition to textbooks, we provide the following free resources to help teachers and
students be successful on our website.

• Video overviews for each section of the textbook

• Lecture slides for each section of the textbook

1AP® is a trademark registered and owned by the College Board, which was not involved in the production of,
and does not endorse, this product. apcentral.collegeboard.org/pdf/ap-statistics-course-description.pdf

http://www.openintro.org/redirect.php?go=ahss&referrer=ahss3_pdf
http://www.openintro.org/redirect.php?go=collegeboard-ap_statistics_course_description&referrer=ahss3_pdf
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• Casio and TI calculator tutorials

• Video solutions for selected section and chapter exercises

• Statistical software labs

• A small but growing number of Desmos activities2

• Quizlet sets for each chapter3

• A Tableau public page to further interact with data sets4

• Complete companion course with the learning management software MyOpenMath5

• Complete Canvas course accessible through Canvas Commons6

All of these resources can be found at:

openintro.org/ahss

We also have improved the ability to access data in this book through the addition of Appendix B,
which provides additional information for each of the data sets used in the main text. Online guides
to each of these data sets are also provided at openintro.org/data and through a companion
R package.

Examples and exercises

Many examples are provided to establish an understanding of how to apply methods.

EXAMPLE 0.1

This is an example.

Full solutions to examples are provided here, within the example.

When we think the reader should be ready to try an example problem on their own, we frame it as
Guided Practice.

GUIDED PRACTICE 0.2

The reader may check or learn the answer to any Guided Practice problem by reviewing the full
solution in a footnote.7

Exercises are also provided at the end of each section and each chapter for practice or homework
assignments. Solutions for odd-numbered exercises are given in Appendix A.

Getting involved

We encourage anyone learning or teaching statistics to visit openintro.org and get involved. We also
value your feedback. Please provide feedback, report typos, and review known typos at

openintro.org/ahss/feedback

Acknowledgements

This project would not be possible without the passion and dedication of all those involved. The
authors would like to thank the OpenIntro Staff for their involvement and ongoing contributions.
We are also very grateful to the hundreds of students and instructors who have provided us with
valuable feedback since we first started working on this project in 2009. A special thank you to
Stephen Miller and Juan Gomez for reviewing and providing feedback on the third edition of AHSS.

2openintro.org/ahss/desmos
3quizlet.com/openintro-ahss
4public.tableau.com/profile/openintro
5myopenmath.com/course/public.php?cid=11774
6sfuhs.instructure.com/courses/1068
7Guided Practice solutions are always located down here!

http://www.openintro.org/redirect.php?go=casio_all&referrer=ahss3_pdf
http://www.openintro.org/redirect.php?go=ti_all&referrer=ahss3_pdf
http://www.openintro.org/redirect.php?go=ahss-solutions&referrer=ahss3_pdf
http://www.openintro.org/redirect.php?go=ahss-desmos&referrer=ahss3_pdf
http://www.openintro.org/redirect.php?go=ahss-quizlet&referrer=ahss3_pdf
http://www.openintro.org/redirect.php?go=ahss-tableau&referrer=ahss3_pdf
http://www.openintro.org/redirect.php?go=ahss_mom&referrer=ahss3_pdf
http://www.openintro.org/redirect.php?go=ahss_canvas&referrer=ahss3_pdf
http://www.openintro.org/redirect.php?go=ahss&referrer=ahss3_pdf
http://www.openintro.org/redirect.php?go=data&referrer=ahss3_pdf
http://www.openintro.org/redirect.php?go=textbook-github_openintro&referrer=ahss3_pdf
http://www.openintro.org/redirect.php?go=textbook-github_openintro&referrer=ahss3_pdf
http://www.openintro.org/redirect.php?go=textbook-openintro&referrer=ahss3_pdf
http://www.openintro.org/redirect.php?go=ahss_feedback&referrer=ahss3_pdf
http://www.openintro.org/redirect.php?go=textbook-openintro_about&referrer=ahss3_pdf
http://www.openintro.org/redirect.php?go=ahss-desmos&referrer=ahss3_pdf
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http://www.openintro.org/redirect.php?go=ahss-tableau&referrer=ahss3_pdf
http://www.openintro.org/redirect.php?go=myopenmath-ahss&referrer=ahss3_pdf
http://www.openintro.org/redirect.php?go=canvas_course-sfuhs&referrer=ahss3_pdf
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Chapter 1
Data collection

1.1 Case study

1.2 Data basics

1.3 Overview of data collection principles

1.4 Observational studies and sampling strategies

1.5 Experiments



11

Scientists seek to answer questions using rigorous methods and careful observations.

These observations – collected from the likes of field notes, surveys, and experiments

– form the backbone of a statistical investigation and are called data. Statistics is the

study of how best to collect, analyze, and draw conclusions from data. It is helpful

to put statistics in the context of a general process of investigation:

1. Identify a question or problem.

2. Collect relevant data on the topic.

3. Analyze the data.

4. Form a conclusion.

Researchers from a wide array of fields have questions or problems that require

the collection and analysis of data. What questions from current events or from your

own life can you think of that could be answered by collecting and analyzing data?

This chapter focuses on collecting data. We’ll discuss basic properties of data,

common sources of bias that arise during data collection, and techniques for collecting

data. After finishing this chapter, you will have the tools for identifying weaknesses

and strengths in data-based conclusions, tools that are essential to be an informed

citizen and a savvy consumer of information.

For videos, slides, and other resources, please visit

www.openintro.org/ahss

http://www.openintro.org/redirect.php?go=stat&referrer=ahss3_pdf
http://www.openintro.org/redirect.php?go=ahss&referrer=ahss3_pdf
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1.1 Case study: using stents to prevent strokes

We start with a case study and we consider the following questions:

• Does the use of stents reduce the risk of stroke?

• How do researchers collect data to answer this question?

• What do they do with the data once it is collected?

• How different must the risk of stroke be in each group before there is sufficient evidence that

it’s a real difference and not just random variation?

Learning objectives

1. Understand the four steps of a statistical investigation (identify a question, collect data, analyze

data, form a conclusion) in the context of a real-world example.

2. Consider the concept of statistical significance.

1.1.1 Case study

Section 1.1 introduces a classic challenge in statistics: evaluating the efficacy of a medical
treatment. Terms in this section, and indeed much of this chapter, will all be revisited later in the
text. The plan for now is simply to get a sense of the role statistics can play in practice.

In this section we will consider an experiment that studies effectiveness of stents in treating
patients at risk of stroke. (As you read the main text of this book, you can refer to the original data
sources and in many cases access the corresponding data sets via the Data Appendix, i.e. Appendix B,
starting on page 503.) Stents are devices put inside blood vessels that assist in patient recovery after
cardiac events and reduce the risk of an additional heart attack or death. Many doctors have hoped
that there would be similar benefits for patients at risk of stroke. We start by writing the principal
question the researchers hope to answer:

Does the use of stents reduce the risk of stroke?

The researchers who asked this question collected data on 451 at-risk patients. Each volunteer
patient was randomly assigned to one of two groups:

Treatment group. Patients in the treatment group received a stent and medical manage-
ment. The medical management included medications, management of risk factors, and help
in lifestyle modification.

Control group. Patients in the control group received the same medical management as the
treatment group, but they did not receive stents.

Researchers randomly assigned 224 patients to the treatment group and 227 to the control group.
In this study, the control group provides a reference point against which we can measure the medical
impact of stents in the treatment group.
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Researchers studied the effect of stents at two time points: 30 days after enrollment and 365 days
after enrollment. The results of 5 patients are summarized in Figure 1.1. Patient outcomes are
recorded as “stroke” or “no event”, representing whether or not the patient had a stroke at the end
of a time period.

Patient group 0-30 days 0-365 days
1 treatment no event no event
2 treatment stroke stroke
3 treatment no event no event
...

...
...

450 control no event no event
451 control no event no event

Figure 1.1: Results for five patients from the stent study.

Considering data from each patient individually would be a long, cumbersome path towards
answering the original research question. Instead, performing a statistical data analysis allows us to
consider all of the data at once. Figure 1.2 summarizes the raw data in a more helpful way. In this
table, we can quickly see what happened over the entire study. For instance, to identify the number
of patients in the treatment group who had a stroke within 30 days, we look on the left-side of the
table at the intersection of the treatment and stroke: 33.

0-30 days 0-365 days
stroke no event stroke no event

treatment 33 191 45 179
control 13 214 28 199
Total 46 405 73 378

Figure 1.2: Descriptive statistics for the stent study.

GUIDED PRACTICE 1.1

What proportion of the patients in the treatment group had no stroke within the first 30 days of
the study? (Please note: answers to all Guided Practice exercises are provided using footnotes.)1

We can compute summary statistics from the table. A summary statistic is a single number
summarizing a large amount of data.2 For instance, the primary results of the study after 1 year
could be described by two summary statistics: the proportion of people who had a stroke in the
treatment and control groups.

Proportion who had a stroke in the treatment (stent) group: 45/224 = 0.20 = 20%.

Proportion who had a stroke in the control group: 28/227 = 0.12 = 12%.

These two summary statistics are useful in looking for differences in the groups, and we are in for
a surprise: an additional 8% of patients in the treatment group had a stroke! This is important
for two reasons. First, it is contrary to what doctors expected, which was that stents would reduce
the rate of strokes. Second, it leads to a statistical question: do the data show a “real” difference
between the groups?

1There were 191 patients in the treatment group that had no stroke in the first 30 days. There were 33 + 191 =
224 total patients in the treatment group, so the proportion is 191/224 = 0.85.

2Formally, a summary statistic is a value computed from the data. Some summary statistics are more useful than
others.
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This second question is subtle. Suppose you flip a coin 100 times. While the chance a coin
lands heads in any given coin flip is 50%, we probably won’t observe exactly 50 heads. This type of
fluctuation is part of almost any type of data generating process. It is possible that the 8% difference
in the stent study is due to this natural variation. However, the larger the difference we observe (for
a particular sample size), the less believable it is that the difference is due to chance. So what we are
really asking is whether the difference is statistically significant, that is, whether the difference
so large that we should reject the notion that it was due to chance.

While we don’t yet have the statistical tools to fully address this question on our own, we can
comprehend the conclusions of the published analysis: there was compelling evidence of harm by
stents in this study of stroke patients.

Be careful: do not generalize the results of this study to all patients and all stents. This study
looked at patients with very specific characteristics who volunteered to be a part of this study and
who may not be representative of all stroke patients. In addition, there are many types of stents
and this study only considered the self-expanding Wingspan stent (Boston Scientific). However, this
study does leave us with an important lesson: we should keep our eyes open for surprises.

Section summary

• To test the effectiveness of a treatment, researchers often carry out an experiment in which
they randomly assign patients to a treatment group or a control group.

• Researchers compare the relevant summary statistics to get a sense of whether the treatment
group did better, on average, than the control group.

• Ultimately, researchers want to know whether the difference between the two groups is significant,
that is, larger than what would be expected by chance alone.
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Exercises

1.1 Migraine and acupuncture, Part I. A migraine is a particularly painful type of headache, which patients
sometimes wish to treat with acupuncture. To determine whether acupuncture relieves migraine pain,
researchers conducted a randomized controlled study where 89 females diagnosed with migraine headaches
were randomly assigned to one of two groups: treatment or control. 43 patients in the treatment group
received acupuncture that is specifically designed to treat migraines. 46 patients in the control group
received placebo acupuncture (needle insertion at non-acupoint locations). 24 hours after patients received
acupuncture, they were asked if they were pain free. Results are summarized in the contingency table below.3

Pain free
Yes No Total

Treatment 10 33 43
Group

Control 2 44 46
Total 12 77 89

identified on the antero-internal part of the antitragus, the

anterior part of the lobe and the upper auricular concha, on
the same side of pain. The majority of these points were

effective very rapidly (within 1 min), while the remaining

points produced a slower antalgic response, between 2 and
5 min. The insertion of a semi-permanent needle in these

zones allowed stable control of the migraine pain, which

occurred within 30 min and still persisted 24 h later.
Since the most active site in controlling migraine pain

was the antero-internal part of the antitragus, the aim of
this study was to verify the therapeutic value of this elec-

tive area (appropriate point) and to compare it with an area

of the ear (representing the sciatic nerve) which is probably
inappropriate in terms of giving a therapeutic effect on

migraine attacks, since it has no somatotopic correlation

with head pain.

Materials and methods

The study enrolled 94 females, diagnosed as migraine

without aura following the International Classification of
Headache Disorders [5], who were subsequently examined

at the Women’s Headache Centre, Department of Gynae-

cology and Obstetrics of Turin University. They were all
included in the study during a migraine attack provided that

it started no more than 4 h previously. According to a

predetermined computer-made randomization list, the eli-
gible patients were randomly and blindly assigned to the

following two groups: group A (n = 46) (average age

35.93 years, range 15–60), group B (n = 48) (average age
33.2 years, range 16–58).

Before enrollment, each patient was asked to give an

informed consent to participation in the study.
Migraine intensity was measured by means of a VAS

before applying NCT (T0).

In group A, a specific algometer exerting a maximum
pressure of 250 g (SEDATELEC, France) was chosen to

identify the tender points with Pain–Pressure Test (PPT).

Every tender point located within the identified area by the
pilot study (Fig. 1, area M) was tested with NCT for 10 s

starting from the auricle, that was ipsilateral, to the side of

prevalent cephalic pain. If the test was positive and the
reduction was at least 25% in respect to basis, a semi-

permanent needle (ASP SEDATELEC, France) was

inserted after 1 min. On the contrary, if pain did not lessen
after 1 min, a further tender point was challenged in the

same area and so on. When patients became aware of an

initial decrease in the pain in all the zones of the head
affected, they were invited to use a specific diary card to

score the intensity of the pain with a VAS at the following

intervals: after 10 min (T1), after 30 min (T2), after
60 min (T3), after 120 min (T4), and after 24 h (T5).

In group B, the lower branch of the anthelix was

repeatedly tested with the algometer for about 30 s to
ensure it was not sensitive. On both the French and Chinese

auricular maps, this area corresponds to the representation

of the sciatic nerve (Fig. 1, area S) and is specifically used
to treat sciatic pain. Four needles were inserted in this area,

two for each ear.

In all patients, the ear acupuncture was always per-
formed by an experienced acupuncturist. The analysis of

the diaries collecting VAS data was conducted by an

impartial operator who did not know the group each patient
was in.

The average values of VAS in group A and B were

calculated at the different times of the study, and a statis-
tical evaluation of the differences between the values

obtained in T0, T1, T2, T3 and T4 in the two groups
studied was performed using an analysis of variance

(ANOVA) for repeated measures followed by multiple

t test of Bonferroni to identify the source of variance.
Moreover, to evaluate the difference between group B

and group A, a t test for unpaired data was always per-

formed for each level of the variable ‘‘time’’. In the case of
proportions, a Chi square test was applied. All analyses

were performed using the Statistical Package for the Social

Sciences (SPSS) software program. All values given in the
following text are reported as arithmetic mean (±SEM).

Results

Only 89 patients out of the entire group of 94 (43 in group
A, 46 in group B) completed the experiment. Four patients

withdrew from the study, because they experienced an

unbearable exacerbation of pain in the period preceding the
last control at 24 h (two from group A and two from group

B) and were excluded from the statistical analysis since

they requested the removal of the needles. One patient
from group A did not give her consent to the implant of the

semi-permanent needles. In group A, the mean number of

Fig. 1 The appropriate area
(M) versus the inappropriate
area (S) used in the treatment
of migraine attacks

S174 Neurol Sci (2011) 32 (Suppl 1):S173–S175
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Figure from the original pa-

per displaying the appropri-

ate area (M) versus the in-

appropriate area (S) used in

the treatment of migraine at-

tacks.

(a) What percent of patients in the treatment group were pain free 24 hours after receiving acupuncture?

(b) What percent were pain free in the control group?

(c) In which group did a higher percent of patients become pain free 24 hours after receiving acupuncture?

(d) Your findings so far might suggest that acupuncture is an effective treatment for migraines for all people
who suffer from migraines. However, this is not the only possible conclusion that can be drawn based
on your findings so far. What is one other possible explanation for the observed difference between the
percentages of patients that are pain free 24 hours after receiving acupuncture in the two groups?

1.2 Sinusitis and antibiotics, Part I. Researchers studying the effect of antibiotic treatment for acute
sinusitis compared to symptomatic treatments randomly assigned 166 adults diagnosed with acute sinusitis to
one of two groups: treatment or control. Study participants received either a 10-day course of amoxicillin (an
antibiotic) or a placebo similar in appearance and taste. The placebo consisted of symptomatic treatments
such as acetaminophen, nasal decongestants, etc. At the end of the 10-day period, patients were asked if
they experienced improvement in symptoms. The distribution of responses is summarized below.4

Self-reported improvement
in symptoms

Yes No Total
Treatment 66 19 85

Group
Control 65 16 81
Total 131 35 166

(a) What percent of patients in the treatment group experienced improvement in symptoms?

(b) What percent experienced improvement in symptoms in the control group?

(c) In which group did a higher percentage of patients experience improvement in symptoms?

(d) Your findings so far might suggest that a real difference in effectiveness of antibiotic and placebo treat-
ments for improving symptoms of sinusitis. However this is not the only possible conclusion that can be
drawn based on your findings so far. What is one other possible explanation for the observed difference
between the percentages of patients that reported improvement in symptoms at the end of the 10-day
period in the two groups?

3G. Allais et al. “Ear acupuncture in the treatment of migraine attacks: a randomized trial on the efficacy of
appropriate versus inappropriate acupoints”. In: Neurological Sci. 32.1 (2011), pp. 173–175.

4J.M. Garbutt et al. “Amoxicillin for Acute Rhinosinusitis: A Randomized Controlled Trial”. In: JAMA: The
Journal of the American Medical Association 307.7 (2012), pp. 685–692.

http://www.openintro.org/redirect.php?go=textbook-acupuncture_migraine_2011&referrer=ahss3_pdf
http://www.openintro.org/redirect.php?go=textbook-acupuncture_migraine_2011&referrer=ahss3_pdf
http://www.openintro.org/redirect.php?go=textbook-amoxicillin_acute_rhinosinusitis_2012&referrer=ahss3_pdf
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1.2 Data basics

You collect data on dozens of questions from all of the students at your school. How would you

organize all of this data? Effective presentation and description of data is a first step in most

analyses. This section introduces one structure for organizing data as well as some terminology that

will be used throughout this book. We use loan data from Lending Club and county data from the

US Census Bureau to motivate and illustrate this section’s learning objectives.

Learning objectives

1. Identify the individuals and the variables of a study.

2. Identify variables as categorical or numerical. Identify numerical variables as discrete or con-

tinuous.

3. Understand what it means for two variables to be associated.

1.2.1 Observations, variables, and data matrices

Figure 1.3 displays rows 1, 2, 3, and 50 of a data set for 50 randomly sampled loans offered
through Lending Club, which is a peer-to-peer lending company. These observations will be referred
to as the loan50 data set.

Each row in the table represents a single loan. The formal name for a row is a case or
observational unit. The columns represent characteristics, called variables, for each of the loans.
For example, the first row represents a loan of $7,500 with an interest rate of 7.34%, where the
borrower is based in Maryland (MD) and has an income of $70,000.

GUIDED PRACTICE 1.2

What is the grade of the first loan in Figure 1.3? And what is the home ownership status of the
borrower for that first loan? For these Guided Practice questions, you can check your answer in the
footnote.5

In practice, it is especially important to ask clarifying questions to ensure important aspects of
the data are understood. For instance, it is always important to be sure we know what each variable
means and the units of measurement. Descriptions of the loan50 variables are given in Figure 1.4.

loan amount interest rate term grade state total income homeownership

1 7500 7.34 36 A MD 70000 rent
2 25000 9.43 60 B OH 254000 mortgage
3 14500 6.08 36 A MO 80000 mortgage
...

...
...

...
...

...
...

...
50 3000 7.96 36 A CA 34000 rent

Figure 1.3: Four rows from the loan50 data matrix.

5The loan’s grade is A, and the borrower rents their residence.
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variable description

loan amount Amount of the loan received, in US dollars.
interest rate Interest rate on the loan, in an annual percentage.
term The length of the loan, which is always set as a whole number of months.
grade Loan grade, which takes values A through G and represents the quality of

the loan and its likelihood of being repaid.
state US state where the borrower resides.
total income Borrower’s total income, including any second income, in US dollars.
homeownership Indicates whether the person owns, owns but has a mortgage, or rents.

Figure 1.4: Variables and their descriptions for the loan50 data set.

The data in Figure 1.3 represent a data matrix, which is a convenient and common way to
organize data, especially if collecting data in a spreadsheet. Each row of a data matrix corresponds
to a unique case (observational unit), and each column corresponds to a variable.

When recording data, use a data matrix unless you have a very good reason to use a different
structure. This structure allows new cases to be added as rows or new variables as new columns.

GUIDED PRACTICE 1.3

The grades for assignments, quizzes, and exams in a course are often recorded in a gradebook that
takes the form of a data matrix. How might you organize grade data using a data matrix?6

GUIDED PRACTICE 1.4

We consider data for 3,142 counties in the United States, which includes each county’s name, the
state in which it is located, its population in 2017, how its population changed from 2010 to 2017,
poverty rate, and six additional characteristics. How might these data be organized in a data
matrix?7

The data described in Guided Practice 1.4 represents the county data set, which is shown as a data
matrix in Figure 1.5. These data come from the US Census, with much of the data coming from
the US Census Bureau’s American Community Survey (ACS). Unlike the Decennial Census, which
takes place every 10 years and attempts to collect basic demographic data from every resident of
the US, the ACS is an ongoing survey that is sent to approximately 3.5 million households per year.
As stated by the ACS website, these data help communities “plan for hospitals and schools, support
school lunch programs, improve emergency services, build bridges, and inform businesses looking to
add jobs and expand to new markets, and more.”8 A small subset of the variables from the ACS are
summarized in Figure 1.6.

6There are multiple strategies that can be followed. One common strategy is to have each student represented by
a row, and then add a column for each assignment, quiz, or exam. Under this setup, it is easy to review a single line
to understand a student’s grade history. There should also be columns to include student information, such as one
column to list student names.

7Each county may be viewed as a case, and there are eleven pieces of information recorded for each case. A table
with 3,142 rows and 11 columns could hold these data, where each row represents a county and each column represents
a particular piece of information.

8https://www.census.gov/programs-surveys/acs/about.html

http://www.openintro.org/redirect.php?go=textbook-acs&referrer=ahss3_pdf
https://www.census.gov/programs-surveys/acs/about.html
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1.2.2 Types of variables

Examine the unemp rate, pop, state, and median edu variables in the county data set. Each
of these variables is inherently different from the other three, yet some share certain characteristics.

First consider unemp rate, which is said to be a numerical variable since it can take a wide
range of numerical values, and it is sensible to add, subtract, or take averages with those values. On
the other hand, we would not classify a variable reporting telephone area codes as numerical since
the average, sum, and difference of area codes doesn’t have any clear meaning.

The pop variable is also numerical, although it seems to be a little different than unemp rate.
This variable of the population count can only take whole non-negative numbers (0, 1, 2, ...). For this
reason, the population variable is said to be discrete since it can only take numerical values with
jumps. On the other hand, the unemployment rate variable is said to be continuous.

The variable state can take up to 51 values after accounting for Washington, DC: AL, AK, ...,
and WY. Because the responses themselves are categories, state is called a categorical variable, and
the possible values are called the variable’s levels.

Finally, consider the median edu variable, which describes the median education level of county
residents and takes values below hs, hs diploma, some college, or bachelors in each county. This
variable seems to be a hybrid: it is a categorical variable but the levels have a natural ordering.
A variable with these properties is called an ordinal variable, while a regular categorical variable
without this type of special ordering is called a nominal variable. To simplify analyses, any ordinal
variable in this book will be treated as a nominal (unordered) categorical variable.

all variables

numerical categorical

continuous discrete nominal
(unordered categorical)

ordinal
(ordered categorical)

Figure 1.7: Breakdown of variables into their respective types.

EXAMPLE 1.5

Data were collected about students in a statistics course. Three variables were recorded for each
student: number of siblings, student height, and whether the student had previously taken a statistics
course. Classify each of the variables as continuous numerical, discrete numerical, or categorical.

The number of siblings and student height represent numerical variables. Because the number of
siblings is a count, it is discrete. Height varies continuously, so it is a continuous numerical variable.
The last variable classifies students into two categories – those who have and those who have not
taken a statistics course – which makes this variable categorical.

GUIDED PRACTICE 1.6

An experiment is evaluating the effectiveness of a new drug in treating migraines. A group variable
is used to indicate the experiment group for each patient: treatment or control. The num migraines

variable represents the number of migraines the patient experienced during a 3-month period.
Classify each variable as either numerical or categorical.9

9The group variable can take just one of two group names, making it categorical. The num migraines variable
describes a count of the number of migraines, which is an outcome where basic arithmetic is sensible, which means this
is a numerical outcome; more specifically, since it represents a count, num migraines is a discrete numerical variable.
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1.2.3 Relationships between variables

Many analyses are motivated by a researcher looking for a relationship between two or more
variables. A social scientist may like to answer some of the following questions:

(1) If homeownership is lower than the national average in one county, will the percent of multi-unit
structures in that county tend to be above or below the national average?

(2) Does a higher than average increase in county population tend to correspond to counties with
higher or lower median household incomes?

(3) How useful a predictor is median education level for the median household income for US
counties?

To answer these questions, data must be collected, such as the county data set shown in
Figure 1.5. Examining summary statistics could provide insights for each of the three questions
about counties. Additionally, graphs can be used to visually explore the data.

Scatterplots are one type of graph used to study the relationship between two numerical vari-
ables. Figure 1.8 compares the variables homeownership and multi unit, which is the percent of
units in multi-unit structures (e.g. apartments, condos). Each point on the plot represents a single
county. For instance, the highlighted dot corresponds to County 413 in the county data set: Chat-
tahoochee County, Georgia, which has 39.4% of units in multi-unit structures and a homeownership
rate of 31.3%. The scatterplot suggests a relationship between the two variables: counties with
a higher rate of multi-units tend to have lower homeownership rates. We might brainstorm as to
why this relationship exists and investigate the ideas to determine which are the most reasonable
explanations.
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Figure 1.8: A scatterplot of homeownership versus the percent of units that are
in multi-unit structures for US counties. The highlighted dot represents Chatta-
hoochee County, Georgia, which has a multi-unit rate of 39.4% and a homeowner-
ship rate of 31.3%. Explore this scatterplot and dozens of other scatterplots using
American Community Survey data on Tableau Public .

The multi-unit and homeownership rates are said to be associated because the plot shows a
discernible pattern. When two variables show some connection with one another, they are called
associated variables. Associated variables can also be called dependent variables and vice-versa.

http://www.openintro.org/redirect.php?go=tableau-scatterplotschoose&referrer=ahss3_pdf
http://www.openintro.org/redirect.php?go=tableau-scatterplotschoose&referrer=ahss3_pdf
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Figure 1.9: A scatterplot showing pop change against median hh income. Owsley
County of Kentucky, is highlighted, which lost 3.63% of its population from 2010
to 2017 and had median household income of $22,736. Explore this scatterplot and
dozens of other scatterplots using American Community Survey data on Tableau
Public .

GUIDED PRACTICE 1.7

Examine the variables in the loan50 data set, which are described in Figure 1.4 on page 17. Create
two questions about possible relationships between variables in loan50 that are of interest to you.10

EXAMPLE 1.8

This example examines the relationship between a county’s population change from 2010 to 2017
and median household income, which is visualized as a scatterplot in Figure 1.9. Are these variables
associated?

The larger the median household income for a county, the higher the population growth observed
for the county. While this trend isn’t true for every county, the trend in the plot is evident. Since
there is some relationship between the variables, they are associated.

Because there is a downward trend in Figure 1.8 – counties with more units in multi-unit
structures are associated with lower homeownership – these variables are said to be negatively
associated. A positive association is shown in the relationship between the median hh income

and pop change in Figure 1.9, where counties with higher median household income tend to have
higher rates of population growth.

If two variables are not associated, then they are said to be independent. That is, two
variables are independent if there is no evident relationship between the two.

ASSOCIATED OR INDEPENDENT, NOT BOTH

A pair of variables is either related in some way (associated) or not (independent). No pair of
variables is both associated and independent.

10Two example questions: (1) What is the relationship between loan amount and total income? (2) If someone’s
income is above the average, will their interest rate tend to be above or below the average?

http://www.openintro.org/redirect.php?go=tableau-scatterplotschoose&referrer=ahss3_pdf
http://www.openintro.org/redirect.php?go=tableau-scatterplotschoose&referrer=ahss3_pdf
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Section summary

• Researchers often summarize data in a table, where the rows correspond to individuals or
cases and the columns correspond to the variables, the values of which are recorded for each
individual.

• Variables can be numerical (measured on a numerical scale) or categorical (taking on levels,
such as low/medium/high). Numerical variables can be continuous, where all values within a
range are possible, or discrete, where only specific values, usually integer values, are possible.

• When there exists a relationship between two variables, the variables are said to be associated
or dependent. If the variables are not associated, they are said to be independent.
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Exercises

1.3 Air pollution and birth outcomes, study components. Researchers collected data to examine the
relationship between air pollutants and preterm births in Southern California. During the study air pollution
levels were measured by air quality monitoring stations. Specifically, levels of carbon monoxide were recorded
in parts per million, nitrogen dioxide and ozone in parts per hundred million, and coarse particulate matter
(PM10) in µg/m3. Length of gestation data were collected on 143,196 births between the years 1989 and
1993, and air pollution exposure during gestation was calculated for each birth. The analysis suggested that
increased ambient PM10 and, to a lesser degree, CO concentrations may be associated with the occurrence
of preterm births.11

(a) Identify the main research question of the study.

(b) Who are the subjects in this study, and how many are included?

(c) What are the variables in the study? Identify each variable as numerical or categorical. If numerical,
state whether the variable is discrete or continuous. If categorical, state whether the variable is ordinal.

1.4 Buteyko method, study components. The Buteyko method is a shallow breathing technique devel-
oped by Konstantin Buteyko, a Russian doctor, in 1952. Anecdotal evidence suggests that the Buteyko
method can reduce asthma symptoms and improve quality of life. In a scientific study to determine the
effectiveness of this method, researchers recruited 600 asthma patients aged 18-69 who relied on medication
for asthma treatment. These patients were randomnly split into two research groups: one practiced the
Buteyko method and the other did not. Patients were scored on quality of life, activity, asthma symptoms,
and medication reduction on a scale from 0 to 10. On average, the participants in the Buteyko group
experienced a significant reduction in asthma symptoms and an improvement in quality of life.12

(a) Identify the main research question of the study.

(b) Who are the subjects in this study, and how many are included?

(c) What are the variables in the study? Identify each variable as numerical or categorical. If numerical,
state whether the variable is discrete or continuous. If categorical, state whether the variable is ordinal.

1.5 Cheaters, study components. Researchers studying the relationship between honesty, age and self-
control conducted an experiment on 160 children between the ages of 5 and 15. Participants reported their
age, sex, and whether they were an only child or not. The researchers asked each child to toss a fair coin
in private and to record the outcome (white or black) on a paper sheet, and said they would only reward
children who report white.13

(a) Identify the main research question of the study.

(b) Who are the subjects in this study, and how many are included?

(c) The study’s findings can be summarized as follows: ”Half the students were explicitly told not to cheat
and the others were not given any explicit instructions. In the no instruction group probability of
cheating was found to be uniform across groups based on child’s characteristics. In the group that was
explicitly told to not cheat, girls were less likely to cheat, and while rate of cheating didn’t vary by age
for boys, it decreased with age for girls.” How many variables were recorded for each subject in the
study in order to conclude these findings? State the variables and their types.

11B. Ritz et al. “Effect of air pollution on preterm birth among children born in Southern California between 1989
and 1993”. In: Epidemiology 11.5 (2000), pp. 502–511.

12J. McGowan. “Health Education: Does the Buteyko Institute Method make a difference?” In: Thorax 58 (2003).
13Alessandro Bucciol and Marco Piovesan. “Luck or cheating? A field experiment on honesty with children”. In:

Journal of Economic Psychology 32.1 (2011), pp. 73–78.

http://www.openintro.org/redirect.php?go=textbook-air_pollution_preterm_birth_2000&referrer=ahss3_pdf
http://www.openintro.org/redirect.php?go=textbook-air_pollution_preterm_birth_2000&referrer=ahss3_pdf
http://www.openintro.org/redirect.php?go=textbook-luck-cheating&referrer=ahss3_pdf
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1.6 Stealers, study components. In a study of the relationship between socio-economic class and unethical
behavior, 129 University of California undergraduates at Berkeley were asked to identify themselves as
having low or high social-class by comparing themselves to others with the most (least) money, most (least)
education, and most (least) respected jobs. They were also presented with a jar of individually wrapped
candies and informed that the candies were for children in a nearby laboratory, but that they could take
some if they wanted. After completing some unrelated tasks, participants reported the number of candies
they had taken.14

(a) Identify the main research question of the study.

(b) Who are the subjects in this study, and how many are included?

(c) The study found that students who were identified as upper-class took more candy than others. How
many variables were recorded for each subject in the study in order to conclude these findings? State
the variables and their types.

1.7 Migraine and acupuncture, Part II. Exercise 1.1 introduced a study exploring whether acupuncture
had any effect on migraines. Researchers conducted a randomized controlled study where patients were
randomly assigned to one of two groups: treatment or control. The patients in the treatment group re-
ceived acupuncture that was specifically designed to treat migraines. The patients in the control group
received placebo acupuncture (needle insertion at non-acupoint locations). 24 hours after patients received
acupuncture, they were asked if they were pain free. What are the explanatory and response variables in
this study?

1.8 Sinusitis and antibiotics, Part II. Exercise 1.2 introduced a study exploring the effect of antibiotic
treatment for acute sinusitis. Study participants either received either a 10-day course of an antibiotic
(treatment) or a placebo similar in appearance and taste (control). At the end of the 10-day period, patients
were asked if they experienced improvement in symptoms. What are the explanatory and response variables
in this study?

1.9 Fisher’s irises. Sir Ronald Aylmer Fisher was an English statistician, evolutionary biologist, and
geneticist who worked on a data set that contained sepal length and width, and petal length and width from
three species of iris flowers (setosa, versicolor and virginica). There were 50 flowers from each species in the
data set.15

(a) How many cases were included in the data?

(b) How many numerical variables are included in
the data? Indicate what they are, and if they
are continuous or discrete.

(c) How many categorical variables are included in
the data, and what are they? List the corre-
sponding levels (categories).

Photo by Ryan Claussen

(http://flic.kr/p/6QTcuX)

CC BY-SA 2.0 license

1.10 Smoking habits of UK residents. A survey was conducted to study the smoking habits of UK
residents. Below is a data matrix displaying a portion of the data collected in this survey. Note that “£”
stands for British Pounds Sterling, “cig” stands for cigarettes, and “N/A” refers to a missing component of
the data.16

sex age marital grossIncome smoke amtWeekends amtWeekdays
1 Female 42 Single Under £2,600 Yes 12 cig/day 12 cig/day
2 Male 44 Single £10,400 to £15,600 No N/A N/A
3 Male 53 Married Above £36,400 Yes 6 cig/day 6 cig/day

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

1691 Male 40 Single £2,600 to £5,200 Yes 8 cig/day 8 cig/day

(a) What does each row of the data matrix represent?

(b) How many participants were included in the survey?

(c) Indicate whether each variable in the study is numerical or categorical. If numerical, identify as contin-
uous or discrete. If categorical, indicate if the variable is ordinal.

14P.K. Piff et al. “Higher social class predicts increased unethical behavior”. In: Proceedings of the National
Academy of Sciences (2012).

15R.A Fisher. “The Use of Multiple Measurements in Taxonomic Problems”. In: Annals of Eugenics 7 (1936),
pp. 179–188.

16National STEM Centre, Large Datasets from stats4schools.

http://www.openintro.org/redirect.php?go=textbook-flickr_ryan_claussen_iris_picture&referrer=ahss3_pdf
http://www.openintro.org/redirect.php?go=textbook-CC_BY_SA_2&referrer=ahss3_pdf
http://www.openintro.org/redirect.php?go=textbook-taxonomy_multiple_measurements_1936&referrer=ahss3_pdf
http://www.openintro.org/redirect.php?go=textbook-Stats4Schools_smoking&referrer=ahss3_pdf
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1.11 US Airports. The visualization below shows the geographical distribution of airports in the contiguous
United States and Washington, DC. This visualization was constructed based on a dataset where each
observation is an airport.17

(a) List the variables used in creating this visualization.

(b) Indicate whether each variable in the study is numerical or categorical. If numerical, identify as contin-
uous or discrete. If categorical, indicate if the variable is ordinal.

1.12 UN Votes. The visualization below shows voting patterns the United States, Canada, and Mexico in
the United Nations General Assembly on a variety of issues. Specifically, for a given year between 1946 and
2015, it displays the percentage of roll calls in which the country voted yes for each issue. This visualization
was constructed based on a dataset where each observation is a country/year pair.18

(a) List the variables used in creating this visualization.

(b) Indicate whether each variable in the study is numerical or categorical. If numerical, identify as contin-
uous or discrete. If categorical, indicate if the variable is ordinal.

17Federal Aviation Administration, www.faa.gov/airports/airport safety/airportdata 5010.
18David Robinson. unvotes: United Nations General Assembly Voting Data. R package version 0.2.0. 2017. url:

https://CRAN.R-project.org/package=unvotes.

http://www.openintro.org/redirect.php?go=textbook-FAA_airports&referrer=ahss3_pdf
https://CRAN.R-project.org/package=unvotes
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1.3 Overview of data collection principles

How do researchers collect data? Why are the results of some studies more reliable than others?

The way a researcher collects data depends upon the research goals. In this section, we look at

different methods of collecting data and consider the types of conclusions that can be drawn from

those methods.

Learning objectives

1. Distinguish between the population and a sample and between the parameter and a statistic.

2. Know when to summarize a data set using a mean versus a proportion.

3. Understand why anecdotal evidence is unreliable.

4. Identify the four main types of data collection: census, sample survey, experiment, and obser-

vation study.

5. Classify a study as observational or experimental, and determine when a study’s results can

be generalized to the population and when a causal relationship can be drawn.

1.3.1 Populations and samples

Consider the following three research questions:

1. What is the average mercury content in swordfish in the Atlantic Ocean?

2. Over the last 5 years, what is the average time to complete a degree for Duke undergrads?

3. Does a new drug reduce the number of deaths in patients with severe heart disease?

Each research question refers to a target population. In the first question, the target population is
all swordfish in the Atlantic ocean, and each fish represents a case. Often times, it is too expensive
to collect data for every case in a population. Instead, a sample is taken. A sample represents
a subset of the cases and is often a small fraction of the population. For instance, 60 swordfish
(or some other number) in the population might be selected, and this sample data may be used to
provide an estimate of the population average and answer the research question.

GUIDED PRACTICE 1.9

For the second and third questions above, identify the target population and what represents an
individual case.19

19(2) Notice that this question is only relevant to students who complete their degree; the average cannot be
computed using a student who never finished her degree. Thus, only Duke undergrads who have graduated in the last
five years are part of the population of interest. Each such student would represent an individual case. (3) A person
with severe heart disease represents a case. The population includes all people with severe heart disease.
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We collect a sample of data to better understand the characteristics of a population. A variable
is a characteristic we measure for each individual or case. The overall quantity of interest may be
the mean, median, proportion, or some other summary of a population. These population values
are called parameters. We estimate the value of a parameter by taking a sample and computing
a numerical summary called a statistic based on that sample. Note that the two p’s (population,
parameter) go together and the two s’s (sample, statistic) go together.

EXAMPLE 1.10

Earlier we asked the question: what is the average mercury content in swordfish in the Atlantic
Ocean? Identify the variable to be measured and the parameter and statistic of interest.

The variable is the level of mercury content in swordfish in the Atlantic Ocean. It will be measured for
each individual swordfish. The parameter of interest is the average mercury content in all swordfish
in the Atlantic Ocean. If we take a sample of 50 swordfish from the Atlantic Ocean, the average
mercury content among just those 50 swordfish will be the statistic.

Two statistics we will study are the mean (also called the average) and proportion. When we
are discussing a population, we label the mean as µ (the Greek letter, mu), while we label the sample
mean as x̄ (read as x-bar). When we are discussing a proportion in the context of a population,
we use the label p, while the sample proportion has a label of p̂ (read as p-hat). Generally, we use
x̄ to estimate the population mean, µ. Likewise, we use the sample proportion p̂ to estimate the
population proportion, p.

EXAMPLE 1.11

Is µ a parameter or statistic? What about p̂?

µ is a parameter because it refers to the average of the entire population. p̂ is a statistic because it
is calculated from a sample.

EXAMPLE 1.12

For the second question regarding time to complete a degree for a Duke undergraduate, is the variable
numerical or categorical? What is the parameter of interest?

The characteristic that we record on each individual is the number of years until graduation, which
is a numerical variable. The parameter of interest is the average time to degree for all Duke under-
graduates, and we use µ to describe this quantity.

GUIDED PRACTICE 1.13

The third question asked whether a new drug reduces deaths in patients with severe heart disease.
Is the variable numerical or categorical? Describe the statistic that should be calculated in this
study.20

If these topics are still a bit unclear, don’t worry. We’ll cover them in greater detail in the next
chapter.

20The variable is whether or not a patient with severe heart disease dies within the time frame of the study. This
is categorical because it will be a yes or a no. The statistic that should be recorded is the proportion of patients that
die within the time frame of the study, and we would use p̂ to denote this quantity.
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Figure 1.10: In February 2010, some media
pundits cited one large snow storm as valid
evidence against global warming. As comedian
Jon Stewart pointed out, “It’s one storm, in
one region, of one country.”
—————————–
February 10th, 2010.

1.3.2 Anecdotal evidence

Consider the following possible responses to the three research questions:

1. A man on the news got mercury poisoning from eating swordfish, so the average mercury
concentration in swordfish must be dangerously high.

2. I met two students who took more than 7 years to graduate from Duke, so it must take longer
to graduate at Duke than at many other colleges.

3. My friend’s dad had a heart attack and died after they gave him a new heart disease drug, so
the drug must not work.

Each conclusion is based on data. However, there are two problems. First, the data only represent
one or two cases. Second, and more importantly, it is unclear whether these cases are actually
representative of the population. Data collected in this haphazard fashion are called anecdotal
evidence.

ANECDOTAL EVIDENCE

Be careful of making inferences based on anecdotal evidence. Such evidence may be true and
verifiable, but it may only represent extraordinary cases. The majority of cases and the average
case may in fact be very different.

Anecdotal evidence typically is composed of unusual cases that we recall based on their striking
characteristics. For instance, we may vividly remember the time when our friend bought a lottery
ticket and won $250 but forget most the times she bought one and lost. Instead of focusing on the
most unusual cases, we should examine a representative sample of many cases.
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1.3.3 Explanatory and response variables

When we ask questions about the relationship between two variables, we sometimes also want
to determine if the change in one variable causes a change in the other. Consider the following
rephrasing of an earlier question about the county data set:

If there is an increase in the median household income in a county, does this drive an
increase in its population?

In this question, we are asking whether one variable affects another. If this is our underlying
belief, then median household income is the explanatory variable and the population change is the
response variable in the hypothesized relationship.21

EXPLANATORY AND RESPONSE VARIABLES

When we suspect one variable might causally affect another, we label the first variable the
explanatory variable and the second the response variable.

might affectexplanatory
variable

response
variable

For many pairs of variables, there is no hypothesized relationship, and these labels would not
be applied to either variable in such cases.

ASSOCIATION DOES NOT IMPLY CAUSATION

Labeling variables as explanatory and response does not guarantee the relationship between the
two is actually causal, even if there is an association identified between the two variables. We
use these labels only to keep track of which variable we suspect affects the other.

In many cases, the relationship is complex or unknown. It may be unclear whether variable A
explains variable B or whether variable B explains variable A. For example, it is now known that a
particular protein called REST is much depleted in people suffering from Alzheimer’s disease. While
this raises hopes of a possible approach for treating Alzheimer’s, it is still unknown whether the
lack of the protein causes brain deterioration, whether brain deterioration causes depletion in the
REST protein, or whether some third variable causes both brain deterioration and REST depletion.
That is, we do not know if the lack of the protein is an explanatory variable or a response variable.
Perhaps it is both.22

21Sometimes the explanatory variable is called the independent variable and the response variable is called the
dependent variable. However, this becomes confusing since a pair of variables might be independent or dependent,
so we avoid this language.

22nytimes.com/2014/03/20/health/fetal-gene-may-protect-brain-from-alzheimers-study-finds.html

http://www.openintro.org/redirect.php?go=textbook-nytimes_gene_alzheimers_study&referrer=ahss3_pdf
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1.3.4 Observational studies versus experiments

There are two primary types of data collection: observational studies and experiments.
Researchers perform an observational study when they collect data without interfering with

how the data arise. For instance, researchers may collect information via surveys, review medical or
company records, or follow a cohort of many similar individuals to study why certain diseases might
develop. In each of these situations, researchers merely observe or take measurements of things that
arise naturally.

When researchers want to investigate the possibility of a causal connection, they conduct an
experiment. For all experiments, the researchers must impose a treatment. For most studies there
will be both an explanatory and a response variable. For instance, we may suspect administering
a drug will reduce mortality in heart attack patients over the following year. To check if there
really is a causal connection between the explanatory variable and the response, researchers will
collect a sample of individuals and split them into groups. The individuals in each group are
assigned a treatment. When individuals are randomly assigned to a group, the experiment is called
a randomized experiment. For example, each heart attack patient in the drug trial could be
randomly assigned into one of two groups: the first group receives a placebo (fake treatment) and
the second group receives the drug. See the case study in Section 1.1 for another example of an
experiment, though that study did not employ a placebo.

EXAMPLE 1.14

Suppose that a researcher is interested in the average tip customers at a particular restaurant give.
Should she carry out an observational study or an experiment?

In addressing this question, we ask, “Will the researcher be imposing any treatment?” Because
there is no treatment or interference that would be applicable here, it will be an observational study.
Additionally, one consideration the researcher should be aware of is that, if customers know their
tips are being recorded, it could change their behavior, making the results of the study inaccurate.

ASSOCIATION 6= CAUSATION

In general, association does not imply causation, and causation can only be inferred from a
randomized experiment.

Section summary

• The population is the entire group that the researchers are interested in. Because it is
usually too costly to gather the data for the entire population, researchers will collect data
from a sample, representing a subset of the population.

• A parameter is a true quantity for the entire population, while a statistic is what is calcu-
lated from the sample. A parameter is about a population and a statistic is about a sample.
Remember: p goes with p and s goes with s.

• Two common summary quantities are mean (for numerical variables) and proportion (for
categorical variables).

• Finding a good estimate for a population parameter requires a random sample; do not gener-
alize from anecdotal evidence.

• There are two primary types of data collection: observational studies and experiments. In
an experiment, researchers impose a treatment to look for a causal relationship between
the treatment and the response. In an observational study, researchers simply collect data
without imposing any treatment.

• Remember: Correlation is not causation! In other words, an association between two variables
does not imply that one causes the other. Proving a causal relationship requires a well-designed
experiment.
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Exercises

1.13 Air pollution and birth outcomes, scope of inference. Exercise 1.3 introduces a study where
researchers collected data to examine the relationship between air pollutants and preterm births in Southern
California. During the study air pollution levels were measured by air quality monitoring stations. Length of
gestation data were collected on 143,196 births between the years 1989 and 1993, and air pollution exposure
during gestation was calculated for each birth.

(a) Identify the population of interest and the sample in this study.

(b) Comment on whether or not the results of the study can be generalized to the population, and if the
findings of the study can be used to establish causal relationships.

1.14 Cheaters, scope of inference. Exercise 1.5 introduces a study where researchers studying the rela-
tionship between honesty, age, and self-control conducted an experiment on 160 children between the ages
of 5 and 15. The researchers asked each child to toss a fair coin in private and to record the outcome (white
or black) on a paper sheet, and said they would only reward children who report white. Half the students
were explicitly told not to cheat and the others were not given any explicit instructions. Differences were
observed in the cheating rates in the instruction and no instruction groups, as well as some differences across
children’s characteristics within each group.

(a) Identify the population of interest and the sample in this study.

(b) Comment on whether or not the results of the study can be generalized to the population, and if the
findings of the study can be used to establish causal relationships.

1.15 Buteyko method, scope of inference. Exercise 1.4 introduces a study on using the Buteyko shallow
breathing technique to reduce asthma symptoms and improve quality of life. As part of this study 600
asthma patients aged 18-69 who relied on medication for asthma treatment were recruited and randomly
assigned to two groups: one practiced the Buteyko method and the other did not. Those in the Buteyko
group experienced, on average, a significant reduction in asthma symptoms and an improvement in quality
of life.

(a) Identify the population of interest and the sample in this study.

(b) Comment on whether or not the results of the study can be generalized to the population, and if the
findings of the study can be used to establish causal relationships.

1.16 Stealers, scope of inference. Exercise 1.6 introduces a study on the relationship between socio-
economic class and unethical behavior. As part of this study 129 University of California Berkeley under-
graduates were asked to identify themselves as having low or high social-class by comparing themselves to
others with the most (least) money, most (least) education, and most (least) respected jobs. They were also
presented with a jar of individually wrapped candies and informed that the candies were for children in a
nearby laboratory, but that they could take some if they wanted. After completing some unrelated tasks,
participants reported the number of candies they had taken. It was found that those who were identified as
upper-class took more candy than others.

(a) Identify the population of interest and the sample in this study.

(b) Comment on whether or not the results of the study can be generalized to the population, and if the
findings of the study can be used to establish causal relationships.
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1.17 Relaxing after work. The General Social Survey asked the question, “After an average work day,
about how many hours do you have to relax or pursue activities that you enjoy?” to a random sample of 1,155
Americans. The average relaxing time was found to be 1.65 hours. Determine which of the following is an
observation, a variable, a sample statistic (value calculated based on the observed sample), or a population
parameter.

(a) An American in the sample.

(b) Number of hours spent relaxing after an average work day.

(c) 1.65.

(d) Average number of hours all Americans spend relaxing after an average work day.

1.18 Cats on YouTube. Suppose you want to estimate the percentage of videos on YouTube that are cat
videos. It is impossible for you to watch all videos on YouTube so you use a random video picker to select
1000 videos for you. You find that 2% of these videos are cat videos. Determine which of the following is an
observation, a variable, a sample statistic (value calculated based on the observed sample), or a population
parameter.

(a) Percentage of all videos on YouTube that are cat videos.

(b) 2%.

(c) A video in your sample.

(d) Whether or not a video is a cat video.
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1.4 Observational studies and sampling strategies

You have probably read or heard claims from many studies and polls. A background in statistical

reasoning will help you assess the validity of such claims. Some of the big questions we address in

this section include:

• If a study finds a relationship between two variables, such as eating chocolate and positive

health outcomes, is it reasonable to conclude eating chocolate improves health outcomes?

• How do opinion polls work? How do research organizations collect the data, and what types

of bias should we look out for?

Learning objectives

1. Identify possible confounding factors in a study and explain, in context, how they could con-

found.

2. Distinguish among and describe a convenience sample, a volunteer sample, and a random

sample.

3. Identify and describe the effects of different types of bias in sample surveys, including under-

coverage, non-response, and response bias.

4. Identify and describe how to implement different random sampling methods, including simple,

systematic, stratified, and cluster.

5. Recognize the benefits and drawbacks of choosing one sampling method over another.

6. Understand when it is valid to generalize and to what population that generalization can be

made.

1.4.1 Observational studies

Generally, data in observational studies are collected only by monitoring what occurs, while
experiments require the primary explanatory variable in a study be assigned for each subject by the
researchers.

Making causal conclusions based on experiments is often reasonable. However, making the same
causal conclusions based on observational data is treacherous and is not recommended. Observational
studies are generally only sufficient to show associations.

GUIDED PRACTICE 1.15

Suppose an observational study tracked sunscreen use and skin cancer, and it was found people who
use sunscreen are more likely to get skin cancer than people who do not use sunscreen. Does this
mean sunscreen causes skin cancer?23

Some previous research tells us that using sunscreen actually reduces skin cancer risk, so maybe
there is another variable that can explain this hypothetical association between sunscreen usage and
skin cancer. One important piece of information that is absent is sun exposure. Sun exposure is
what is called a confounding variable (also called a lurking variable, confounding factor, or
a confounder).

23No. See the paragraph following the exercise for an explanation.
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sun exposure

use sunscreen skin cancer?

CONFOUNDING VARIABLE

A confounding variable is a variable that is associated with both the explanatory and response
variables. Because of the confounding variable’s association with both variables, we do not
know if the response is due to the explanatory variable or due to the confounding variable.

Sun exposure is a confounding factor because it is associated with both the use of sunscreen
and the development of skin cancer. People who are out in the sun all day are more likely to use
sunscreen, and people who are out in the sun all day are more likely to get skin cancer. Research
shows us the development of skin cancer is due to the sun exposure. The variables of sunscreen usage
and sun exposure are confounded, and without this research, we would have no way of knowing
which one was the true cause of skin cancer.

EXAMPLE 1.16

In a study that followed 1,169 non-diabetic adults who had been hospitalized for a first heart attack,
the people that reported eating chocolate had increased survival rate over the next 8 years than
those that reported not eating chocolate. Also, those who ate more chocolate tended to live longer
on average. The researchers controlled for several confounding factors, such as age, physical activity,
smoking, and many other factors. Can we conclude that the consumption of chocolate caused the
people to live longer?

This is an observational study, not a controlled randomized experiment. Even though the researchers
controlled for many possible variables, there may still be other confounding factors. (Can you think
of any that weren’t mentioned?) While it is possible that the chocolate had an effect, this study
cannot prove that chocolate increased the survival rate of patients.

EXAMPLE 1.17

The authors who conducted the study did warn in the article that additional studies would be nec-
essary to determine whether the correlation between chocolate consumption and survival translates
to any causal relationship. That is, they acknowledged that there may be confounding factors. One
possible confounding factor not considered was mental health. In context, explain what it would
mean for mental health to be a confounding factor in this study.

Mental health would be a confounding factor if, for example, people with better mental health
tended to eat more chocolate, and those with better mental health also were less likely to die within
the 8 year study period. Notice that if better mental health were not associated with eating more
chocolate, it would not be considered a confounding factor since it wouldn’t explain the observed
associated between eating chocolate and having a better survival rate. If better mental health were
associated only with eating chocolate and not with a better survival rate, then it would also not be
confounding for the same reason. Only if a variable that is associated with both the explanatory
variable of interest (chocolate) and the outcome variable in the study (survival during the 8 year
study period) can it be considered a confounding factor.

While one method to justify making causal conclusions from observational studies is to exhaust
the search for confounding variables, there is no guarantee that all confounding variables can be
examined or measured.

In the same way, the county data set is an observational study with confounding variables, and
its data cannot be used to make causal conclusions.
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GUIDED PRACTICE 1.18

Figure 1.8 shows a negative association between the homeownership rate and the percentage of
multi-unit structures in a county. However, it is unreasonable to conclude that there is a causal
relationship between the two variables. Suggest one or more other variables that might explain the
relationship visible in Figure 1.8.24

Observational studies come in two forms: prospective and retrospective studies. A prospec-
tive study identifies individuals and collects information as events unfold. For instance, medical
researchers may identify and follow a group of similar individuals over many years to assess the
possible influences of behavior on cancer risk. One example of such a study is The Nurses’ Health
Study, started in 1976 and expanded in 1989. This prospective study recruits registered nurses and
then collects data from them using questionnaires. Retrospective studies collect data after events
have taken place, e.g. researchers may review past events in medical records. Some data sets, such
as county, may contain both prospectively- and retrospectively-collected variables. Local govern-
ments prospectively collect some variables as events unfolded (e.g. retails sales) while the federal
government retrospectively collected others during the 2010 census (e.g. county population counts).

1.4.2 Sampling from a population

We might try to estimate the time to graduation for Duke undergraduates in the last 5 years
by collecting a sample of students. All graduates in the last 5 years represent the population,
and graduates who are selected for review are collectively called the sample. The goal is to use
information from the sample to generalize or make an inference to the population. In order to be
able to generalize, we must randomly select a sample from the population of interest. The most
basic type of random selection is equivalent to how raffles are conducted. For example, in selecting
graduates, we could write each graduate’s name on a raffle ticket and draw 100 tickets. The selected
names would represent a random sample of 100 graduates.

all graduates

sample

Figure 1.11: In this graphic, five graduates are randomly selected from the popu-
lation to be included in the sample.

Why pick a sample randomly? Why not just pick a sample by hand? Consider the following
scenario.

24Answers will vary. Population density may be important. If a county is very dense, then this may require a
larger fraction of residents to live in multi-unit structures. Additionally, the high density may contribute to increases
in property value, making homeownership infeasible for many residents.
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all graduates

sample

graduates from
health−related fields

Figure 1.12: Instead of sampling from all graduates equally, a nutrition major
might inadvertently pick graduates with health-related majors disproportionately
often.

EXAMPLE 1.19

Suppose we ask a student who happens to be majoring in nutrition to select several graduates for
the study. What kind of students do you think she might select? Do you think her sample would
be representative of all graduates?

Perhaps she would pick a disproportionate number of graduates from health-related fields. Or
perhaps her selection would be well-representative of the population. When selecting samples by
hand, we run the risk of picking a biased sample, even if that bias is unintentional or difficult to
discern.

If the student majoring in nutrition picked a disproportionate number of graduates from health-
related fields, this would introduce undercoverage bias into the sample. Undercoverage bias occurs
when some individuals of the population are inherently less likely to be included in the sample than
others, making the sample not representative of the population. In the example, this bias creates a
problem because a degree in health-related fields might take more or less time to complete than a
degree in other fields. Suppose that it takes longer. Since graduates from other fields would be less
likely to be in the sample, the undercoverage bias would cause her to overestimate the parameter.

Sampling randomly resolves the problem of undercoverage bias, if the sample is randomly
selected from the entire population of interest. If the sample is randomly selected from only a
subset of the population, say, only graduates from health-related fields, then the sample will not be
representative of the population of interest. Generalizations can only be made to the population
from which the sample is randomly selected.

The most basic random sample is called a simple random sample, which is equivalent to
using a raffle to select cases. This means that each case in the population has an equal chance of
being included and there is no implied connection between the cases in the sample.

A common downfall is a convenience sample, where individuals who are easily accessible
are more likely to be included in the sample. For instance, if a political survey is done by stopping
people walking in the Bronx, this will not represent all of New York City. It is often difficult to
discern what sub-population a convenience sample represents.

population of interest

sample

population actually
sampled

Figure 1.13: Due to the possibility of non-response, surveys studies may only reach
a certain group within the population. It is difficult, and often times impossible,
to completely fix this problem.
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Similarly, a volunteer sample is one in which people’s responses are solicited and those who
choose to participate, respond. This is a problem because those who choose to participate may tend
to have different opinions than the rest of the population, resulting in a biased sample.

GUIDED PRACTICE 1.20

We can easily access ratings for products, sellers, and companies through websites. These ratings
are based only on those people who go out of their way to provide a rating. If 50% of online reviews
for a product are negative, do you think this means that 50% of buyers are dissatisfied with the
product?25

The act of taking a random sample helps minimize bias; however, bias can crop up in other
ways. Even when people are picked at random, e.g. for surveys, caution must be exercised if the
non-response is high. For instance, if only 30% of the people randomly sampled for a survey
actually respond, then it is unclear whether the results are representative of the entire population.
This non-response bias can skew results.

Even if a sample has no undercoverage bias and no non-response bias, there is an additional
type of bias that often crops up and undermines the validity of results, known as response bias.
Response bias refers to a broad range of factors that influence how a person responds, such as
question wording, question order, and influence of the interviewer. This type of bias can be present
even when we collect data from an entire population in what is called a census. Because response
bias is often subtle, one must pay careful attention to how questions were asked when attempting
to draw conclusions from the data.

EXAMPLE 1.21

Suppose a high school student wants to investigate the student body’s opinions on the food in the
cafeteria. Let’s assume that she manages to survey every student in the school. How might response
bias arise in this context?

There are many possible correct answers to this question. For example, students might respond
differently depending upon who asks the question, such as a school friend or someone who works
in the cafeteria. The wording of the question could introduce response bias. Students would likely
respond differently if asked “Do you like the food in the cafeteria?” versus “The food in the cafeteria
is pretty bad, don’t you think?”

WATCH OUT FOR BIAS

Undercoverage bias, non-response bias, and response bias can still exist within a random sample.
Always determine how a sample was chosen, ask what proportion of people failed to respond,
and critically examine the wording of the questions.

When there is no bias in a sample, increasing the sample size tends to increase the precision
and reliability of the estimate. When a sample is biased, it may be impossible to decipher helpful
information from the data, even if the sample is very large.

25Answers will vary. From our own anecdotal experiences, we believe people tend to rant more about products
that fell below expectations than rave about those that perform as expected. For this reason, we suspect there is a
negative bias in product ratings on sites like Amazon. However, since our experiences may not be representative, we
also keep an open mind.
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GUIDED PRACTICE 1.22

A researcher sends out questionnaires to 50 randomly selected households in a particular town asking
whether or not they support the addition of a traffic light in their neighborhood. Because only 20%
of the questionnaires are returned, she decides to mail questionnaires to 50 more randomly selected
households in the same neighborhood. Comment on the usefulness of this approach.26

1.4.3 Simple, systematic, stratified, cluster, and multistage sampling

Almost all statistical methods for observational data rely on a sample being random and un-
biased. When a sample is collected in a biased way, these statistical methods will not generally
produce reliable information about the population.

The idea of a simple random sample was introduced in the last section. Here we provide a more
technical treatment of this method and introduce four new random sampling methods: systematic,
stratified, cluster, and multistage.27 Figure 1.14 provides a graphical representation of simple versus
systematic sampling while Figure 1.15 provides a graphical representation of stratified, cluster, and
multistage sampling.

Simple random sampling is probably the most intuitive form of random sampling. Consider
the salaries of Major League Baseball (MLB) players, where each player is a member of one of the
league’s 30 teams. For the 2019 season, N, the population size or total number of players, is 750.
To take a simple random sample of n = 120 of these baseball players and their salaries, we could
number each player from 1 to 750. Then we could randomly select 120 numbers between 1 and 750
(without replacement) using a random number generator or random digit table. The players with
the selected numbers would comprise our sample.

Two properties are always true in a simple random sample:

1. Each case in the population has an equal chance of being included in the sample.

2. Each group of n cases has an equal chance of making up the sample.

The statistical methods in this book focus on data collected using simple random sampling.
Note that Property 2 – that each group of n cases has an equal chance making up the sample – is
not true for the remaining four sampling techniques. As you read each one, consider why.

Though less common than simple random sampling, systematic sampling is sometimes used
when there exists a convenient list of all of the individuals of the population. Suppose we have a
roster with the names of all the MLB players from the 2019 season. To take a systematic random
sample, number them from 1 to 750. Select one random number between 1 and 750 and let that
player be the first individual in the sample. Then, depending on the desired sample size, select every
10th number or 20th number, for example, to arrive at the sample.28 If there are no patterns in the
salaries based on the numbering then this could be a reasonable method.

EXAMPLE 1.23

A systematic sample is not the same as a simple random sample. Provide an example of a sample
that can come from a simple random sample but not from a systematic random sample.

Answers can vary. If we take a sample of size 3, then it is possible that we could sample players
numbered 1, 2, and 3 in a simple random sample. Such a sample would be impossible from a
systematic sample. Property 2 of simple random samples does not hold for other types of random
samples.

26The researcher should be concerned about non-response bias, and sampling more people will not eliminate this
issue. The same type of people that did not respond to the first survey are likely not going to respond to the second
survey. Instead, she should make an effort to reach out to the households from the original sample that did not
respond and solicit their feedback, possibly by going door-to-door.

27Multistage sampling is not part of the AP syllabus.
28If we want a sample of size n = 150, it would make sense to select every 5th player since 750/150 = 5. Suppose

we randomly select the number 741. Then player 741, 746, 1, 6, 11, · · · , 731, and 736 would make up the sample.
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Figure 1.14: Examples of simple random sampling and systematic sampling. In the
top panel, simple random sampling was used to randomly select 18 cases. In the
lower panel, systematic random sampling was used to select every 7th individual.
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Sometimes there is a variable that is known to be associated with the quantity we want to
estimate. In this case, a stratified random sample might be selected. Stratified sampling is a
divide-and-conquer sampling strategy. The population is divided into groups called strata. The
strata are chosen so that similar cases are grouped together and a sampling method, usually simple
random sampling, is employed to select a certain number or a certain proportion of the whole within
each stratum. In the baseball salary example, the 30 teams could represent the strata; some teams
have a lot more money (we’re looking at you, Yankees).

EXAMPLE 1.24

For this baseball example, briefly explain how to select a stratified random sample of size n = 120.

Each team can serve as a stratum, and we could take a simple random sample of 4 players from each
of the 30 teams, yielding a sample of 120 players.

Stratified sampling is inherently different than simple random sampling. For example, the
stratified sampling approach described would make it impossible for the entire Yankees team to be
included in the sample.

EXAMPLE 1.25

Stratified sampling is especially useful when the cases in each stratum are very similar with respect
to the outcome of interest. Why is it good for cases within each stratum to be very similar?

We should get a more stable estimate for the subpopulation in a stratum if the cases are very similar.
These improved estimates for each subpopulation will help us build a reliable estimate for the full
population. For example, in a simple random sample, it is possible that just by random chance
we could end up with proportionally too many Yankees players in our sample, thus overestimating
the true average salary of all MLB players. A stratified random sample can assure proportional
representation from each team.

Next, let’s consider a sampling technique that randomly selects groups of people. Cluster
sampling is much like simple random sampling, but instead of randomly selecting individuals, we
randomly select groups or clusters. Unlike stratified sampling, cluster sampling is most helpful
when there is a lot of case-to-case variability within a cluster but the clusters themselves don’t
look very different from one another. That is, we expect individual strata to be homogeneous
(self-similar), while we expect individual clusters to be heterogeneous (diverse) with respect to
the variable of interest.

Sometimes cluster sampling can be a more economical random sampling technique than the
alternatives. For example, if neighborhoods represented clusters, this sampling method works best
when each neighborhood is very diverse. Because each neighborhood itself encompasses diversity, a
cluster sample can reduce the time and cost associated with data collection, because the interviewer
would need only go to some of the neighborhoods rather than to all parts of a city, in order to collect
a useful sample.

Multistage sampling, also called multistage cluster sampling, is a two (or more) step
strategy. The first step is to take a cluster sample, as described above. Then, instead of including all
of the individuals in these clusters in our sample, a second sampling method, usually simple random
sampling, is employed within each of the selected clusters. In the neighborhood example, we could
first randomly select some number of neighborhoods and then take a simple random sample from
just those selected neighborhoods. As seen in Figure 1.15, stratified sampling requires observations
to be sampled from every stratum. Multistage sampling selects observations only from those clusters
that were randomly selected in the first step.

It is also possible to have more than two steps in multistage sampling. Each cluster may be
naturally divided into subclusters. For example, each neighborhood could be divided into streets.
To take a three-stage sample, we could first select some number of clusters (neighborhoods), and
then, within the selected clusters, select some number of subclusters (streets). Finally, we could
select some number of individuals from each of the selected streets.
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Figure 1.15: Examples of stratified, cluster, and multistage sampling. In the top
panel, stratified sampling was used: cases were grouped into strata, and then simple
random sampling was employed within each stratum. In the middle panel, cluster
sampling was used, where data were binned into nine cluster and three clusters
were randomly selected. In the bottom panel, multistage sampling was used. Data
were binned into the nine clusters, three of the cluster were randomly selected, and
then six cases were randomly sampled in each of the three selected clusters.
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EXAMPLE 1.26

Suppose we are interested in estimating the proportion of students at a certain school that have
part-time jobs. It is believed that older students are more likely to work than younger students.
What sampling method should be employed? Describe how to collect such a sample to get a sample
size of 60.

Because grade level affects the likelihood of having a part-time job, we should take a stratified
random sample. To do this, we can take a simple random sample of 15 students from each grade.
This will give us equal representation from each grade. Note: in a simple random sample, just by
random chance we might get too many students who are older or younger, which could make the
estimate too high or too low. Also, there are no well-defined clusters in this example. We wouldn’t
want to use the grades as clusters and sample everyone from a couple of the grades. This would
create too large a sample and would not give us the nice representation from each grade afforded by
the stratified random sample.

EXAMPLE 1.27

Suppose we are interested in estimating the malaria rate in a densely tropical portion of rural
Indonesia. We learn that there are 30 villages in that part of the Indonesian jungle, each more or
less similar to the next. Our goal is to test 150 individuals for malaria. What sampling method
should be employed?

A simple random sample would likely draw individuals from all 30 villages, which could make data
collection extremely expensive. Stratified sampling would be a challenge since it is unclear how we
would build strata of similar individuals. However, multistage cluster sampling seems like a very
good idea. First, we might randomly select half the villages, then randomly select 10 people from
each. This would probably reduce our data collection costs substantially in comparison to a simple
random sample and would still give us reliable information.

ADVANCED SAMPLING TECHNIQUES REQUIRE ADVANCED METHODS

The methods of inference covered in this book generally only apply to simple random samples.
More advanced analysis techniques are required for systematic, stratified, cluster, and multistage
random sampling.
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Section summary

• In an observational study, one must always consider the existence of confounding factors.
A confounding factor is a “spoiler variable” that could explain an observed relationship between
the explanatory variable and the response. Remember: For a variable to be confounding it
must be associated with both the explanatory variable and the response variable.

• When taking a sample from a population, avoid convenience samples and volunteer sam-
ples, which likely introduce bias. Instead, use a random sampling method.

• Generalizations from a sample can be made to a population only if the sample is random.
Furthermore, the generalization can be made only to the population from which the sample
was randomly selected, not to a larger or different population.

• Random sampling from the entire population of interest avoids the problem of undercoverage
bias. However, response bias and non-response bias can be present in any type of sample,
random or not.

• In a simple random sample, every individual as well as every group of individuals has the
same probability of being in the sample. A common way to select a simple random sample is to
number each individual of the population from 1 to N. Using a random digit table or a random
number generator, numbers are randomly selected without replacement and the corresponding
individuals become part of the sample.

• A systematic random sample involves choosing from of a population using a random start-
ing point, and then selecting members according to a fixed, periodic interval (such as every
10th member).

• A stratified random sample involves randomly sampling from every strata, where the
strata should correspond to a variable thought to be associated with the variable of interest.
This ensures that the sample will have appropriate representation from each of the different
strata and reduces variability in the sample estimates.

• A cluster random sample involves randomly selecting a set of clusters, or groups, and then
collecting data on all individuals in the selected clusters. This can be useful when sampling
clusters is more convenient and less expensive than sampling individuals, and it is an effective
strategy when each cluster is approximately representative of the population.

• Remember: Individual strata should be homogeneous (self-similar), while individual clusters
should be heterogeneous (diverse). For example, if smoking is correlated with what is being
estimated, let one stratum be all smokers and the other be all non-smokers, then randomly
select an appropriate number of individuals from each strata. Alternately, if age is correlated
with the variable being estimated, one could randomly select a subset of clusters, where each
cluster has mixed age groups.
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Exercises

1.19 Course satisfaction across sections. A large college class has 160 students. All 160 students
attend the lectures together, but the students are divided into 4 groups, each of 40 students, for lab sections
administered by different teaching assistants. The professor wants to conduct a survey about how satisfied
the students are with the course, and he believes that the lab section a student is in might affect the student’s
overall satisfaction with the course.

(a) What type of study is this?

(b) Suggest a sampling strategy for carrying out this study.

1.20 Housing proposal across dorms. On a large college campus first-year students and sophomores live
in dorms located on the eastern part of the campus and juniors and seniors live in dorms located on the
western part of the campus. Suppose you want to collect student opinions on a new housing structure the
college administration is proposing and you want to make sure your survey equally represents opinions from
students from all years.

(a) What type of study is this?

(b) Suggest a sampling strategy for carrying out this study.

1.21 Internet use and life expectancy. The following scatterplot was created as part of a study evaluating
the relationship between estimated life expectancy at birth (as of 2014) and percentage of internet users (as
of 2009) in 208 countries for which such data were available.29

(a) Describe the relationship between life ex-
pectancy and percentage of internet users.

(b) What type of study is this?

(c) State a possible confounding variable that
might explain this relationship and describe
its potential effect.

Percent Internet Users

Li
fe

 E
xp

ec
ta

nc
y 

at
 B

ir
th

0% 20% 40% 60% 80% 100%

50

60

70

80

90

1.22 Stressed out, Part I. A study that surveyed a random sample of otherwise healthy high school students
found that they are more likely to get muscle cramps when they are stressed. The study also noted that
students drink more coffee and sleep less when they are stressed.

(a) What type of study is this?

(b) Can this study be used to conclude a causal relationship between increased stress and muscle cramps?

(c) State possible confounding variables that might explain the observed relationship between increased
stress and muscle cramps.

1.23 Evaluate sampling methods. A university wants to determine what fraction of its undergraduate
student body support a new $25 annual fee to improve the student union. For each proposed method below,
indicate whether the method is reasonable or not.

(a) Survey a simple random sample of 500 students.

(b) Stratify students by their field of study, then sample 10% of students from each stratum.

(c) Cluster students by their ages (e.g. 18 years old in one cluster, 19 years old in one cluster, etc.), then
randomly sample three clusters and survey all students in those clusters.

1.24 Random digit dialing. The Gallup Poll uses a procedure called random digit dialing, which creates
phone numbers based on a list of all area codes in America in conjunction with the associated number of
residential households in each area code. Give a possible reason the Gallup Poll chooses to use random digit
dialing instead of picking phone numbers from the phone book.

29CIA Factbook, Country Comparisons, 2014.

http://www.openintro.org/redirect.php?go=tableau-scatter-lifeexp-internetusers&referrer=ahss3_pdf
http://www.openintro.org/redirect.php?go=tableau-scatter-lifeexp-internetusers&referrer=ahss3_pdf
http://www.openintro.org/redirect.php?go=textbook-cia_factbook&referrer=ahss3_pdf
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1.25 Haters are gonna hate, study confirms. A study published in the Journal of Personality and
Social Psychology asked a group of 200 randomly sampled men and women to evaluate how they felt about
various subjects, such as camping, health care, architecture, taxidermy, crossword puzzles, and Japan in
order to measure their attitude towards mostly independent stimuli. Then, they presented the participants
with information about a new product: a microwave oven. This microwave oven does not exist, but the
participants didn’t know this, and were given three positive and three negative fake reviews. People who
reacted positively to the subjects on the dispositional attitude measurement also tended to react positively
to the microwave oven, and those who reacted negatively tended to react negatively to it. Researchers
concluded that “some people tend to like things, whereas others tend to dislike things, and a more thorough
understanding of this tendency will lead to a more thorough understanding of the psychology of attitudes.”30

(a) What are the cases?

(b) What is (are) the response variable(s) in this study?

(c) What is (are) the explanatory variable(s) in this study?

(d) Does the study employ random sampling?

(e) Is this an observational study or an experiment? Explain your reasoning.

(f) Can we establish a causal link between the explanatory and response variables?

(g) Can the results of the study be generalized to the population at large?

1.26 Family size. Suppose we want to estimate household size, where a “household” is defined as people
living together in the same dwelling, and sharing living accommodations. If we select students at random
at an elementary school and ask them what their family size is, will this be a good measure of household
size? Or will our average be biased? If so, will it overestimate or underestimate the true value?

1.27 Sampling strategies. A statistics student who is curious about the relationship between the amount
of time students spend on social networking sites and their performance at school decides to conduct a
survey. Various research strategies for collecting data are described below. In each, name the sampling
method proposed and any bias you might expect.

(a) He randomly samples 40 students from the study’s population, gives them the survey, asks them to fill
it out and bring it back the next day.

(b) He gives out the survey only to his friends, making sure each one of them fills out the survey.

(c) He posts a link to an online survey on Facebook and asks his friends to fill out the survey.

(d) He randomly samples 5 classes and asks a random sample of students from those classes to fill out the
survey.

1.28 Reading the paper. Below are excerpts from two articles published in the NY Times:

(a) An article titled Risks: Smokers Found More Prone to Dementia states the following:31

“Researchers analyzed data from 23,123 health plan members who participated in a voluntary exam and

health behavior survey from 1978 to 1985, when they were 50-60 years old. 23 years later, about 25% of

the group had dementia, including 1,136 with Alzheimer’s disease and 416 with vascular dementia. After

adjusting for other factors, the researchers concluded that pack-a-day smokers were 37% more likely than

nonsmokers to develop dementia, and the risks went up with increased smoking; 44% for one to two packs

a day; and twice the risk for more than two packs.”

Based on this study, can we conclude that smoking causes dementia later in life? Explain your reasoning.

(b) Another article titled The School Bully Is Sleepy states the following:32

“The University of Michigan study, collected survey data from parents on each child’s sleep habits and

asked both parents and teachers to assess behavioral concerns. About a third of the students studied were

identified by parents or teachers as having problems with disruptive behavior or bullying. The researchers

found that children who had behavioral issues and those who were identified as bullies were twice as likely

to have shown symptoms of sleep disorders.”

A friend of yours who read the article says, “The study shows that sleep disorders lead to bullying in
school children.” Is this statement justified? If not, how best can you describe the conclusion that can
be drawn from this study?

30Justin Hepler and Dolores Albarraćın. “Attitudes without objects - Evidence for a dispositional attitude, its
measurement, and its consequences”. In: Journal of personality and social psychology 104.6 (2013), p. 1060.

31R.C. Rabin. “Risks: Smokers Found More Prone to Dementia”. In: New York Times (2010).
32T. Parker-Pope. “The School Bully Is Sleepy”. In: New York Times (2011).

http://www.openintro.org/redirect.php?go=textbook-dispositional-attitude&referrer=ahss3_pdf
http://www.openintro.org/redirect.php?go=textbook-dispositional-attitude&referrer=ahss3_pdf
http://www.openintro.org/redirect.php?go=textbook-nytimes_smoking_dementia&referrer=ahss3_pdf
http://www.openintro.org/redirect.php?go=textbook-school_bully_sleepy_2011&referrer=ahss3_pdf
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1.5 Experiments

You would like to determine if drinking a cup of tea each morning will cause students to perform

better on tests. What are different ways you could design an experiment to answer this question?

What are possible sources of bias, and how would you try to minimize them? The goal of an

experiment is to be able to draw a causal conclusion about the effect of a treatment – in this case,

drinking tea. If the design is poor, a causal conclusion cannot be drawn, even if you observe an

association between drinking tea and performing better on tests. This is why it is crucial to start

with a well-designed experiment.

Learning objectives

1. Identify the subjects/experimental units, treatments, and response variable in an experiment.

2. Identify the three main principles of experiment design and explain their purpose: direct

control, randomization, and replication.

3. Explain placebo effect and describe when and how to implement a single-blind and a double-

blind experiment.

4. Identify and describe how to implement the following three experimental designs: completely

randomized design, blocked design, and matched pairs design.

5. Explain the purpose of random assignment or randomization in each of the three experimental

designs.

6. Explain how to randomize treatments in a completely randomized design using technology or

a table of random digits (make sure this is explained).

7. Explain when it is reasonable to draw a causal conclusion about the effect of a treatment.

8. Identify the number of factors in experiment, the number of levels for each factor and the total

number of treatments.

1.5.1 Reducing bias in human experiments

In the last section we investigated observational studies and sampling strategies. While these
are effective tools for answering certain research questions, often times researchers want to measure
the effect of a treatment. In this case, they must carry out an experiment. Just as randomization
is essential in sampling in order to avoid selection bias, randomization is essential in the context of
experiments to determine which subjects will receive which treatments. If the researcher chooses
which patients are in the treatment and control groups, she may unintentionally place sicker patients
in the treatment group, biasing the experiment against the treatment.

Randomized experiments are essential for investigating cause and effect relationships, but they
do not ensure an unbiased perspective in all cases. Human studies are perfect examples where bias
can unintentionally arise. Here we reconsider a study where a new drug was used to treat heart
attack patients. In particular, researchers wanted to know if the drug reduced deaths in patients.

These researchers designed a randomized experiment because they wanted to draw causal con-
clusions about the drug’s effect. Study volunteers33 were randomly placed into two study groups.
One group, the treatment group, received the drug. The other group, called the control group,
did not receive any drug treatment. In an experiment, the explanatory variable is also called a
factor. Here the factor is receiving the drug treatment. It has two levels: yes and no, thus it

33Human subjects are often called patients, volunteers, or study participants.
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is categorical. The response variable is whether or not patients died within the time frame of the
study. It is also categorical.

Put yourself in the place of a person in the study. If you are in the treatment group, you
are given a fancy new drug that you anticipate will help you. On the other hand, a person in the
other group doesn’t receive the drug and sits idly, hoping her participation doesn’t increase her
risk of death. These perspectives suggest there are actually two effects: the one of interest is the
effectiveness of the drug, and the second is an emotional effect that is difficult to quantify.

Researchers aren’t usually interested in the emotional effect, which might bias the study. To
circumvent this problem, researchers do not want patients to know which group they are in. When
researchers keep the patients uninformed about their treatment, the study is said to be blind or
single-blind. But there is one problem: if a patient doesn’t receive a treatment, she will know she
is in the control group. The solution to this problem is to give fake treatments to patients in the
control group. A fake treatment is called a placebo, and an effective placebo is the key to making a
study truly blind. A classic example of a placebo is a sugar pill that is made to look like the actual
treatment pill. Often times, a placebo results in a slight but real improvement in patients. This
effect has been dubbed the placebo effect.

The patients are not the only ones who should be blinded: doctors and researchers can ac-
cidentally bias a study. When a doctor knows a patient has been given the real treatment, she
might inadvertently give that patient more attention or care than a patient that she knows is on the
placebo. To guard against this bias, which again has been found to have a measurable effect in some
instances, most modern studies employ a double-blind setup where researchers who interact with
subjects and are responsible for measuring the response variable are, just like the subjects, unaware
of who is or is not receiving the treatment.34

GUIDED PRACTICE 1.28

Look back to the study in Section 1.1 where researchers were testing whether stents were effective
at reducing strokes in at-risk patients. Is this an experiment? Was the study blinded? Was it
double-blinded?35

1.5.2 Principles of experimental design

Well-conducted experiments are built on three main principles.

Direct Control. Researchers assign treatments to cases, and they do their best to control any
other differences in the groups. They want the groups to be as identical as possible except
for the treatment, so that at the end of the experiment any difference in response between
the groups can be attributed to the treatment and not to some other confounding or lurking
variable. For example, when patients take a drug in pill form, some patients take the pill with
only a sip of water while others may have it with an entire glass of water. To control for the
effect of water consumption, a doctor may ask all patients to drink a 12 ounce glass of water
with the pill.

Direct control refers to variables that the researcher can control, or make the same. A re-
searcher can directly control the appearance of the treatment, the time of day it is taken, etc.
She cannot directly control variables such as gender or age. To control for these other types
of variables, she might consider blocking, which is described in Section 1.5.3.

Randomization. Researchers randomize patients into treatment groups to account for variables
that cannot be controlled. For example, some patients may be more susceptible to a disease
than others due to their dietary habits. Randomizing patients into the treatment or control
group helps even out the effects of such differences, and it also prevents accidental bias from
entering the study.

34There are always some researchers involved in the study who do know which patients are receiving which treat-
ment. However, they do not interact with the study’s patients and do not tell the blinded health care professionals
who is receiving which treatment.

35The researchers assigned the patients into their treatment groups, so this study was an experiment. However,
the patients could distinguish what treatment they received, so this study was not blind. The study could not be
double-blind since it was not blind.
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Replication. The more cases researchers observe, the more accurately they can estimate the effect
of the explanatory variable on the response. In an experiment with six subjects, even if
there is randomization, it is quite possible for the three healthiest people to be in the same
treatment group. In a randomized experiment with 100 people, it is virtually impossible for the
healthiest 50 people to end up in the same treatment group. In a single study, we replicate
by imposing the treatment on a sufficiently large number of subjects or experimental units.
A group of scientists may also replicate an entire study to verify an earlier finding. However,
each study should ensure a sufficiently large number of subjects because, in many cases, there
is no opportunity or funding to carry out the entire experiment again.

It is important to incorporate these design principles into any experiment. If they are lacking,
the inference methods presented in the following chapters will not be applicable and their results
may not be trustworthy. In the next section we will consider three types of experimental design.

1.5.3 Completely randomized, blocked, and matched pairs design

A completely randomized experiment is one in which the subjects or experimental units
are randomly assigned to each group in the experiment. Suppose we have three treatments, one of
which may be a placebo, and 300 subjects. To carry out a completely randomized design, we could
randomly assign each subject a unique number from 1 to 300, then subjects with numbers 1-100
would get treatment 1, subjects 101-200 would get treatment 2, and subjects 201- 300 would get
treatment 3. Note that this method of randomly allocating subjects to treatments in not equivalent
to taking a simple random sample. Here we are not sampling a subset of a population; we are
randomly splitting subjects into groups.

While it might be ideal for the subjects to be a random sample of the population of interest,
that is rarely the case. Subjects must volunteer to be part of an experiment. However, because
randomization is incorporated in the splitting of the groups, we can still use statistical techniques
to check for a causal connection, though the precise population for which the conclusion applies
may be unclear. For example, if an experiment to determine the most effective means to encourage
individuals to vote is carried out only on college students, we may not be able to generalize the
conclusions of the experiment to all adults in the population.

Researchers sometimes know or suspect that another variable, other than the treatment, influ-
ences the response. Under these circumstances, they may carry out a blocked experiment. In this
design, they first group individuals into blocks based on the identified variable and then randomize
subjects within each block to the treatment groups. This strategy is referred to as blocking. For
instance, if we are looking at the effect of a drug on heart attacks, we might first split patients in the
study into low-risk and high-risk blocks. Then we can randomly assign half the patients from each
block to the control group and the other half to the treatment group, as shown in Figure 1.16. At
the end of the experiment, we would incorporate this blocking into the analysis. By blocking by risk
of patient, we control for this possible confounding factor. Additionally, by randomizing subjects to
treatments within each block, we attempt to even out the effect of variables that we cannot block
or directly control.

EXAMPLE 1.29

An experiment will be conducted to compare the effectiveness of two methods for quitting smoking.
Identify a variable that the researcher might wish to use for blocking and describe how she would
carry out a blocked experiment.

The researcher should choose the variable that is most likely to influence the response variable -
whether or not a smoker will quit. A reasonable variable, therefore, would be the number of years
that the smoker has been smoking. The subjects could be separated into three blocks based on
number of years of smoking and each block randomly divided into the two treatment groups.
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Figure 1.16: Blocking using a variable depicting patient risk. Patients are first
divided into low-risk and high-risk blocks, then each block is evenly separated
into the treatment groups using randomization. This strategy ensures an equal
representation of patients in each treatment group from both the low-risk and
high-risk categories.



50 CHAPTER 1. DATA COLLECTION

Even in a blocked experiment with randomization, other variables that affect the response can
be distributed unevenly among the treatment groups, thus biasing the experiment in one direction.
A third type of design, known as matched pairs addresses this problem. In a matched pairs
experiment, pairs of people are matched on as many variables as possible, so that the comparison
happens between very similar cases. This is actually a special type of blocked experiment, where
the blocks are of size two.

An alternate form of matched pairs involves each subject receiving both treatments. Random-
ization can be incorporated by randomly selecting half the subjects to receive treatment 1 first,
followed by treatment 2, while the other half receives treatment 2 first, followed by treatment.

GUIDED PRACTICE 1.30

How and why should randomization be incorporated into a matched pairs design?36

GUIDED PRACTICE 1.31

Matched pairs sometimes involves each subject receiving both treatments at the same time. For
example, if a hand lotion was being tested, half of the subjects could be randomly assigned to put
Lotion A on the left hand and Lotion B on the right hand, while the other half of the subjects would
put Lotion B on the left hand and Lotion A on the right hand. Why would this be a better design
than a completely randomized experiment in which half of the subjects put Lotion A on both hands
and the other half put Lotion B on both hands?37

Because it is essential to identify the type of data collection method used when choosing an
appropriate inference procedure, we will revisit sampling techniques and experiment design in the
subsequent chapters on inference.

1.5.4 Testing more than one variable at a time

Some experiments study more than one factor (explanatory variable) at a time, and each of
these factors may have two or more levels (possible values). For example, suppose a researcher
plans to investigate how the type and volume of music affect a person’s performance on a particular
video game. Because these two factors, type and volume, could interact in interesting ways, we do
not want to test one factor at a time. Instead, we want to do an experiment in which we test all
combinations of the factors. Let’s say that volume has two levels (soft and loud) and that type has
three levels (dance, classical, and punk). Then, we would want to have experiment groups for each
of the six (2 x 3 = 6) combinations: soft dance, soft classical, soft punk, loud dance, loud classical,
loud punk. Each combination is a treatment. Therefore, this experiment will have 2 factors and
6 treatments. To replicate each treatment 10 times, one would need to play the game 60 times.

GUIDED PRACTICE 1.32

A researcher wants to compare the effectiveness of four different drugs. She also wants to test
each of the drugs at two doses: low and high. Describe the factors, levels, and treatments of this
experiment.38

As the number of factors and levels increases, the number of treatments become large and
the analysis of the resulting data becomes more complex, requiring the use of advanced statistical
methods. We will investigate only one factor at a time in this book.

36Assume that all subjects received treatment 1 first, followed by treatment 2. If the variable being measured
happens to increase naturally over the course of time, it would appear as though treatment 2 had a greater effect than
it really did.

37The dryness of people’s skins varies from person to person, but probably less so from one person’s right hand
to left hand. With the matched pairs design, we are able control for this variability by comparing each person’s
right hand to her left hand, rather than comparing some people’s hands to other people’s hands (as you would in a
completely randomized experiment).

38There are two factors: type of drug, which has four levels, and dose, which has 2 levels. There will be 4 x 2 = 8
treatments: drug 1 at low dose, drug 1 at high dose, drug 2 at low dose, and so on.
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Section summary

• In an experiment, researchers impose a treatment to test its effects. In order for observed
differences in the response to be attributed to the treatment and not to some other factor,
it is important to make the treatment groups and the conditions for the treatment groups as
similar as possible.

• Researchers use direct control, ensuring that variables that are within their power to modify
(such as drug dosage or testing conditions) are made the same for each treatment group.

• Researchers randomly assign subjects to the treatment groups so that the effects of uncon-
trolled and potentially confounding variables are evened out among the treatment groups.

• Replication, or imposing the treatments on many subjects, gives more data and decreases
the likelihood that the treatment groups differ on some characteristic due to chance alone (i.e.
in spite of the randomization).

• An ideal experiment is randomized, controlled, and double-blind.

• A completely randomized experiment involves randomly assigning the subjects to the
different treatment groups. To do this, first number the subjects from 1 to N. Then, randomly
choose some of those numbers and assign the corresponding subjects to a treatment group.
Do this in such a way that the treatment group sizes are balanced, unless there exists a good
reason to make one treatment group larger than another.

• In a blocked experiment, subjects are first separated by a variable thought to affect the
response variable. Then, within each block, subjects are randomly assigned to the treatment
groups as described above, allowing the researcher to compare like to like within each block.

• When feasible, a matched-pairs experiment is ideal, because it allows for the best compar-
ison of like to like. A matched-pairs experiment can be carried out on pairs of subjects that
are meaningfully paired, such as twins, or it can involve all subjects receiving both treatments,
allowing subjects to be compared to themselves.

• A treatment is also called a factor or explanatory variable. Each treatment/factor can have
multiple levels, such as yes/no or low/medium/high. When an experiment includes many
factors, multiplying the number of levels of the factors together gives the total number of
treatment groups.

• In an experiment, blocking, randomization, and direct control are used to control for confound-
ing factors.
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Exercises

1.29 Light and exam performance. A study is designed to test the effect of light level on exam performance
of students. The researcher believes that light levels might have different effects on males and females, so
wants to make sure both are equally represented in each treatment. The treatments are fluorescent overhead
lighting, yellow overhead lighting, no overhead lighting (only desk lamps).

(a) What is the response variable?

(b) What is the explanatory variable? What are its levels?

(c) What is the blocking variable? What are its levels?

1.30 Vitamin supplements. To assess the effectiveness of taking large doses of vitamin C in reducing
the duration of the common cold, researchers recruited 400 healthy volunteers from staff and students at a
university. A quarter of the patients were assigned a placebo, and the rest were evenly divided between 1g
Vitamin C, 3g Vitamin C, or 3g Vitamin C plus additives to be taken at onset of a cold for the following two
days. All tablets had identical appearance and packaging. The nurses who handed the prescribed pills to
the patients knew which patient received which treatment, but the researchers assessing the patients when
they were sick did not. No significant differences were observed in any measure of cold duration or severity
between the four groups, and the placebo group had the shortest duration of symptoms.39

(a) Was this an experiment or an observational study? Why?

(b) What are the explanatory and response variables in this study?

(c) Were the patients blinded to their treatment?

(d) Was this study double-blind?

(e) Participants are ultimately able to choose whether or not to use the pills prescribed to them. We might
expect that not all of them will adhere and take their pills. Does this introduce a confounding variable
to the study? Explain your reasoning.

1.31 Light, noise, and exam performance. A study is designed to test the effect of light level and noise
level on exam performance of students. The researcher believes that light and noise levels might have different
effects on graduate and undergraduate students, so wants to make sure both are equally represented in each
treatment. The light treatments considered are fluorescent overhead lighting, yellow overhead lighting, no
overhead lighting (only desk lamps). The noise treatments considered are no noise, construction noise, and
human chatter noise.

(a) What is the response variable?

(b) How many factors are considered in this study? Identify them, and describe their levels.

(c) What is the role of the program type (graduate versus undergraduate) variable in this study?

1.32 Music and learning. You would like to conduct an experiment in class to see if students learn better
if they study without any music, with music that has no lyrics (instrumental), or with music that has lyrics.
Briefly outline a design for this study.

1.33 Soda preference. You would like to conduct an experiment in class to see if your classmates prefer
the taste of regular Coke or Diet Coke. Briefly outline a design for this study.

1.34 Exercise and mental health. A researcher is interested in the effects of exercise on mental health
and he proposes the following study: Use stratified random sampling to ensure representative proportions
of 18-30, 31-40 and 41- 55 year olds from the population. Next, randomly assign half the subjects from each
age group to exercise twice a week, and instruct the rest not to exercise. Conduct a mental health exam at
the beginning and at the end of the study, and compare the results.

(a) What type of study is this?

(b) What are the treatment and control groups in this study?

(c) Does this study make use of blocking? If so, what is the blocking variable?

(d) Does this study make use of blinding?

(e) Comment on whether or not the results of the study can be used to establish a causal relationship
between exercise and mental health, and indicate whether or not the conclusions can be generalized to
the population at large.

(f) Suppose you are given the task of determining if this proposed study should get funding. Would you
have any reservations about the study proposal?

39C. Audera et al. “Mega-dose vitamin C in treatment of the common cold: a randomised controlled trial”. In:
Medical Journal of Australia 175.7 (2001), pp. 359–362.

http://www.openintro.org/redirect.php?go=textbook-vitamin_C_cold_treatment_2001&referrer=ahss3_pdf
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Chapter highlights

Chapter 1 focused on various ways that researchers collect data. The key concepts are the difference
between a sample and an experiment and the role that randomization plays in each.

• Researchers take a random sample in order to draw an inference to the larger population
from which they sampled. When examining observational data, even if the individuals were
randomly sampled, a correlation does not imply a causal link.

• In an experiment, researchers impose a treatment and use random assignment in order to
draw causal conclusions about the effects of the treatment. While often implied, inferences
to a larger population may not be valid if the subjects were not also randomly sampled from
that population.

Related to this are some important distinctions regarding terminology. The terms stratifying and
blocking cannot be used interchangeably. Likewise, taking a simple random sample is different than
randomly assigning individuals to treatment groups.

• Stratifying vs Blocking. Stratifying is used when sampling, where the purpose is to sample
a subgroup from each stratum in order to arrive at a better estimate for the parameter of
interest. Blocking is used in an experiment to separate subjects into blocks and then compare
responses within those blocks. All subjects in a block are used in the experiment, not just a
sample of them.

• Random sampling vs Random assignment. Random sampling refers to sampling a subset
of a population for the purpose of inference to that population. Random assignment is used in
an experiment to separate subjects into groups for the purpose of comparison between those
groups.

When randomization is not employed, as in an observational study, neither inferences nor causal
conclusions can be drawn. Always be mindful of possible confounding factors when interpreting
the results of observation studies.
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Chapter exercises

1.35 Pet names. The city of Seattle, WA has an open data portal that includes pets registered in the city.
For each registered pet, we have information on the pet’s name and species. The following visualization
plots the proportion of dogs with a given name versus the proportion of cats with the same name. The 20
most common cat and dog names are displayed. The diagonal line on the plot is the x = y line; if a name
appeared on this line, the name’s popularity would be exactly the same for dogs and cats.

(a) Are these data collected as part of an
experiment or an observational study?

(b) What is the most common dog name?
What is the most common cat name?

(c) What names are more common for
cats than dogs?

(d) Is the relationship between the two
variables positive or negative? What
does this mean in context of the data?

1.36 Stressed out, Part II. In a study evaluating the relationship between stress and muscle cramps, half
the subjects are randomly assigned to be exposed to increased stress by being placed into an elevator that
falls rapidly and stops abruptly and the other half are left at no or baseline stress.

(a) What type of study is this?

(b) Can this study be used to conclude a causal relationship between increased stress and muscle cramps?

1.37 Chia seeds and weight loss. Chia Pets – those terra-cotta figurines that sprout fuzzy green hair –
made the chia plant a household name. But chia has gained an entirely new reputation as a diet supplement.
In one 2009 study, a team of researchers recruited 38 men and divided them randomly into two groups:
treatment or control. They also recruited 38 women, and they randomly placed half of these participants
into the treatment group and the other half into the control group. One group was given 25 grams of chia
seeds twice a day, and the other was given a placebo. The subjects volunteered to be a part of the study.
After 12 weeks, the scientists found no significant difference between the groups in appetite or weight loss.40

(a) What type of study is this?

(b) What are the experimental and control treatments in this study?

(c) Has blocking been used in this study? If so, what is the blocking variable?

(d) Has blinding been used in this study?

(e) Comment on whether or not we can make a causal statement, and indicate whether or not we can
generalize the conclusion to the population at large.

1.38 City council survey. A city council has requested a household survey be conducted in a suburban
area of their city. The area is broken into many distinct and unique neighborhoods, some including large
homes, some with only apartments, and others a diverse mixture of housing structures. For each part below,
identify the sampling methods described, and describe the statistical pros and cons of the method in the
city’s context.

(a) Randomly sample 200 households from the city.

(b) Divide the city into 20 neighborhoods, and sample 10 households from each neighborhood.

(c) Divide the city into 20 neighborhoods, randomly sample 3 neighborhoods, and then sample all households
from those 3 neighborhoods.

(d) Divide the city into 20 neighborhoods, randomly sample 8 neighborhoods, and then randomly sample
50 households from those neighborhoods.

(e) Sample the 200 households closest to the city council offices.

40D.C. Nieman et al. “Chia seed does not promote weight loss or alter disease risk factors in overweight adults”.
In: Nutrition Research 29.6 (2009), pp. 414–418.

http://www.openintro.org/redirect.php?go=textbook-chia_seeds_2009&referrer=ahss3_pdf
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1.39 Flawed reasoning. Identify the flaw(s) in reasoning in the following scenarios. Explain what the
individuals in the study should have done differently if they wanted to make such strong conclusions.

(a) Students at an elementary school are given a questionnaire that they are asked to return after their
parents have completed it. One of the questions asked is, “Do you find that your work schedule makes
it difficult for you to spend time with your kids after school?” Of the parents who replied, 85% said
“no”. Based on these results, the school officials conclude that a great majority of the parents have no
difficulty spending time with their kids after school.

(b) A survey is conducted on a simple random sample of 1,000 women who recently gave birth, asking them
about whether or not they smoked during pregnancy. A follow-up survey asking if the children have
respiratory problems is conducted 3 years later. However, only 567 of these women are reached at the
same address. The researcher reports that these 567 women are representative of all mothers.

(c) An orthopedist administers a questionnaire to 30 of his patients who do not have any joint problems
and finds that 20 of them regularly go running. He concludes that running decreases the risk of joint
problems.

1.40 Income and education in US counties. The scatterplot below shows the relationship between per
capita income (in thousands of dollars) and percent of population with a bachelor’s degree in 3,143 counties
in the US in 2010.

(a) What are the explanatory and response
variables?

(b) Describe the relationship between the two
variables. Make sure to discuss unusual ob-
servations, if any.

(c) Can we conclude that having a bachelor’s
degree increases one’s income?
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1.41 Eat better, feel better? In a public health study on the effects of consumption of fruits and vegetables
on psychological well-being in young adults, participants were randomly assigned to three groups: (1) diet-
as-usual, (2) an ecological momentary intervention involving text message reminders to increase their fruits
and vegetable consumption plus a voucher to purchase them, or (3) a fruit and vegetable intervention in
which participants were given two additional daily servings of fresh fruits and vegetables to consume on top
of their normal diet. Participants were asked to take a nightly survey on their smartphones. Participants
were student volunteers at the University of Otago, New Zealand. At the end of the 14-day study, only
participants in the third group showed improvements to their psychological well-being across the 14-days
relative to the other groups.41

(a) What type of study is this?

(b) Identify the explanatory and response variables.

(c) Comment on whether the results of the study can be generalized to the population.

(d) Comment on whether the results of the study can be used to establish causal relationships.

(e) A newspaper article reporting on the study states, “The results of this study provide proof that giving
young adults fresh fruits and vegetables to eat can have psychological benefits, even over a brief period
of time.” How would you suggest revising this statement so that it can be supported by the study?

41Tamlin S Conner et al. “Let them eat fruit! The effect of fruit and vegetable consumption on psychological
well-being in young adults: A randomized controlled trial”. In: PloS one 12.2 (2017), e0171206.

http://www.openintro.org/redirect.php?go=scatter-income-bachelors&referrer=ahss3_pdf
http://www.openintro.org/redirect.php?go=scatter-income-bachelors&referrer=ahss3_pdf


56 CHAPTER 1. DATA COLLECTION

1.42 Screens, teens, and psychological well-being. In a study of three nationally representative large-
scale data sets from Ireland, the United States, and the United Kingdom (n = 17,247), teenagers between
the ages of 12 to 15 were asked to keep a diary of their screen time and answer questions about how they
felt or acted. The answers to these questions were then used to compute a psychological well-being score.
Additional data were collected and included in the analysis, such as each child’s sex and age, and on the
mother’s education, ethnicity, psychological distress, and employment. The study concluded that there is
little clear-cut evidence that screen time decreases adolescent well-being.42

(a) What type of study is this?

(b) Identify the explanatory variables.

(c) Identify the response variable.

(d) Comment on whether the results of the study can be generalized to the population, and why.

(e) Comment on whether the results of the study can be used to establish causal relationships.

1.43 Stanford Open Policing. The Stanford Open Policing project gathers, analyzes, and releases records
from traffic stops by law enforcement agencies across the United States. Their goal is to help researchers,
journalists, and policymakers investigate and improve interactions between police and the public.43 The
following is an excerpt from a summary table created based off of the data collected as part of this project.

Driver’s No. of stops % of stopped
County State race per year cars searched drivers arrested

Apaice County Arizona Black 266 0.08 0.02
Apaice County Arizona Hispanic 1008 0.05 0.02
Apaice County Arizona White 6322 0.02 0.01
Cochise County Arizona Black 1169 0.05 0.01
Cochise County Arizona Hispanic 9453 0.04 0.01
Cochise County Arizona White 10826 0.02 0.01
· · · · · · · · · · · · · · · · · ·
Wood County Wisconsin Black 16 0.24 0.10
Wood County Wisconsin Hispanic 27 0.04 0.03
Wood County Wisconsin White 1157 0.03 0.03

(a) What variables were collected on each individual traffic stop in order to create to the summary table
above?

(b) State whether each variable is numerical or categorical. If numerical, state whether it is continuous or
discrete. If categorical, state whether it is ordinal or not.

(c) Suppose we wanted to evaluate whether vehicle search rates are different for drivers of different races. In
this analysis, which variable would be the response variable and which variable would be the explanatory
variable?

1.44 Space launches. The following summary table shows the number of space launches in the US by the
type of launching agency and the outcome of the launch (success or failure).44

1957 - 1999 2000 - 2018
Failure Success Failure Success

Private 13 295 10 562
State 281 3751 33 711
Startup - - 5 65

(a) What variables were collected on each launch in order to create to the summary table above?

(b) State whether each variable is numerical or categorical. If numerical, state whether it is continuous or
discrete. If categorical, state whether it is ordinal or not.

(c) Suppose we wanted to study how the success rate of launches vary between launching agencies and over
time. In this analysis, which variable would be the response variable and which variable would be the
explanatory variable?

42Amy Orben and AK Baukney-Przybylski. “Screens, Teens and Psychological Well-Being: Evidence from three
time-use diary studies”. In: Psychological Science (2018).

43Emma Pierson et al. “A large-scale analysis of racial disparities in police stops across the United States”. In:
arXiv preprint arXiv:1706.05678 (2017).

44JSR Launch Vehicle Database, A comprehensive list of suborbital space launches, 2019 Feb 10 Edition.

http://www.openintro.org/redirect.php?go=textbook-screens_orben_2018&referrer=ahss3_pdf
http://www.openintro.org/redirect.php?go=textbook-screens_orben_2018&referrer=ahss3_pdf
http://www.openintro.org/redirect.php?go=textbook-police_pierson_2017&referrer=ahss3_pdf
http://www.openintro.org/redirect.php?go=textbook-space-launches-data&referrer=ahss3_pdf
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Chapter 2
Summarizing data

2.1 Examining numerical data

2.2 Numerical summaries and box plots

2.3 Normal distribution

2.4 Considering categorical data

2.5 Case study: malaria vaccine (special topic)



58

After collecting data, the next stage in the investigative process is to describe and

summarize the data. In this chapter, we will look at ways to summarize numerical and

categorical data graphically, numerically, and verbally. While in practice, numerical

and graphical summaries are done using computer software, it is helpful to understand

how these summaries are created and it is especially important to understand how to

interpret and communicate these findings.

For videos, slides, and other resources, please visit

www.openintro.org/ahss

http://www.openintro.org/redirect.php?go=stat&referrer=ahss3_pdf
http://www.openintro.org/redirect.php?go=ahss&referrer=ahss3_pdf
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2.1 Examining numerical data

How do we visualize and describe the distribution of household income for counties within the

United States? What shape would the distribution have? What other features might be important

to notice? In this section, we will explore techniques for summarizing numerical variables. We will

apply these techniques using county-level data from the US Census Bureau, which was introduced

in Section 1.2, and a new data set email50, that comprises information on a random sample of 50

emails.

Learning objectives

1. Use scatterplots to represent bivariate data and to see the relationship between two numerical

variables. Describe the direction, form, and strength of the relationship, as well as any unusual

observations.

2. Understand what the term distribution means and how to summarize it in a table or a graph.

3. Create univariate displays, including stem-and-leaf plots, dot plots, and histograms, to visualize

the distribution of a numerical variable. Be able to read off specific information and summary

information from these graphs.

4. Identify the shape of a distribution as approximately symmetric, right skewed, or left skewed.

Also, identify whether a distribution is unimodal, bimodal, multimodal, or uniform.

5. Read and interpret a cumulative frequency or cumulative relative frequency histogram.

2.1.1 Scatterplots for paired data

Sometimes researchers wish to see the relationship between two variables. When we talk of a
relationship or an association between variables, we are interested in how one variable behaves as
the other variable increases or decreases.

A scatterplot provides a case-by-case view of data that illustrates the relationship between
two numerical variables. A scatterplot is shown in Figure 2.1, illustrating the relationship between
the number of line breaks (line breaks) and number of characters (num char) in emails for the
email50 data set. In any scatterplot, each point represents a single case. Since there are 50 cases
in email50, there are 50 points in Figure 2.1.

EXAMPLE 2.1

A scatterplot requires bivariate, or paired data. What does paired data mean?

We say observations are paired when the two observations correspond to the same case or individual.
In unpaired data, there is no such correspondence. In our example the two observations correspond
to a particular email.

The variable that is suspected to be the response variable is plotted on the vertical (y) axis and
the variable that is suspected to be the explanatory variable is plotted on the horizontal (x) axis.
In this example, the variables could be switched since either variable could reasonably serve as the
explanatory variable or the response variable.
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Figure 2.1: A scatterplot of line breaks versus num char for the email50 data.

DRAWING SCATTERPLOTS

(1) Decide which variable should go on each axis, and draw and label the two axes.
(2) Note the range of each variable, and add tick marks and scales to each axis.
(3) Plot the dots as you would on an (x, y) coordinate plane.

The association between two variables can be positive or negative, or there can be no asso-
ciation. Positive association means that larger values of the first variable are associated with larger
values of the second variable. Additionally, the association can follow a linear trend or a curved
(nonlinear) trend.

EXAMPLE 2.2

What would it mean for two variables to have a negative association? What about no association?

Negative association implies that larger values of the first variable are associated with smaller values
of the second variable. No association implies that the values of the second variable tend to be
independent of changes in the first variable.

EXAMPLE 2.3

Figure 2.2 shows a plot of median household income against the poverty rate for 3,142 counties.
What can be said about the relationship between these variables?

The relationship is evidently nonlinear, as highlighted by the dashed line. This is different from
previous scatterplots we’ve seen, which show relationships that do not show much, if any, curvature
in the trend. There is also a negative association, as higher rates of poverty tend to be associated
with lower median household income.

GUIDED PRACTICE 2.4

What do scatterplots reveal about the data, and how are they useful?1

1Answers may vary. Scatterplots are helpful in quickly spotting associations relating variables, whether those
associations come in the form of simple trends or whether those relationships are more complex.
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Figure 2.2: A scatterplot of the median household income against the poverty rate
for the county data set. A statistical model has also been fit to the data and is
shown as a dashed line. Explore dozens of scatterplots using American Community
Survey data on Tableau Public .

GUIDED PRACTICE 2.5

Describe two variables that would have a horseshoe-shaped association in a scatterplot (∩ or ∪).2

2.1.2 Stem-and-leaf plots and dot plots

Sometimes two variables is one too many: only one variable may be of interest. In these cases
we want to focus not on the association between two variables, but on the distribution of a single,
or univariate, variable. The term distribution refers to the values that a variable takes and the
frequency of these values. Here we introduce a new data set, the email50 data set. This data set
contains the number of characters in 50 emails. To simplify the data, we will round the numbers
and record the values in thousands. Thus, 22105 is recorded as 22.

22 0 64 10 6 26 25 11 4 14
7 1 10 2 7 5 7 4 14 3
1 5 43 0 0 3 25 1 9 1
2 9 0 5 3 6 26 11 25 9

42 17 29 12 27 10 0 0 1 16

Figure 2.3: The number of characters, in thousands, for the data set of 50 emails.

2Consider the case where your vertical axis represents something “good” and your horizontal axis represents
something that is only good in moderation. Health and water consumption fit this description: we require some water
to survive, but consume too much and it becomes toxic and can kill a person. If health was represented on the vertical
axis and water consumption on the horizontal axis, then we would create a ∩ shape.

http://www.openintro.org/redirect.php?go=tableau-scatterplotschoose&referrer=ahss3_pdf
http://www.openintro.org/redirect.php?go=tableau-scatterplotschoose&referrer=ahss3_pdf
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Rather than look at the data as a list of numbers, which makes the distribution difficult to
discern, we will organize it into a table called a stem-and-leaf plot shown in Figure 2.4. In a stem-
and-leaf plot, each number is broken into two parts. The first part is called the stem and consists of
the beginning digit(s). The second part is called the leaf and consists of the final digit(s). The stems
are written in a column in ascending order, and the leaves that match up with those stems are written
on the corresponding row. Figure 2.4 shows a stem-and-leaf plot of the number of characters in 50
emails. The stem represents the ten thousands place and the leaf represents the thousands place.
For example, 1 | 2 corresponds to 12 thousand. When making a stem-and-leaf plot, remember to
include a legend that describes what the stem and what the leaf represent. Without this, there is
no way of knowing if 1 | 2 represents 1.2, 12, 120, 1200, etc.

0 | 00000011111223334455566777999

1 | 0001124467

2 | 25556679

3 |

4 | 23

5 |

6 | 4

Legend: 1 | 2 = 12,000

Figure 2.4: A stem-and-leaf plot of the number of characters in 50 emails.

GUIDED PRACTICE 2.6

There are a lot of numbers on the first row of the stem-and-leaf plot. Why is this the case?3

When there are too many numbers on one row or there are only a few stems, we split each
row into two halves, with the leaves from 0-4 on the first half and the leaves from 5-9 on the second
half. The resulting graph is called a split stem-and-leaf plot. Figure 2.5 shows the previous
stem-and-leaf redone as a split stem-and-leaf.

0 | 000000111112233344

0 | 55566777999

1 | 00011244

1 | 67

2 | 2

2 | 5556679

3 |

3 |

4 | 23

4 |

5 |

5 |

6 | 4

Legend: 1 | 2 = 12,000

Figure 2.5: A split stem-and-leaf.

3There are a lot of numbers on the first row because there are a lot of values in the data set less than 10 thousand.
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GUIDED PRACTICE 2.7

What is the smallest number in the email50 data set? What is the largest?4

Another simple graph for univariate numerical data is a dot plot. A dot plot uses dots to
show the frequency, or number of occurrences, of the values in a data set. The higher the stack of
dots, the greater the number occurrences there are of the corresponding value. An example using
the same data set, number of characters from 50 emails, is shown in Figure 2.6.
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Figure 2.6: A dot plot of num char for the email50 data set.

GUIDED PRACTICE 2.8

Imagine rotating the dot plot 90 degrees clockwise. What do you notice?5

These graphs make it easy to observe important features of the data, such as the location of
clusters and presence of gaps.

EXAMPLE 2.9

Based on both the stem-and-leaf and dot plot, where are the values clustered and where are the
gaps for the email50 data set?

There is a large cluster in the 0 to less than 20 thousand range, with a peak around 1 thousand.
There are gaps between 30 and 40 thousand and between the two values in the 40 thousands and
the largest value of approximately 64 thousand.

Additionally, we can easily identify any observations that appear to be unusually distant from
the rest of the data. Unusually distant observations are called outliers. Later in this chapter we
will provide numerical rules of thumb for identifying outliers. For now, it is sufficient to identify
them by observing gaps in the graph. In this case, it would be reasonable to classify the emails with
character counts of 42 thousand, 43 thousand, and 64 thousand as outliers since they are numerically
distant from most of the data.

OUTLIERS ARE EXTREME

An outlier is an observation that appears extreme relative to the rest of the data.

WHY IT IS IMPORTANT TO LOOK FOR OUTLIERS

Examination of data for possible outliers serves many useful purposes, including

1. Identifying asymmetry in the distribution.

2. Identifying data collection or entry errors. For instance, we re-examined the email pur-
ported to have 64 thousand characters to ensure this value was accurate.

3. Providing insight into interesting properties of the data.

4The smallest number is less than 1 thousand, and the largest is 64 thousand. That is a big range!
5It has a similar shape as the stem-and-leaf plot! The values on the horizontal axis correspond to the stems and

the number of dots in each interval correspond the number of leaves needed for each stem.
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GUIDED PRACTICE 2.10

The observation 64 thousand, a suspected outlier, was found to be an accurate observation. What
would such an observation suggest about the nature of character counts in emails?6

GUIDED PRACTICE 2.11

Consider a data set that consists of the following numbers: 12, 12, 12, 12, 12, 13, 13, 14, 14, 15, 19.
Which graph would better illustrate the data: a stem-and-leaf plot or a dot plot? Explain.7

2.1.3 Histograms

Stem-and-leaf plots and dot plots are ideal for displaying data from small samples because
they show the exact values of the observations and how frequently they occur. However, they are
impractical for larger samples. For larger samples, rather than showing the frequency of every value,
we prefer to think of the value as belonging to a bin. For example, in the email50 data set, we
create a table of counts for the number of cases with character counts between 0 and 5,000, then the
number of cases between 5,000 and 10,000, and so on. Such a table, shown in Figure 2.7, is called
a frequency table. Bins usually include the observations that fall on their left (lower) boundary
and exclude observations that fall on their right (upper) boundary. This is called left inclusive. For
example, 5 (i.e. 5000) would be counted in the 5-10 bin, not in the 0-5 bin. These binned counts
are plotted as bars in Figure 2.8 into what is called a histogram or frequency histogram, which
resembles the stacked dot plot shown in Figure 2.6.

Characters
(in thousands)

0-5 5-10 10-15 15-20 20-25 25-30 · · · 55-60 60-65

Count 19 12 6 2 3 5 · · · 0 1

Figure 2.7: The counts for the binned num char data.
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Figure 2.8: A histogram of num char. This histogram uses bins or class intervals
of width 5. Explore this histogram and dozens of histograms using American
Community Survey data on Tableau Public .

6That occasionally there may be very long emails.
7Because all the values begin with 1, there would be only one stem (or two in a split stem-and-leaf). This would

not provide a good sense of the distribution. For example, the gap between 15 and 19 would not be visually apparent.
A dot plot would be better here.

http://www.openintro.org/redirect.php?go=tableau-histogramschoose&referrer=ahss3_pdf
http://www.openintro.org/redirect.php?go=tableau-histogramschoose&referrer=ahss3_pdf
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GUIDED PRACTICE 2.12

What can you see in the dot plot and stem-and-leaf plot that you cannot see in the frequency
histogram?8

DRAWING HISTOGRAMS

1. The variable is always placed on the horizontal axis. Before drawing the histogram, label
both axes and draw a scale for each.

2. Draw bars such that the height of the bar is the frequency of that bin and the width of the
bar corresponds to the bin width.

Histograms provide a view of the data density. Higher bars represent where the data are
relatively more common. For instance, there are many more emails between 0 and 10,000 characters
than emails between 10,000 and 20,000 in the data set. The bars make it easy to see how the density
of the data changes relative to the number of characters.

EXAMPLE 2.13

How many emails had fewer than 10 thousand characters?

The height of the bars corresponds to frequency. There were 19 cases from 0 to less than 5 thousand
and 12 cases from 5 thousand to less than 10 thousand, so there were 19+12 = 31 emails with fewer
than 10 thousand characters.

EXAMPLE 2.14

Approximately how many emails had fewer than 1 thousand characters?

Based just on this histogram, we cannot know the exact answer to this question. We only know that
19 emails had between 0 and 5 thousand characters. If the number of emails is evenly distribution
on this interval, then we can estimate that approximately 19/5 ≈ 4 emails fell in the range between
0 and 1 thousand.

EXAMPLE 2.15

What percent of the emails had 10 thousand or more characters?

From the first example, we know that 31 emails had fewer than 10 thousand characters. Since there
are 50 emails in total, there must be 19 emails that have 10 thousand or more characters. To find
the percent, compute 19/50 = 0.38 = 38%.

8Character counts for individual emails.
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Sometimes questions such as the ones above can be answered more easily with a cumulative
frequency histogram. This type of histogram shows cumulative, or total, frequency achieved by
each bin, rather than the frequency in that particular bin.

Characters
(in thousands)

0-5 5-10 10-15 15-20 20-25 25-30 30-35 · · · 55-60 60-65

Cumulative
Frequency

19 31 37 39 42 47 47 · · · 49 50

Figure 2.9: The cumulative frequencies for the binned num char data.
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Figure 2.10: A cumulative frequency histogram of num char. This histogram uses
bins or class intervals of width 5. Compare frequency, relative frequency, cumula-
tive frequency, and cumulative relative frequency histograms on Tableau Public .

EXAMPLE 2.16

How many of the emails had fewer than 20 thousand characters?

By tracing the height of the 15-20 thousand bin over to the vertical axis, we can see that it has
a height just under 40 on the cumulative frequency scale. Therefore, we estimate that ≈39 of the
emails had fewer than 30 thousand characters. Note that, unlike with a regular frequency histogram,
we do not add up the height of the bars in a cumulative frequency histogram because each bar already
represents a cumulative sum.

EXAMPLE 2.17

Using the cumulative frequency table and histogram, how many of the emails had 10-15 thousand
characters?

To answer this question, we do a subtraction. 37 emails had less than or equal to 10-15 thousand
characters and 31 emails had less than or equal to 5-10 thousand characters, so 6 emails must have
had 10-15 thousand characters.

http://www.openintro.org/redirect.php?go=tableau-histograms&referrer=ahss3_pdf
http://www.openintro.org/redirect.php?go=tableau-histograms&referrer=ahss3_pdf
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EXAMPLE 2.18

Approximately 25 of the emails had fewer than how many characters?

This time we are given a cumulative frequency, so we start at 25 on the vertical axis and trace it
across to see which bin it hits. It hits the 5-10 thousand bin, so 25 of the emails had fewer than a
value somewhere between 5 and 10 thousand characters.

Knowing that 25 of the emails had fewer than a value between 5 and 10 thousand characters
is useful information, but it is even more useful if we know what percent of the total 25 represents.
Knowing that there were 50 total emails tells us that 25/50 = 0.5 = 50% of the emails had fewer
than a value between 5 and 10 thousand characters. When we want to know what fraction or
percent of the data meet a certain criteria, we use relative frequency instead of frequency. Relative
frequency is a fancy term for percent or proportion. It tells us how large a number is relative to
the total.

Just as we constructed a frequency table, frequency histogram, and cumulative frequency his-
togram, we can construct a relative frequency table, relative frequency histogram, and cumulative
relative frequency histogram.

GUIDED PRACTICE 2.19

How will the shape of the relative frequency histograms differ from the frequency histograms?9

PAY CLOSE ATTENTION TO THE VERTICAL AXIS OF A HISTOGRAM

We can misinterpret a histogram if we forget to check whether the vertical axis represents
frequency, relative frequency, cumulative frequency, or cumulative relative frequency.

2.1.4 Describing Shape

Frequency and relative frequency histograms are especially convenient for describing the shape
of the data distribution. Figure 2.8 shows that most emails have a relatively small number of
characters, while fewer emails have a very large number of characters. When data trail off to the
right in this way and have a longer right tail, the shape is said to be right skewed.10

Data sets with the reverse characteristic – a long, thin tail to the left – are said to be left
skewed. We also say that such a distribution has a long left tail. Data sets that show roughly equal
trailing off in both directions are called symmetric.

LONG TAILS TO IDENTIFY SKEW

When data trail off in one direction, the distribution has a long tail. If a distribution has a
long left tail, it is left skewed. If a distribution has a long right tail, it is right skewed.

GUIDED PRACTICE 2.20

Take a look at the dot plot in Figure 2.6. Can you see the skew in the data? Is it easier to see the
skew in the frequency histogram, the dot plot, or the stem-and-leaf plot?11

9The shape will remain exactly the same. Changing from frequency to relative frequency involves dividing all the
frequencies by the same number, so only the vertical scale (the numbers on the y-axis) change.

10Other ways to describe data that are right skewed: skewed to the right, skewed to the high end, or skewed
to the positive end.

11The skew is visible in all three plots. However, it is not easily visible in the cumulative frequency histogram.
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GUIDED PRACTICE 2.21

Would you expect the distribution of number of pets per household to be right skewed, left skewed,
or approximately symmetric? Explain.12

In addition to looking at whether a distribution is skewed or symmetric, histograms, stem-and-
leaf plots, and dot plots can be used to identify modes. A mode is represented by a prominent peak
in the distribution.13 There is only one prominent peak in the histogram of num char.

Figure 2.11 shows histograms that have one, two, or three prominent peaks. Such distributions
are called unimodal, bimodal, and multimodal, respectively. Any distribution with more than
2 prominent peaks is called multimodal. Notice that in Figure 2.8 there was one prominent peak
in the unimodal distribution with a second less prominent peak that was not counted since it only
differs from its neighboring bins by a few observations.
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Figure 2.11: Counting only prominent peaks, the distributions are (left to right)
unimodal, bimodal, and multimodal.

GUIDED PRACTICE 2.22

Height measurements of young students and adult teachers at a K-3 elementary school were taken.
How many modes would you anticipate in this height data set?14

LOOKING FOR MODES

Looking for modes isn’t about finding a clear and correct answer about the number of modes
in a distribution, which is why prominent is not rigorously defined in this book. The important
part of this examination is to better understand your data and how it might be structured.

12We suspect most households would have 0, 1, or 2 pets but that a smaller number of households will have 3, 4,
5, or more pets, so there will be greater density over the small numbers, suggesting the distribution will have a long
right tail and be right skewed.

13Another definition of mode, which is not typically used in statistics, is the value with the most occurrences. It
is common to have no observations with the same value in a data set, which makes this other definition useless for
many real data sets.

14There might be two height groups visible in the data set: one of the students and one of the adults. That is, the
data are probably bimodal.
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2.1.5 Descriptive versus inferential statistics

Finally, we note that the graphical summaries of this section and the numerical summaries
of the next section fall into the realm of descriptive statistics. Descriptive statistics is about
describing or summarizing data; it does not attribute properties of the data to a larger population.
Inferential statistics, on the other hand, uses samples to generalize or to infer something about
a larger population. We will have to wait until Chapter 5 to enter the exciting world of inferential
statistics.

Section summary

• A scatterplot is a bivariate display illustrating the relationship between two numerical
variables. The observations must be paired, which is to say that they correspond to the same
case or individual. The linear association between two variables can be positive or negative,
or there can be no association. Positive association means that larger values of the first
variable are associated with larger values of the second variable. Negative association means
that larger values of the first variable are associated with smaller values of the second variable.
Additionally, the association can follow a linear trend or a curved (nonlinear) trend.

• When looking at a univariate display, researchers want to understand the distribution of the
variable. The term distribution refers to the values that a variable takes and the frequency of
those values. When looking at a distribution, note the presence of clusters, gaps, and outliers.

• Distributions may be symmetric or they may have a long tail. If a distribution has a long
left tail (with greater density over the higher numbers), it is left skewed. If a distribution
has a long right tail (with greater density over the smaller numbers), it is right skewed.

• Distributions may be unimodal, bimodal, or multimodal.

• Two graphs that are useful for showing the distribution of a small number of observations are
the stem-and-leaf plot and dot plot. These graphs are ideal for displaying data from small
samples because they show the exact values of the observations and how frequently they occur.
However, they are impractical for larger data sets.

• For larger data sets it is common to use a frequency histogram or a relative frequency
histogram to display the distribution of a variable. This requires choosing bins of an appro-
priate width.

• To see cumulative amounts, use a cumulative frequency histogram. A cumulative rel-
ative frequency histogram is ideal for showing percentile.

• Descriptive statistics describes or summarizes data, while inferential statistics uses sam-
ples to generalize or infer something about a larger population.
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Exercises

2.1 ACS, Part I. Each year, the US Census Bureau surveys about 3.5 million households with The American
Community Survey (ACS). Data collected from the ACS have been crucial in government and policy deci-
sions, helping to determine the allocation of federal and state funds each year. Some of the questions asked
on the survey are about their income, age (in years), and gender. The table below contains this information
for a random sample of 20 respondents to the 2012 ACS.15

Income Age Gender

1 53,000 28 male
2 1600 18 female
3 70,000 54 male
4 12,800 22 male
5 1,200 18 female
6 30,000 34 male
7 4,500 21 male
8 20,000 28 female
9 25,000 29 female

10 42,000 33 male

Income Age Gender

11 670 34 female
12 29,000 55 female
13 44,000 33 female
14 48,000 41 male
15 30,000 47 female
16 60,000 30 male
17 108,000 61 male
18 5,800 50 female
19 50,000 24 female
20 11,000 19 male

(a) Create a scatterplot of income vs. age, and describe the relationship between these two variables.

(b) Now create two scatterplots: one for income vs. age for males and another for females.

(c) How, if at all, do the relationships between income and age differ for males and females?

2.2 MLB stats. A baseball team’s success in a season is usually measured by their number of wins. In
order to win, the team has to have scored more points (runs) than their opponent in any given game. As
such, number of runs is often a good proxy for the success of the team. The table below shows number of
runs, home runs, and batting averages for a random sample of 10 teams in the 2014 Major League Baseball
season.16

Team Runs Home runs Batting avg.

1 Baltimore 705 211 0.256
2 Boston 634 123 0.244
3 Cincinnati 595 131 0.238
4 Cleveland 669 142 0.253
5 Detroit 757 155 0.277
6 Houston 629 163 0.242
7 Minnesota 715 128 0.254
8 NY Yankees 633 147 0.245
9 Pittsburgh 682 156 0.259

10 San Francisco 665 132 0.255

(a) Draw a scatterplot of runs vs. home runs.

(b) Draw a scatterplot of runs vs. batting averages.

(c) Are home runs or batting averages more strongly associated with number of runs? Explain your rea-
soning.

15United States Census Bureau. Summary File. 2012 American Community Survey. U.S. Census Bureau’s
American Community Survey Office, 2013. Web.

16ESPN: MLB Team Stats - 2014.

http://www.openintro.org/redirect.php?go=textbook-ACS_2012&referrer=ahss3_pdf
http://www.openintro.org/redirect.php?go=textbook-mlb2014-espn&referrer=ahss3_pdf
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2.3 Fiber in your cereal . The Cereal FACTS report provides information on nutrition content of cereals
as well as who they are targeted for (adults, children, families). We have selected a random sample of 20
cereals from the data provided in this report. Shown below are the fiber contents (percentage of fiber per
gram of cereal) for these cereals.17

Brand Fiber %

1 Pebbles Fruity 0.0%
2 Rice Krispies Treats 0.0%
3 Pebbles Cocoa 0.0%
4 Pebbles Marshmallow 0.0%
5 Frosted Rice Krispies 0.0%
6 Rice Krispies 3.0%
7 Trix 3.1%
8 Honey Comb 3.1%
9 Rice Krispies Gluten Free 3.3%

10 Frosted Flakes 3.3%

Brand Fiber %

11 Cinnamon Toast Crunch 3.3%
12 Reese’s Puffs 3.4%
13 Cheerios Honey Nut 7.1%
14 Lucky Charms 7.4%
15 Pebbles Boulders Chocolate PB 7.4%
16 Corn Pops 9.4%
17 Frosted Flakes Reduced Sugar 10.0%
18 Clifford Crunch 10.0%
19 Apple Jacks 10.7%
20 Dora the Explorer 11.1%

(a) Create a stem and leaf plot of the distribution of the fiber content of these cereals.

(b) Create a dot plot of the fiber content of these cereals.

(c) Create a histogram and a relative frequency histogram of the fiber content of these cereals.

(d) What percent of cereals contain more than 7% fiber?

2.4 Sugar in your cereal. The Cereal FACTS report from Exercise 2.3 also provides information on sugar
content of cereals. We have selected a random sample of 20 cereals from the data provided in this report.
Shown below are the sugar contents (percentage of sugar per gram of cereal) for these cereals.

Brand Sugar %

1 Rice Krispies Gluten Free 3%
2 Rice Krispies 12%
3 Dora the Explorer 22%
4 Frosted Flakes Red. Sugar 27%
5 Clifford Crunch 27%
6 Rice Krispies Treats 30%
7 Pebbles Boulders Choc. PB 30%
8 Cinnamon Toast Crunch 30%
9 Trix 31%

10 Honey Comb 31%

Brand Sugar %

11 Corn Pops 31%
12 Cheerios Honey Nut 32%
13 Reese’s Puffs 34%
14 Pebbles Fruity 37%
15 Pebbles Cocoa 37%
16 Lucky Charms 37%
17 Frosted Flakes 37%
18 Pebbles Marshmallow 37%
19 Frosted Rice Krispies 40%
20 Apple Jacks 43%

(a) Create a stem and leaf plot of the distribution of the sugar content of these cereals.

(b) Create a dot plot of the sugar content of these cereals.

(c) Create a histogram and a relative frequency histogram of the sugar content of these cereals.

(d) What percent of cereals contain more than 30% sugar?

17JL Harris et al. “Cereal FACTS 2012: Limited progress in the nutrition quality and marketing of children’s
cereals”. In: Rudd Center for Food Policy & Obesity. 12 (2012).

http://www.openintro.org/redirect.php?go=textbook-cereal-facts-2012&referrer=ahss3_pdf
http://www.openintro.org/redirect.php?go=textbook-cereal-facts-2012&referrer=ahss3_pdf
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2.5 Mammal life spans. Data were collected on life spans (in years) and gestation lengths (in days) for 62
mammals. A scatterplot of life span versus length of gestation is shown below.18

(a) What type of an association is apparent be-
tween life span and length of gestation?

(b) What type of an association would you ex-
pect to see if the axes of the plot were re-
versed, i.e. if we plotted length of gestation
versus life span?

(c) Are life span and length of gestation inde-
pendent? Explain your reasoning.
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2.6 Associations. Indicate which of the plots show (a) a positive association, (b) a negative association,
or (c) no association. Also determine if the positive and negative associations are linear or nonlinear. Each
part may refer to more than one plot.

(1) (2) (3) (4)

18T. Allison and D.V. Cicchetti. “Sleep in mammals: ecological and constitutional correlates”. In: Arch. Hydrobiol
75 (1975), p. 442.

http://www.openintro.org/redirect.php?go=textbook-mammal_sleep_1975&referrer=ahss3_pdf
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2.2 Numerical summaries and box plots

What are the different ways to measure the center of a distribution, and why is there more than

one way to measure the center? How do you know if a value is “far” from the center? What does it

mean to an outlier? We will continue with the email50 data set and investigate multiple quantitative

summarizes for numerical data.

Learning objectives

1. Calculate, interpret, and compare the two measures of center (mean and median) and the three

measures of spread (standard deviation, interquartile range, and range).

2. Understand how the shape of a distribution affects the relationship between the mean and the

median.

3. Identify and apply the two rules of thumb for identify outliers (one involving standard deviation

and mean and the other involving Q1 and Q3).

4. Describe the distribution a numerical variable with respect to center, spread, and shape, noting

the presence of outliers.

5. Find the 5 number summary and IQR, and draw a box plot with outliers shown.

6. Understand the effect changing units has on each of the summary quantities.

7. Use quartiles, percentiles, and Z-scores to measure the relative position of a data point within

the data set.

8. Compare the distribution of a numerical variable using dot plots / histograms with the same

scale, back-to-back stem-and-leaf plots, or parallel box plots. Compare the distributions with

respect to center, spread, shape, and outliers.

2.2.1 Measures of center

In the previous section, we saw that modes can occur anywhere in a data set. Therefore, mode
is not a measure of center. We understand the term center intuitively, but quantifying what is the
center can be a little more challenging. This is because there are different definitions of center. Here
we will focus on the two most common: the mean and median.

The mean, sometimes called the average, is a common way to measure the center of a distri-
bution of data. To find the mean number of characters in the 50 emails, we add up all the character
counts and divide by the number of emails. For computational convenience, the number of characters
is listed in the thousands and rounded to the first decimal.

x̄ =
21.7 + 7.0 + · · ·+ 15.8

50
= 11.6

The sample mean is often labeled x̄. The letter x is being used as a generic placeholder for the
variable of interest, num char, and the bar on the x communicates that the average number of
characters in the 50 emails was 11,600.
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MEAN

The sample mean of a numerical variable is computed as the sum of all of the observations
divided by the number of observations:

x̄ =
1

n

∑
xi =

∑
xi
n

=
x1 + x2 + · · ·+ xn

n

where
∑

is the capital Greek letter sigma and
∑
xi means take the sum of all the individual x

values. x1, x2, . . . , xn represent the n observed values.

GUIDED PRACTICE 2.23

Examine Equations (2.23) and (2.23) above. What does x1 correspond to? And x2? What does xi
represent?19

GUIDED PRACTICE 2.24

What was n in this sample of emails?20

The email50 data set represents a sample from a larger population of emails that were received
in January and March. We could compute a mean for this population in the same way as the sample
mean, however, the population mean has a special label: µ. The symbol µ is the Greek letter mu
and represents the average of all observations in the population. Sometimes a subscript, such as x,
is used to represent which variable the population mean refers to, e.g. µx.

EXAMPLE 2.25

The average number of characters across all emails can be estimated using the sample data. Based on
the sample of 50 emails, what would be a reasonable estimate of µx, the mean number of characters
in all emails in the email data set? (Recall that email50 is a sample from email.)

The sample mean, 11,600, may provide a reasonable estimate of µx. While this number will not
be perfect, it provides a point estimate of the population mean. In Chapter 5 and beyond, we will
develop tools to characterize the reliability of point estimates, and we will find that point estimates
based on larger samples tend to be more reliable than those based on smaller samples.

EXAMPLE 2.26

We might like to compute the average income per person in the US. To do so, we might first think
to take the mean of the per capita incomes across the 3,142 counties in the county data set. What
would be a better approach?

The county data set is special in that each county actually represents many individual people. If
we were to simply average across the income variable, we would be treating counties with 5,000 and
5,000,000 residents equally in the calculations. Instead, we should compute the total income for each
county, add up all the counties’ totals, and then divide by the number of people in all the counties.
If we completed these steps with the county data, we would find that the per capita income for
the US is $27,348.43. Had we computed the simple mean of per capita income across counties, the
result would have been just $22,504.70!

Example 2.26 used what is called a weighted mean, which will not be a key topic in this
textbook. However, we have provided an online supplement on weighted means for interested readers:

www.openintro.org/go?id=stat extra weighted mean

19x1 corresponds to the number of characters in the first email in the sample (21.7, in thousands), x2 to the number
of characters in the second email (7.0, in thousands), and xi corresponds to the number of characters in the ith email
in the data set.

20The sample size was n = 50.

http://www.openintro.org/redirect.php?go=stat_extra_weighted_mean&referrer=ahss3_pdf
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The median provides another measure of center. The median splits an ordered data set in half.
There are 50 character counts in the email50 data set (an even number) so the data are perfectly
split into two groups of 25. We take the median in this case to be the average of the two middle
observations: (6,768 + 7,012)/2 = 6,890. When there are an odd number of observations, there will
be exactly one observation that splits the data into two halves, and in this case that observation is
the median (no average needed).

MEDIAN: THE NUMBER IN THE MIDDLE

In an ordered data set, the median is the observation right in the middle. If there are an even
number of observations, the median is the average of the two middle values.

Graphically, we can think of the mean as the balancing point. The median is the value such
that 50% of the area is to the left of it and 50% of the area is to the right of it.
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Figure 2.12: A histogram of num char with its mean and median shown.

EXAMPLE 2.27

Based on the data, why is the mean greater than the median in this data set?

Consider the three largest values of 42 thousand, 43 thousand, and 64 thousand. These values drag
up the mean because they substantially increase the sum (the total). However, they do not drag up
the median because their magnitude does not change the location of the middle value.

THE MEAN FOLLOWS THE TAIL

In a right skewed distribution, the mean is greater than the median.
In a left skewed distribution, the mean is less than the median.
In a symmetric distribution, the mean and median are approximately equal.

GUIDED PRACTICE 2.28

Consider the distribution of individual income in the United States. Which is greater: the mean or
median? Why?21

21Because a small percent of individuals earn extremely large amounts of money while the majority earn a modest
amount, the distribution is skewed to the right. Therefore, the mean is greater than the median.
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2.2.2 Standard deviation as a measure of spread

The U.S. Census Bureau reported that in 2019, the median family income was $80,944 and the
mean family income was $108,587. Is a family income of $60,000 far from the mean or somewhat
close to the mean? In order to answer this question, it is not enough to know the center of the data
set and its range (maximum value - minimum value). We must know about the variability of the
data set within that range. Low variability or small spread means that the values tend to be more
clustered together. High variability or large spread means that the values tend to be far apart.

EXAMPLE 2.29

Is it possible for two data sets to have the same range but different spread? If so, give an example.
If not, explain why not.

Yes. An example is: 1, 1, 1, 1, 1, 9, 9, 9, 9, 9 and 1, 5, 5, 5, 5, 5, 5, 5, 5, 5, 9.

The first data set has a larger spread because values tend to be farther away from each other while
in the second data set values are clustered together at the mean.

Here, we introduce the standard deviation as a measure of spread. Though its formula is a
bit tedious to calculate by hand, the standard deviation is very useful in data analysis and roughly
describes how far away, on average, the observations are from the mean.

We call the distance of an observation from its mean its deviation. Below are the deviations
for the 1st, 2nd, 3rd, and 50th observations in the num char variable. For computational convenience,
the number of characters is listed in the thousands and rounded to the first decimal.

x1 − x̄ = 21.7− 11.6 = 10.1

x2 − x̄ = 7.0− 11.6 = −4.6

x3 − x̄ = 0.6− 11.6 = −11.0

...

x50 − x̄ = 15.8− 11.6 = 4.2

If we square these deviations and then take an average, the result is about equal to the sample
variance, denoted by s2:

s2 =
10.12 + (−4.6)2 + (−11.0)2 + · · ·+ 4.22

50− 1

=
102.01 + 21.16 + 121.00 + · · ·+ 17.64

49
= 172.44

We divide by n − 1, rather than dividing by n, when computing the variance; you need not worry
about this mathematical nuance for the material in this textbook. Notice that squaring the devia-
tions does two things. First, it makes large values much larger, seen by comparing 10.12, (−4.6)2,
(−11.0)2, and 4.22. Second, it gets rid of any negative signs.

The standard deviation is defined as the square root of the variance:

s =
√

172.44 = 13.13

The standard deviation of the number of characters in an email is about 13.13 thousand. A
subscript of x may be added to the variance and standard deviation, i.e. s2

x and sx, as a reminder
that these are the variance and standard deviation of the observations represented by x1, x2, ..., xn.
The x subscript is usually omitted when it is clear which data the variance or standard deviation is
referencing.
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CALCULATING THE STANDARD DEVIATION

The standard deviation is the square root of the variance. It is roughly the “typical” distance
of the observations from the mean.

sX =

√
1

n− 1

∑
(xi − x̄)2

The variance is useful for mathematical reasons, but the standard deviation is easier to interpret
because it has the same units as the data set. The units for variance will be the units squared
(e.g. meters2). Formulas and methods used to compute the variance and standard deviation for a
population are similar to those used for a sample.22 However, like the mean, the population values
have special symbols: σ2 for the variance and σ for the standard deviation. The symbol σ is the
Greek letter sigma.

THINKING ABOUT THE STANDARD DEVIATION

It is useful to think of the standard deviation as the “typical” or “average” distance that
observations fall from the mean.

EXAMPLE 2.30

Earlier, we reported that the mean family income in the U.S. in 2019 was $108,587. Estimating the
standard deviation of income as approximately $50,000, is a family income of $60,000 far from the
mean or relatively close to the mean?

Because $60,000 is less that one standard deviation from the mean, it is relatively close to the mean.
If the value were more than 2 standard deviations away from the mean, we would consider it far
from the mean.

In the next section, we encounter a bell-shaped distribution known as the normal distribution.
The empirical rule tells us that for nearly normal distributions, about 68% of the data will be
within one standard deviation of the mean, about 95% will be within two standard deviations of the
mean, and about 99.7% will be within three standard deviations of the mean. However, as seen in
Figures 2.13 and 2.14, these percentages generally do not hold if the distribution is not bell-shaped.
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Figure 2.13: In the num char data, 40 of the 50 emails (80%) are within 1 standard
deviation of the mean, and 47 of the 50 emails (9 4%) are within 2 standard
deviations. The empirical rule does not hold well for skewed data, as shown in this
example.

22The only difference is that the population variance has a division by n instead of n− 1.
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−3 −2 −1 0 1 2 3

−3 −2 −1 0 1 2 3

−3 −2 −1 0 1 2 3

Figure 2.14: Three very different population distributions with the same mean
µ = 0 and standard deviation σ = 1.

GUIDED PRACTICE 2.31

On page 67, the concept of shape of a distribution was introduced. A good description of the shape
of a distribution should include modality and whether the distribution is symmetric or skewed to
one side. Using Figure 2.14 as an example, explain why such a description is important.23

When describing any distribution, comment on the three important characteristics of center,
spread, and shape. Also note any especially unusual cases.

EXAMPLE 2.32

In the data’s context (the number of characters in emails), describe the distribution of the num char

variable shown in the histogram below.
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The distribution of email character counts is unimodal and very strongly skewed to the right. Many
of the counts fall near the mean at 11,600, and most fall within one standard deviation (13,130) of
the mean. There is one exceptionally long email with about 65,000 characters.

In this chapter we use standard deviation as a descriptive statistic to describe the variability
in a given data set. In Chapter 4 we will use standard deviation to assess how close a sample mean
is likely to be to the population mean.

23Figure 2.14 shows three distributions that look quite different, but all have the same mean, variance, and standard
deviation. Using modality, we can distinguish between the first plot (bimodal) and the last two (unimodal). Using
skewness, we can distinguish between the last plot (right skewed) and the first two. While a graph tells a more complete
story, we can use modality and shape (symmetry/skew) to characterize basic information about a distribution.
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2.2.3 Z-scores

Knowing how many standard deviations a value is from the mean is often more useful than
simply knowing how far a value is from the mean.

EXAMPLE 2.33

Previously, we saw that the mean family income in the U.S. in 2019 was $108,587. Let’s round this
to $100,000 and estimate the standard deviation of income as $50,000. Using these estimates, how
many standard deviations above the mean is a family income of $200,000?

The value $200,000 is $100,000 above the mean. $100,000 is 2 standard deviations above the mean.
This can be found by doing

200, 000− 100, 000

50, 000
= 2

The number of standard deviations a value is above or below the mean is known as the Z-score.
A Z-score has no units, and therefore is sometimes also called standard units.

THE Z-SCORE

The Z-score of an observation is the number of standard deviations it falls above or below the
mean. We compute the Z-score for an observation x that follows a distribution with mean µ
and standard deviation σ using

Z =
x− µ
σ

Observations above the mean always have positive Z-scores, while those below the mean always
have negative Z-scores. If an observation is equal to the mean, then the Z-score is 0.

EXAMPLE 2.34

Head lengths of brushtail possums have a mean of 92.6 mm and standard deviation 3.6 mm. Compute
the Z-scores for possums with head lengths of 95.4 mm and 85.8 mm.

For x1 = 95.4 mm:

Z1 =
x1 − µ
σ

=
95.4− 92.6

3.6
= 0.78

For x2 = 85.8 mm:

Z2 =
85.8− 92.6

3.6
= −1.89

We can use Z-scores to roughly identify which observations are more unusual than others. An
observation x1 is said to be more unusual than another observation x2 if the absolute value of its Z-
score is larger than the absolute value of the other observation’s Z-score: |Z1| > |Z2|. This technique
is especially insightful when a distribution is symmetric.
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GUIDED PRACTICE 2.35

Which of the observations in Example 2.34 is more unusual?24

GUIDED PRACTICE 2.36

Let X represent a random variable from a distribution with µ = 3 and σ = 2, and suppose we
observe x = 5.19.
(a) Find the Z-score of x.
(b) Interpret the Z-score.25

Because Z-scores have no units, they are useful for comparing distance to the mean for distri-
butions that have different standard deviations or different units.

EXAMPLE 2.37

The average daily high temperature in June in LA is 77◦F with a standard deviation of 5◦F. The
average daily high temperature in June in Iceland is 13◦C with a standard deviation of 3◦C. Which
would be considered more unusual: an 83◦F day in June in LA or a 19◦C day in June in Iceland?

Both values are 6◦ above the mean. However, they are not the same number of standard deviations
above the mean. 83 is (83−77)/5 = 1.2 standard deviations above the mean, while 19 is (19−13)/3 =
2 standard deviations above the mean. Therefore, a 19◦C day in June in Iceland would be more
unusual than an 83◦F day in June in LA.

2.2.4 Box plots and quartiles

A box plot summarizes a data set using five summary statistics while also plotting unusual
observations, called outliers. Figure 2.15 provides a box plot of the num char variable from the
email50 data set.

The five summary statistics used in a box plot are known as the five-number summary,
which consists of the minimum, the maximum, and the three quartiles (Q1, Q2, Q3) of the data set
being studied.

Q2 represents the second quartile, which is equivalent to the 50th percentile (i.e. the median).
Previously, we saw that Q2 (the median) for the email50 data set was the average of the two middle
values: 6,768+7,012

2 = 6,890.
Q1 represents the first quartile, which is the 25th percentile, and is the median of the smaller

half of the data set. There are 25 values in the lower half of the data set, so Q1 is the middle value:
2,454 characters. Q3 represents the third quartile, or 75th percentile, and is the median of the
larger half of the data set: 15,829 characters.

We calculate the variability in the data using the range of the middle 50% of the data: Q3−Q1 =
13,375. This quantity is called the interquartile range (IQR, for short). It, like the standard
deviation, is a measure of variability or spread in data. The more variable the data, the larger the
standard deviation and IQR tend to be.

24Because the absolute value of Z-score for the second observation (x2 = 85.8 mm → Z2 = −1.89) is larger than
that of the first (x1 = 95.4 mm → Z1 = 0.78), the second observation has a more unusual head length.

25(a) Its Z-score is given by Z = x−µ
σ

= 5.19−3
2

= 2.19/2 = 1.095. (b) The observation x is 1.095 standard
deviations above the mean. We know it must be above the mean since Z is positive.
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Figure 2.15: A labeled box plot for the number of characters in 50 emails. The
median (6,890) splits the data into the bottom 50% and the top 50%. Explore
dozens of boxplots with histograms using American Community Survey data on
Tableau Public .

INTERQUARTILE RANGE (IQR)

The IQR is the length of the box in a box plot. It is computed as

IQR = Q3 −Q1

where Q1 and Q3 are the 25th and 75th percentiles.

OUTLIERS IN THE CONTEXT OF A BOX PLOT

When in the context of a box plot, define an outlier as an observation that is more than
1.5× IQR above Q3 or 1.5× IQR below Q1. Such points are marked using a dot or asterisk in
a box plot.

To build a box plot, draw an axis (vertical or horizontal) and draw a scale. Draw a dark line
denoting Q2, the median. Next, draw a line at Q1 and at Q3. Connect the Q1 and Q3 lines to form
a rectangle. The width of the rectangle corresponds to the IQR and the middle 50% of the data is
in this interval.

Extending out from the rectangle, the whiskers attempt to capture all of the data remaining
outside of the box, except outliers. In Figure 2.15, the upper whisker does not extend to the last
three points, which are beyond Q3 + 1.5× IQR and are outliers, so it extends only to the last point
below this limit.26 The lower whisker stops at the lowest value, 33, since there are no additional
data to reach. Outliers are each marked with a dot or asterisk. In a sense, the box is like the body
of the box plot and the whiskers are like its arms trying to reach the rest of the data.

26You might wonder, isn’t the choice of 1.5×IQR for defining an outlier arbitrary? It is! In practical data analyses,
we tend to avoid a strict definition since what is an unusual observation is highly dependent on the context of the
data.

http://www.openintro.org/redirect.php?go=tableau-boxplotschoose&referrer=ahss3_pdf
http://www.openintro.org/redirect.php?go=tableau-boxplotschoose&referrer=ahss3_pdf
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EXAMPLE 2.38

Compare the box plot to the graphs previously discussed: stem-and-leaf plot, dot plot, frequency
and relative frequency histogram. What can we learn more easily from a box plot? What can we
learn more easily from the other graphs?

It is easier to immediately identify the quartiles from a box plot. The box plot also more prominently
highlights outliers. However, a box plot, unlike the other graphs, does not show the distribution of
the data. For example, we cannot generally identify modes using a box plot.

EXAMPLE 2.39

Is it possible to identify skew from the box plot?

Yes. Looking at the lower and upper whiskers of this box plot, we see that the lower 25% of the data
is squished into a shorter distance than the upper 25% of the data, implying that there is greater
density in the low values and a tail trailing to the upper values. This box plot is right skewed.

GUIDED PRACTICE 2.40

True or false: there is more data between the median and Q3 than between Q1 and the median.27

EXAMPLE 2.41

Consider the following ordered data set.

5 5 9 10 15 16 30 40 80

Find the 5 number summary and identify how small or large a value would need to be to be considered
an outlier. Are there any outliers in this data set?

There are nine numbers in this data set. Because n is odd, the median is the middle number: 15.
When finding Q1, we find the median of the lower half of the data, which in this case includes 4
numbers (we do not include the 15 as belonging to either half of the data set). Q1 then is the average
of 5 and 9, which is Q1 = 7, and Q3 is the average of 30 and 40, so Q3 = 35. The min is 5 and the
max is 80. To see how small a number needs to be to be an outlier on the low end we do:

Q1 − 1.5× IQR = Q1 − 1.5× (Q3 −Q1)

= 7− 1.5× (35− 7)

= −35

On the high end we need:

Q3 + 1.5× IQR = Q3 + 1.5× (Q3 −Q1)

= 35 + 1.5× (35− 7)

= 77

There are no numbers less than -41, so there are no outliers on the low end. The observation at 80
is greater than 77, so 80 is an outlier on the high end.

27False. Since Q1 is the 25th percentile and the median is the 50th percentile, 25% of the data fall between Q1

and the median. Similarly, 25% of the data fall between Q2 and the median. The distance between the median and
Q3 is larger because that 25% of the data is more spread out.
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2.2.5 Technology: summarizing 1-variable statistics

Online calculators such as Desmos or a handheld calculator can be used to calculate summary statis-
tics. More advanced statistical software packages include R (which was used for most of the graphs
in this text), Python, SAS, and STATA.

Get started quickly with this Desmos 1-VarStats Calculator (available at openintro.org/ahss/desmos).

Calculator instructions

TI-83/84: ENTERING DATA
The first step in summarizing data or making a graph is to enter the data set into a list. Use STAT,
Edit.

1. Press STAT.

2. Choose 1:Edit.

3. Enter data into L1 or another list.

CASIO FX-9750GII: ENTERING DATA

1. Navigate to STAT (MENU button, then hit the 2 button or select STAT).

2. Optional: use the left or right arrows to select a particular list.

3. Enter each numerical value and hit EXE.

http://www.openintro.org/redirect.php?go=desmos-1varstats&referrer=ahss3_pdf
http://www.openintro.org/redirect.php?go=openintro-ahss-desmos&referrer=ahss3_pdf
http://www.openintro.org/redirect.php?go=desmos-1varstats&referrer=ahss3_pdf
http://www.openintro.org/redirect.php?go=TI84_ENTERING_DATA&referrer=ahss3_pdf
http://www.openintro.org/redirect.php?go=CASIO_1_VAR_STATS_AND_BOX_PLOT&referrer=ahss3_pdf
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TI-84: CALCULATING SUMMARY STATISTICS
Use the STAT, CALC, 1-Var Stats command to find summary statistics such as mean, standard deviation,
and quartiles.

1. Enter the data as described previously.

2. Press STAT.

3. Right arrow to CALC.

4. Choose 1:1-Var Stats.

5. Enter L1 (i.e. 2ND 1) for List. If the data is in a list other than L1, type the name of that list.

6. Leave FreqList blank.

7. Choose Calculate and hit ENTER.

TI-83: Do steps 1-4, then type L1 (i.e. 2nd 1) or the list’s name and hit ENTER.

Calculating the summary statistics will return the following information. It will be necessary to hit the
down arrow to see all of the summary statistics.

x̄ Mean n Sample size or # of data points
Σx Sum of all the data values minX Minimum
Σx2 Sum of all the squared data values Q1 First quartile
Sx Sample standard deviation Med Median
σx Population standard deviation maxX Maximum

TI-83/84: DRAWING A BOX PLOT

1. Enter the data to be graphed as described previously.

2. Hit 2ND Y= (i.e. STAT PLOT).

3. Hit ENTER (to choose the first plot).

4. Hit ENTER to choose ON.

5. Down arrow and then right arrow three times to select box plot with outliers.

6. Down arrow again and make Xlist: L1 and Freq: 1.

7. Choose ZOOM and then 9:ZoomStat to get a good viewing window.

TI-83/84: WHAT TO DO IF YOU CANNOT FIND L1 OR ANOTHER LIST
Restore lists L1-L6 using the following steps:

1. Press STAT.

2. Choose 5:SetUpEditor.

3. Hit ENTER.

CASIO FX-9750GII: DRAWING A BOX PLOT AND 1-VARIABLE STATISTICS

1. Navigate to STAT (MENU, then hit 2) and enter the data into a list.

2. Go to GRPH (F1).

3. Next go to SET (F6) to set the graphing parameters.

4. To use the 2nd or 3rd graph instead of GPH1, select F2 or F3.

5. Move down to Graph Type and select the . (F6) option to see more graphing options, then select
Box (F2).

6. If XList does not show the list where you entered the data, hit LIST (F1) and enter the correct
list number.

7. Leave Frequency at 1.

8. For Outliers, choose On (F1).

9. Hit EXE and then choose the graph where you set the parameters F1 (most common), F2, or F3.

10. If desired, explore 1-variable statistics by selecting 1-Var (F1).

http://www.openintro.org/redirect.php?go=TI84_CALCULATING_SUMMARY_STATISTICS&referrer=ahss3_pdf
http://www.openintro.org/redirect.php?go=TI84_BOX_PLOT&referrer=ahss3_pdf
http://www.openintro.org/redirect.php?go=CASIO_1_VAR_STATS_AND_BOX_PLOT&referrer=ahss3_pdf
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CASIO FX-9750GII: DELETING A DATA LIST

1. Navigate to STAT (MENU, then hit 2).

2. Use the arrow buttons to navigate to the list you would like to delete.

3. Select . (F6) to see more options.

4. Select DEL-A (F4) and then F1 to confirm.

GUIDED PRACTICE 2.42
Enter the following 10 data points into a calculator.

5, 8, 1, 19, 3, 1, 11, 18, 20, 5

Find the summary statistics and make a box plot of the data.28

GUIDED PRACTICE 2.43
Use the email50 data set at openintro.org/data and Screen 2 of this Desmos 1-Var Stats Calculator to
summarize the num char variable (number of characters in an email).29

28The summary statistics should be x̄ = 9.1, Sx = 7.48, Q1 = 3, etc. Using a TI, the boxplot looks like this:

29Remember, the Desmos Calculators and Activities in this book can be found at openintro.org/ahss/desmos.
Down the email50 CSV file and open it. Copy and paste the num char column into the Desmos calculator, replacing
the data currently in x1. Adjust window as needed and you should get the following:

http://www.openintro.org/redirect.php?go=CASIO_1_VAR_STATS_AND_BOX_PLOT&referrer=ahss3_pdf
http://www.openintro.org/redirect.php?go=data-email50&referrer=ahss3_pdf
http://www.openintro.org/redirect.php?go=openintro-data&referrer=ahss3_pdf
http://www.openintro.org/redirect.php?go=desmos-1varstats2&referrer=ahss3_pdf
http://www.openintro.org/redirect.php?go=openintro-desmos&referrer=ahss3_pdf


86 CHAPTER 2. SUMMARIZING DATA

2.2.6 Outliers and robust statistics

RULES OF THUMB FOR IDENTIFYING OUTLIERS
There are two rules of thumb for identifying outliers:

• More than 1.5× IQR below Q1 or above Q3

• More than 2 standard deviations above or below the mean.

Both are important for the AP exam. In practice, consider these to be only rough guidelines.

GUIDED PRACTICE 2.44
For the email50 data set,Q1 = 2,536 and Q3 = 15, 411. x̄ = 11,600 and s = 13,130. What values would be
considered an outlier on the low end using each rule?30

GUIDED PRACTICE 2.45
Because there are no negative values in this data set, there can be no outliers on the low end. What does
the fact that there are outliers on the high end but not on the low end suggestion?31

How are the sample statistics of the num char data set affected by the observation, 64,401? What
would have happened if this email wasn’t observed? What would happen to these summary statistics if the
observation at 64,401 had been even larger, say 150,000? These scenarios are plotted alongside the original
data in Figure 2.16, and sample statistics are computed under each scenario in Figure 2.17.
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Figure 2.16: Dot plots of the original character count data and two modified data
sets.

30 Q1−1.5× IQR = 2536−1.5× (15411−2536) = −16, 749.5, so values less than -16,749.5 would be considered an
outlier using the first rule of thumb. Using the second rule of thumb, a value less than x̄−2×s = 11, 600−2×13, 130 =
−14, 660 would be considered an outlier. Note tht these are just rules of thumb and yield different values.

31It suggests that the distribution has a right hand tail, that is, that it is right skewed.
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robust not robust
scenario median IQR x̄ s
original num char data 6,890 12,875 11,600 13,130
drop 64,401 observation 6,768 11,702 10,521 10,798
move 64,401 to 150,000 6,890 12,875 13,310 22,434

Figure 2.17: A comparison of how the median, IQR, mean (x̄), and standard
deviation (s) change when extreme observations are present.

GUIDED PRACTICE 2.46
(a) Which is more affected by extreme observations, the mean or median? Figure 2.17 may be helpful. (b)
Is the standard deviation or IQR more affected by extreme observations?32

The median and IQR are called robust estimates because extreme observations have little effect on
their values. The mean and standard deviation are much more affected by changes in extreme observations.

EXAMPLE 2.47
The median and IQR do not change much under the three scenarios in Figure 2.17. Why might this be the
case?

Since there are no large gaps between observations around the three quartiles, adding, deleting, or changing
one value, no matter how extreme that value, will have little effect on their values.

GUIDED PRACTICE 2.48
The distribution of vehicle prices tends to be right skewed, with a few luxury and sports cars lingering out
into the right tail. If you were searching for a new car and cared about price, should you be more interested
in the mean or median price of vehicles sold, assuming you are in the market for a regular car?33

32(a) Mean is affected more. (b) Standard deviation is affected more. Complete explanations are provided in the
material following Guided Practice 2.46.

33Buyers of a “regular car” should be concerned about the median price. High-end car sales can drastically inflate
the mean price while the median will be more robust to the influence of those sales.
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2.2.7 Linear transformations of data

EXAMPLE 2.49
Begin with the following list: 1, 1, 5, 5. Multiply all of the numbers by 10. What happens to the mean?
What happens to the standard deviation? How do these compare to the mean and the standard deviation
of the original list?

The original list has a mean of 3 and a standard deviation of 2. The new list: 10, 10, 50, 50 has a mean of
30 with a standard deviation of 20. Because all of the values were multiplied by 10, both the mean and the
standard deviation were multiplied by 10. 34

EXAMPLE 2.50
Start with the following list: 1, 1, 5, 5. Multiply all of the numbers by -0.5. What happens to the mean?
What happens to the standard deviation? How do these compare to the mean and the standard deviation
of the original list?

The new list: -0.5, -0.5, -2.5, -2.5 has a mean of -1.5 with a standard deviation of 1. Because all of the values
were multiplied by -0.5, the mean was multiplied by -0.5. Multiplying all of the values by a negative flipped
the sign of numbers, which affects the location of the center, but not the spread. Multiplying all of the
values by -0.5 multiplied the standard deviation by +0.5 since the standard deviation cannot be negative.

EXAMPLE 2.51
Again, start with the following list: 1, 1, 5, 5. Add 100 to every entry. How do the new mean and standard
deviation compare to the original mean and standard deviation?

The new list is: 101, 101, 105, 105. The new mean of 103 is 100 greater than the original mean of 3. The
new standard deviation of 2 is the same as the original standard deviation of 2. Adding a constant to every
entry shifted the values, but did not stretch them.

Suppose that a researcher is looking at a list of 500 temperatures recorded in Celsius (C). The mean of
the temperatures listed is given as 27◦C with a standard deviation of 3◦C. Because she is not familiar with
the Celsius scale, she would like to convert these summary statistics into Fahrenheit (F). To convert from
Celsius to Fahrenheit, we use the following conversion:

xF =
9

5
xC + 32

Fortunately, she does not need to convert each of the 500 temperatures to Fahrenheit and then recalculate
the mean and the standard deviation. The unit conversion above is a linear transformation of the following
form, where a = 9/5 and b = 32:

aX + b

Using the examples as a guide, we can solve this temperature-conversion problem. The mean was 27◦C
and the standard deviation was 3◦C. To convert to Fahrenheit, we multiply all of the values by 9/5, which
multiplies both the mean and the standard deviation by 9/5. Then we add 32 to all of the values which
adds 32 to the mean but does not change the standard deviation further.

x̄F =
9

5
x̄C + 32 σF =

9

5
σC

=
5

9
(27) + 32 =

9

5
(3)

= 80.6 = 5.4

34Here, the population standard deviation was used in the calculation. These properties can be proven mathemat-
ically using properties of sigma (summation).
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Figure 2.18: 500 temperatures shown in both Celsius and Fahrenheit.

ADDING SHIFTS THE VALUES, MULTIPLYING STRETCHES OR CONTRACTS THEM
Adding a constant to every value in a data set shifts the mean but does not affect the standard deviation.
Multiplying the values in a data set by a constant will change the mean and the standard deviation by
the same multiple, except that the standard deviation will always remain positive.

EXAMPLE 2.52
Consider the temperature example. How would converting from Celsuis to Fahrenheit affect the median?
The IQR?

The median is affected in the same way as the mean and the IQR is affected in the same way as the standard
deviation. To get the new median, multiply the old median by 9/5 and add 32. The IQR is computed by
subtracting Q1 from Q3. While Q1 and Q3 are each affected in the same way as the median, the additional
32 added to each will cancel when we take Q3−Q1. That is, the IQR will be increase by a factor of 9/5 but
will be unaffected by the addition of 32.

For a more mathematical explanation of the IQR calculation, see the footnote.35

2.2.8 Comparing numerical data across groups

Some of the more interesting investigations can be considered by examining numerical data across
groups. The methods required here aren’t really new. All that is required is to make a numerical plot
for each group. To make a direct comparison between two groups, create a pair of dot plots or a pair of
histograms drawn using the same scales. It is also common to use back-to-back stem-and-leaf plots, parallel
box plots, and hollow histograms, the three of which are explored here.

We will take a look again at the county data set and compare the median household income for counties
that gained population from 2010 to 2017 versus counties that had no gain. While we might like to make
a causal connection here, remember that these are observational data and so such an interpretation would
be, at best, half-baked.

There were 1,454 counties where the population increased from 2010 to 2017, and there were 1,672
counties with no gain (all but one were a loss). A random sample of 100 counties from the first group and
50 from the second group are shown in Figure 2.19 to give a better sense of some of the raw median income
data.

35New IQR =
(

9
5
Q3 + 32

)
−
(

9
5
Q1 + 32

)
= 9

5
(Q3 −Q1) = 9

5
× (old IQR).
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Median Income for 150 Counties, in $1000s

Population Gain No Population Gain
38.2 43.6 42.2 61.5 51.1 45.7 48.3 60.3 50.7
44.6 51.8 40.7 48.1 56.4 41.9 39.3 40.4 40.3
40.6 63.3 52.1 60.3 49.8 51.7 57 47.2 45.9
51.1 34.1 45.5 52.8 49.1 51 42.3 41.5 46.1
80.8 46.3 82.2 43.6 39.7 49.4 44.9 51.7 46.4
75.2 40.6 46.3 62.4 44.1 51.3 29.1 51.8 50.5
51.9 34.7 54 42.9 52.2 45.1 27 30.9 34.9
61 51.4 56.5 62 46 46.4 40.7 51.8 61.1

53.8 57.6 69.2 48.4 40.5 48.6 43.4 34.7 45.7
53.1 54.6 55 46.4 39.9 56.7 33.1 21 37
63 49.1 57.2 44.1 50 38.9 52 31.9 45.7

46.6 46.5 38.9 50.9 56 34.6 56.3 38.7 45.7
74.2 63 49.6 53.7 77.5 60 56.2 43 21.7
63.2 47.6 55.9 39.1 57.8 42.6 44.5 34.5 48.9
50.4 49 45.6 39 38.8 37.1 50.9 42.1 43.2
57.2 44.7 71.7 35.3 100.2 35.4 41.3 33.6
42.6 55.5 38.6 52.7 63 43.4 56.5

Figure 2.19: In this table, median household income (in $1000s) from a random
sample of 100 counties that had population gains are shown on the left. Median
incomes from a random sample of 50 counties that had no population gain are
shown on the right.

Population: Gain Population: No Gain

| 2 |12

| 2 |79

4| 3 |1234

99999987555| 3 |5555799

444433322111000| 4 |00111223333

999998887666666665555| 4 |55666666789

444333222221111110000| 5 |1112222

887776666555| 5 |6677

33333222100| 6 |01

9| 6 |

42| 7 |

85| 7 |

21| 8 |

Legend: 2 |1 = 21,000 median income

Figure 2.20: Back-to-back stem-and-leaf plot for median income, split by whether
the count had a population gain or no gain.
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Figure 2.21: Side-by-side box plot (left panel) and hollow histograms (right panel)
for med hh income, where the counties are split by whether or not there was a
population gain from 2010 to 2017. Explore this data set on Tableau Public .

The side-by-side box plot is a traditional tool for comparing across groups. An example is shown
in the left panel of Figure 2.21, where there are two box plots, one for each group, placed into one plotting
window and drawn on the same scale.

Another useful plotting method uses hollow histograms to compare numerical data across groups.
These are just the outlines of histograms of each group put on the same plot, as shown in the right panel of
Figure 2.21.

GUIDED PRACTICE 2.53
Use the plots in Figure 2.21 to compare the incomes for counties across the two groups. What do you notice
about the approximate center of each group? What do you notice about the variability between groups? Is
the shape relatively consistent between groups? How many prominent modes are there for each group?36

COMPARING DISTRIBUTIONS
When comparing distributions, compare them with respect to center, spread, and shape as well as any
unusual observations. Such descriptions should be in context.

GUIDED PRACTICE 2.54
What components of each plot in Figure 2.21 do you find most useful?37

36Answers may vary a little. The counties with population gains tend to have higher income (median of about
$45,000) versus counties without a gain (median of about $40,000). The variability is also slightly larger for the
population gain group. This is evident in the IQR, which is about 50% bigger in the gain group. Both distributions
show slight to moderate right skew and are unimodal. The box plots indicate there are many observations far above
the median in each group, though we should anticipate that many observations will fall beyond the whiskers when
examining any data set that contain more than a couple hundred data points.

37Answers will vary. The parallel box plots are especially useful for comparing centers and spreads, while the
hollow histograms are more useful for seeing distribution shape, skew, and groups of anomalies.

http://www.openintro.org/redirect.php?go=tableau-medianincome-gainnogain-all&referrer=ahss3_pdf
http://www.openintro.org/redirect.php?go=tableau-medianincome-gainnogain-all&referrer=ahss3_pdf
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GUIDED PRACTICE 2.55
Do these graphs tell us about any association between income for the two groups?38

Looking at an association is different than comparing distributions. When comparing distributions, we
are interested in questions such as, “Which distribution has a greater average?” and “How do the shapes of
the distribution differ?” The number of elements in each data set need not be the same (e.g. height of women
and height of men). When we look at association, we are interested in whether there is a positive, negative,
or no association between the variables. This requires two data sets of equal length that are essentially
paired (e.g. height and weight of individuals).

COMPARING DISTRIBUTIONS VERSUS LOOKING AT ASSOCIATION
We compare two distributions with respect to center, spread, and shape. To compare the distributions
visually, we use 2 single-variable graphs, such as two histograms, two dot plots, parallel box plots,
or a back-to-back stem-and-leaf. When looking at association, we look for a positive, negative, or no
relationship between the variables. To see association visually, we require a scatterplot.

2.2.9 Mapping data (special topic)

The county data set offers many numerical variables that we could plot using dot plots, scatterplots, or
box plots, but these miss the true nature of the data. Rather, when we encounter geographic data, we should
create an intensity map, where colors are used to show higher and lower values of a variable. Figures 2.22
and 2.23 shows intensity maps for poverty rate in percent (poverty), unemployment rate (unemployment
rate), homeownership rate in percent (homeownership), and median household income (median hh income).
The color key indicates which colors correspond to which values. The intensity maps are not generally very
helpful for getting precise values in any given county, but they are very helpful for seeing geographic trends
and generating interesting research questions or hypotheses.

EXAMPLE 2.56
What interesting features are evident in the poverty and unemployment rate intensity maps?

Poverty rates are evidently higher in a few locations. Notably, the deep south shows higher poverty rates,
as does much of Arizona and New Mexico. High poverty rates are evident in the Mississippi flood plains a
little north of New Orleans and also in a large section of Kentucky.

The unemployment rate follows similar trends, and we can see correspondence between the two variables. In
fact, it makes sense for higher rates of unemployment to be closely related to poverty rates. One observation
that stand out when comparing the two maps: the poverty rate is much higher than the unemployment rate,
meaning while many people may be working, they are not making enough to break out of poverty.

GUIDED PRACTICE 2.57
What interesting features are evident in the median hh income intensity map in Figure 2.23(b)?39

38No, to see association we require a scatterplot. Moreover, these data are not paired, so the discussion of association
does not make sense here.

39Note: answers will vary. There is some correspondence between high earning and metropolitan areas, where we
can see darker spots (higher median household income), though there are several exceptions. You might look for large
cities you are familiar with and try to spot them on the map as dark spots.
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Figure 2.22: (a) Intensity map of poverty rate (percent). (b) Intensity map of the
unemployment rate (percent). Explore dozens of intensity maps using American
Community Survey data on Tableau Public .

http://www.openintro.org/redirect.php?go=tableau-intensitymapsall&referrer=ahss3_pdf
http://www.openintro.org/redirect.php?go=tableau-intensitymapsall&referrer=ahss3_pdf
http://www.openintro.org/redirect.php?go=tableau-intensitymapsall&referrer=ahss3_pdf
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Figure 2.23: (a) Intensity map of homeownership rate (percent). (b) Intensity
map of median household income ($1000s). Explore dozens of intensity maps using
American Community Survey data on Tableau Public .

http://www.openintro.org/redirect.php?go=tableau-intensitymapsall&referrer=ahss3_pdf
http://www.openintro.org/redirect.php?go=tableau-intensitymapsall&referrer=ahss3_pdf
http://www.openintro.org/redirect.php?go=tableau-intensitymapsall&referrer=ahss3_pdf
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Section summary

• In this section we looked at univariate summaries, including two measures of center and three mea-
sures of spread.

• When summarizing or comparing distributions, always comment on center, spread, and shape.
Also, mention outliers or gaps if applicable. Put descriptions in context, that is, identify the variable(s)
being summarized by name and include relevant units. Remember: Center, Spread, and Shape! In
context!

• Mean and median are measures of center. (A common mistake is to report mode as a measure of
center. However, a mode can appear anywhere in a distribution.)

– The mean is the sum of all the observations divided by the number of observations, n.
x̄ = 1

n

∑
xi =

∑
xi
n

= x1+x2+...+xn
n

– In an ordered data set, the median is the middle number when n is odd. When n is even, the
median is the average of the two middle numbers.

• Because large values exert more “pull” on the mean, large values on the high end tend to increase
the mean more than they increase the median. In a right skewed distribution, therefore, the mean
is greater than the median. Analogously, in a left skewed distribution, the mean is less than the
median. Remember: The mean follows the tail! The skew is the tail!

• Standard deviation (SD) and Interquartile range (IQR) are measures of spread. SD measures
the typical spread from the mean, whereas IQR measures the spread of the middle 50% of the data.

– To calculate the standard deviation, subtract the average from each value, square all those
differences, add them up, divide by n − 1, then take the square root. Note: The standard
deviation is the square root of the variance.

sX =
√

1
n−1

∑
(xi − x̄)2

– The IQR is the difference between the third quartile Q3 and the first quartile Q1.

IQR = Q3 −Q1

• Range is also sometimes used as a measure of spread. The range of a data set is defined as the
difference between the maximum value and the minimum value, i.e. max−min.

• Outliers are observations that are extreme relative to the rest of the data. Two rules of thumb for
identifying observations as outliers are:

– more than 2 standard deviations above or below the mean

– more than 1.5× IQR below Q1 or above Q3

• Mean and SD are sensitive to outliers. Median and IQR are more robust and less sensitive to outliers.

• A Z-score represents the number of standard deviations a value in a data set is above or below the
mean. To calculate a Z-score use: Z = x−mean

SD
.

• Z-scores do not depend on units. When looking at distributions with different units or different
standard deviations, Z-scores are useful for comparing how far values are away from the mean (relative
to the distribution of the data).

• Linear transformations of data. Adding a constant to every value in a data set shifts the mean
but does not affect the standard deviation. Multiplying the values in a data set by a constant will
multiply the mean and the standard deviation by that constant, except that the standard deviation
must always remain positive.

• Box plots do not show the distribution of a data set in the way that histograms do. Rather, they
provide a visual depiction of the 5-number summary, which consists of: min, Q1, Q2, Q3, max.
While a box plot does not indicate modes, it can show skew and outliers.
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Exercises

2.7 Smoking habits of UK residents, Part I. A survey was conducted to study the smoking habits of UK
residents. The histograms below display the distributions of the number of cigarettes smoked on weekdays
and weekends, and they exclude data from people who identified themselves as non-smokers. Describe the
two distributions and compare them.40

Amount Weekends
0 10 20 30 40 50 60

0

50

100

Amount Weekdays
0 10 20 30 40 50 60

0

50

2.8 Stats scores, Part I. Below are the final exam scores of twenty introductory statistics students.

79, 83, 57, 82, 94, 83, 72, 74, 73, 71, 66, 89, 78, 81, 78, 81, 88, 69, 77, 79

Draw a histogram of these data and describe the distribution.

2.9 Smoking habits of UK residents, Part II. A random sample of 5 smokers from the data set discussed
in Exercise 2.7 is provided below.

gender age maritalStatus grossIncome smoke amtWeekends amtWeekdays
Female 51 Married £2,600 to £5,200 Yes 20 cig/day 20 cig/day
Male 24 Single £10,400 to £15,600 Yes 20 cig/day 15 cig/day

Female 33 Married £10,400 to £15,600 Yes 20 cig/day 10 cig/day
Female 17 Single £5,200 to £10,400 Yes 20 cig/day 15 cig/day
Female 76 Widowed £5,200 to £10,400 Yes 20 cig/day 20 cig/day

(a) Find the mean amount of cigarettes smoked on weekdays and weekends by these 5 respondents.

(b) Find the standard deviation of the amount of cigarettes smoked on weekdays and on weekends by these
5 respondents. Is the variability higher on weekends or on weekdays?

2.10 Factory defective rate. A factory quality control manager decides to investigate the percentage of
defective items produced each day. Within a given work week (Monday through Friday) the percentage of
defective items produced was 2%, 1.4%, 4%, 3%, 2.2%.

(a) Calculate the mean for these data.

(b) Calculate the standard deviation for these data, showing each step in detail.

40National STEM Centre, Large Datasets from stats4schools.

http://www.openintro.org/redirect.php?go=textbook-Stats4Schools_smoking&referrer=ahss3_pdf
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2.11 Days off at a mining plant. Workers at a particular mining site receive an average of 35 days paid
vacation, which is lower than the national average. The manager of this plant is under pressure from a
local union to increase the amount of paid time off. However, he does not want to give more days off to
the workers because that would be costly. Instead he decides he should fire 10 employees in such a way as
to raise the average number of days off that are reported by his employees. In order to achieve this goal,
should he fire employees who have the most number of days off, least number of days off, or those who have
about the average number of days off?

2.12 Medians and IQRs. For each part, compare distributions (1) and (2) based on their medians and
IQRs. You do not need to calculate these statistics; simply state how the medians and IQRs compare. Make
sure to explain your reasoning.

(a) (1) 3, 5, 6, 7, 9
(2) 3, 5, 6, 7, 20

(b) (1) 3, 5, 6, 7, 9
(2) 3, 5, 7, 8, 9

(c) (1) 1, 2, 3, 4, 5
(2) 6, 7, 8, 9, 10

(d) (1) 0, 10, 50, 60, 100
(2) 0, 100, 500, 600, 1000

2.13 Means and SDs. For each part, compare distributions (1) and (2) based on their means and standard
deviations. You do not need to calculate these statistics; simply state how the means and the standard
deviations compare. Make sure to explain your reasoning. Hint: It may be useful to sketch dot plots of the
distributions.

(a) (1) 3, 5, 5, 5, 8, 11, 11, 11, 13
(2) 3, 5, 5, 5, 8, 11, 11, 11, 20

(b) (1) -20, 0, 0, 0, 15, 25, 30, 30
(2) -40, 0, 0, 0, 15, 25, 30, 30

(c) (1) 0, 2, 4, 6, 8, 10
(2) 20, 22, 24, 26, 28, 30

(d) (1) 100, 200, 300, 400, 500
(2) 0, 50, 300, 550, 600

2.14 Mix-and-match. Describe the distribution in the histograms below and match them to the box plots.

(a)

50 60 70

(b)

0 50 100

(c)

0 2 4 6

(1)

0

2

4

6

(2)

55

60

65

70

(3)

0

20

40

60

80

100
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2.15 Air quality. Daily air quality is measured by the air quality index (AQI) reported by the Environ-
mental Protection Agency. This index reports the pollution level and what associated health effects might
be a concern. The index is calculated for five major air pollutants regulated by the Clean Air Act and takes
values from 0 to 300, where a higher value indicates lower air quality. AQI was reported for a sample of
91 days in 2011 in Durham, NC. The relative frequency histogram below shows the distribution of the AQI
values on these days.41

(a) Estimate the median AQI value of this sample.

(b) Would you expect the mean AQI value of this sample
to be higher or lower than the median? Explain your
reasoning.

(c) Estimate Q1, Q3, and IQR for the distribution.

(d) Would any of the days in this sample be considered
to have an unusually low or high AQI? Explain your
reasoning.

Daily AQI

10 20 30 40 50 60
0

0.05

0.1

0.15

0.2

2.16 Median vs. mean. Estimate the median for the 400 observations shown in the histogram, and note
whether you expect the mean to be higher or lower than the median.

40 50 60 70 80 90 100

0

20

40

60

80

2.17 Histograms vs. box plots. Compare the two plots below. What characteristics of the distribution
are apparent in the histogram and not in the box plot? What characteristics are apparent in the box plot
but not in the histogram?

5 10 15 20 25
0

50

100

150

200

5
10
15
20
25

2.18 Facebook friends. Facebook data indicate that 50% of Facebook users have 100 or more friends,
and that the average friend count of users is 190. What do these findings suggest about the shape of the
distribution of number of friends of Facebook users?42

41US Environmental Protection Agency, AirData, 2011.
42Lars Backstrom. “Anatomy of Facebook”. In: Facebook Data Team’s Notes (2011).

http://www.openintro.org/redirect.php?go=textbook-airdata_2011&referrer=ahss3_pdf
http://www.openintro.org/redirect.php?go=textbook-anatomy-of-facebook&referrer=ahss3_pdf
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2.19 Distributions and appropriate statistics, Part I. For each of the following, state whether you expect
the distribution to be symmetric, right skewed, or left skewed. Also specify whether the mean or median
would best represent a typical observation in the data, and whether the variability of observations would be
best represented using the standard deviation or IQR. Explain your reasoning.

(a) Number of pets per household.

(b) Distance to work, i.e. number of miles between work and home.

(c) Heights of adult males.

2.20 Distributions and appropriate statistics, Part II. For each of the following, state whether you expect
the distribution to be symmetric, right skewed, or left skewed. Also specify whether the mean or median
would best represent a typical observation in the data, and whether the variability of observations would be
best represented using the standard deviation or IQR. Explain your reasoning.

(a) Housing prices in a country where 25% of the houses cost below $350,000, 50% of the houses cost below
$450,000, 75% of the houses cost below $1,000,000 and there are a meaningful number of houses that
cost more than $6,000,000.

(b) Housing prices in a country where 25% of the houses cost below $300,000, 50% of the houses cost below
$600,000, 75% of the houses cost below $900,000 and very few houses that cost more than $1,200,000.

(c) Number of alcoholic drinks consumed by college students in a given week. Assume that most of these
students don’t drink since they are under 21 years old, and only a few drink excessively.

(d) Annual salaries of the employees at a Fortune 500 company where only a few high level executives earn
much higher salaries than all the other employees.

2.21 Income at the coffee shop. The first histogram below shows the distribution of the yearly incomes of
40 patrons at a college coffee shop. Suppose two new people walk into the coffee shop: one making $225,000
and the other $250,000. The second histogram shows the new income distribution. Summary statistics are
also provided.

(1)
$60k $62.5k $65k $67.5k $70k

0

4

8

12

(2)
$60k $110k $160k $210k $260k

0

4

8

12

(1) (2)

n 40 42
Min. 60,680 60,680

1st Qu. 63,620 63,710
Median 65,240 65,350

Mean 65,090 73,300
3rd Qu. 66,160 66,540

Max. 69,890 250,000
SD 2,122 37,321

(a) Would the mean or the median best represent what we might think of as a typical income for the 42
patrons at this coffee shop? What does this say about the robustness of the two measures?

(b) Would the standard deviation or the IQR best represent the amount of variability in the incomes of the
42 patrons at this coffee shop? What does this say about the robustness of the two measures?

2.22 Midrange. The midrange of a distribution is defined as the average of the maximum and the minimum
of that distribution. Is this statistic robust to outliers and extreme skew? Explain your reasoning
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2.23 Commute times. The US census collects data on time it takes Americans to commute to work, among
many other variables. The histogram below shows the distribution of average commute times in 3,142 US
counties in 2010. Also shown below is a spatial intensity map of the same data.

Mean work travel (in min)
10 20 30 40

0

100

200

4

19

>33

(a) Describe the numerical distribution for commute times.

(b) Describe the spatial distribution of commuting times using the map provided.

2.24 Hispanic/Latine population. The US census collects data on race and ethnicity of Americans, among
many other variables. The histogram below shows the distribution of the percentage of the population that
is Hispanic/Latine in 3,142 counties in the US in 2017.

Hispanic/Latinx %
0 20 40 60 80 100

0

500

1000

1500

2000

0

20

>40

(a) Describe the distribution of percent of population that is Hispanic/Latine for counties in the US.

(b) What features of the distribution of the Hispanic/Latine population in US counties are apparent in the
map but not in the histogram? What features are apparent in the histogram but not the map?

http://www.openintro.org/redirect.php?go=tableau-histogramschoose&referrer=ahss3_pdf
http://www.openintro.org/redirect.php?go=tableau-histogramschoose&referrer=ahss3_pdf
http://www.openintro.org/redirect.php?go=tableau-intensitymapsall&referrer=ahss3_pdf
http://www.openintro.org/redirect.php?go=tableau-intensitymapsall&referrer=ahss3_pdf
http://www.openintro.org/redirect.php?go=tableau-histogramschoose&referrer=ahss3_pdf
http://www.openintro.org/redirect.php?go=tableau-histogramschoose&referrer=ahss3_pdf
http://www.openintro.org/redirect.php?go=tableau-intensitymapsall&referrer=ahss3_pdf
http://www.openintro.org/redirect.php?go=tableau-intensitymapsall&referrer=ahss3_pdf
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2.3 Normal distribution

What proportion of adults have systolic blood pressure above 140? What is the probability of getting more

than 250 heads in 400 tosses of a fair coin? If the average weight of a piece of carry-on luggage is 11 pounds,

what is the probability that 200 random carry on pieces will weigh more than 2500 pounds? If 55% of a

population supports a certain candidate, what is the probability that she will have less than 50% support

in a random sample of size 200?

There is one distribution that can help us answer all of these questions. Can you guess what it is? That’s

right – it’s the normal distribution.

Learning objectives

1. Use Z-scores and the standard normal model to approximate a distribution where appropriate.

2. Find probabilities and percentiles using the normal approximation.

3. Find the value that corresponds to a given percentile when the distribution is approximately normal.

2.3.1 Normal distribution model

Among all the distributions we see in practice, one is overwhelmingly the most common. The sym-
metric, unimodal, bell curve is ubiquitous throughout statistics. Indeed it is so common, that people often
know it as the normal curve or normal distribution.43 A normal curve is shown in Figure 2.24.

Figure 2.24: A normal curve.

The normal distribution always describes a symmetric, unimodal, bell-shaped curve. However,
these curves can look different depending on the details of the model. Specifically, the normal distribution
model can be adjusted using two parameters: mean and standard deviation. As you can probably guess,
changing the mean shifts the bell curve to the left or right, while changing the standard deviation stretches
or constricts the curve.

43It is also introduced as the Gaussian distribution after Frederic Gauss, the first person to formalize its mathe-
matical expression.
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Figure 2.25 shows the normal distribution with mean 0 and standard deviation 1 in the left panel and
the normal distributions with mean 19 and standard deviation 4 in the right panel. Figure 2.26 shows these
distributions on the same axis.

−3 −2 −1 0 1 2 3

Y

7 11 15 19 23 27 31

Figure 2.25: Both curves represent the normal distribution. However, they differ
in their center and spread.

0 10 20 30

Figure 2.26: The normal distributions shown in Figure 2.25 but plotted together
and on the same scale.

Because the mean and standard deviation describe a normal distribution exactly, they are called the
distribution’s parameters. The normal distribution with mean µ = 0 and standard deviation σ = 1 is
called the standard normal distribution..

NORMAL DISTRIBUTION FACTS
Many variables are nearly normal, but none are exactly normal. The normal distribution, while never
perfect, provides very close approximations for a variety of scenarios. We will use it to model data as
well as probability distributions.
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2.3.2 Using the normal distribution to approximate empirical distributions

We often want to put data onto a standardized scale, which can make comparisons more reasonable.

EXAMPLE 2.58
Figure 2.27 shows the mean and standard deviation for total scores on the SAT and ACT. The distribution
of SAT and ACT scores are both nearly normal. Suppose Ann scored 1300 on her SAT and Tom scored 24
on his ACT. Who performed better?

As we saw in section 2.2.3, we can use Z-scores to compare observations from different distributions. Using
Ann’s SAT score, 1300 , along with the SAT mean and SD, we can find Ann’s Z-score.

ZAnn =
xAnn − µSAT

σSAT

=
1300− 1100

200
= 1

Similarly, using Tom’s ACT score, 24, along with the ACT mean and SD we can find his Z-score.

ZTom =
xTom − µACT

σACT
=

24− 21

6
= 0.5

Because Ann’s score was 1 standard deviation above the mean, while Tom’s score was 0.5 standard deviations
above the mean, we can say that Ann did better than Tom.

SAT ACT
Mean 1100 21
SD 200 6

Figure 2.27: Mean and standard deviation for the SAT and ACT.

Assuming that both the SAT and ACT distributions are nearly normally distributed, what percent of
test takers scored lower than Ann? What percent scored lower than Tom? To answer these question exactly,
we would need all of the data. However, if we use the information that SAT and ACT distributions are
nearly normal, we can estimate these percents. Figure 2.28 shows these distributions modeled with a normal
curve. If we can find the percent of the normal curve that is to the left of Ann’s score, we could use that
percent as our estimate of the percent of the data points that are smaller than Ann’s score. We call this
process normal approximation. The steps are:

1. First verify that the distribution can be reasonably modeled with a normal distribution.

2. Convert value or values of interest to Z-scores.

3. Find the relevant area/percent under the standard normal curve.

We use the area/percent that we find from the normal curve as our estimate of the desired percent.

X

700 900 1100 1300 1500

Ann

9 15 21 27 33

Tom

Figure 2.28: Ann’s and Tom’s scores shown with the distributions of SAT and
ACT scores.
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2.3.3 Finding areas under the normal curve

It’s very useful in statistics to be able to identify areas of distributions, especially tail areas. For
instance, what percent of people have an SAT score below Ann’s score of 1300? This is the same as Ann’s
percentile. We previously determined that a score of 1300 corresponds to a Z-score of 1 and that SAT
scores are approximately normally distributed. We can visualize such a tail area by sketching a normal curve
and shading everything below Z = 1 as shown in Figure 2.29.

−3 −2 −1 0 1 2 3

Figure 2.29: The area to the left of the Z-score represents the percentile of the
observation.

There are many techniques for finding this area, and we’ll discuss three of the options.

1. The most common approach in practice is to use statistical software. For example, in the program R,
we could find the area shown in Figure 2.29 using the following command, which takes in the Z-score
of 1 and returns the lower tail area:
.....> pnorm(1)

.....[1] 0.8413447

Using the online Desmos calculator, we could do: normaldist( ), check the “Find Cumulative Prob-
ability (CDF)” box and set Max to 1.

According to these calculation, the area shaded that is below Z = 1 is 0.841, so we estimate that
84.1% of SAT test takers score below 1300 and that Ann is at the 84th percentile.

There are many other software options, such as Python or SAS; even spreadsheet programs such as
Excel and Google Sheets support these calculations.

2. A common strategy in classrooms is to use a graphing calculator, such as a TI or Casio calcula-
tor. Instructions for finding areas of a normal distribution using these calculators are provided in
Section 2.3.7.

3. The last option for finding tail areas is to use what’s called a probability table; these are occasionally
used in classrooms but rarely in practice. Appendix C.2 contains such a table and a guide for how to
use it.

We will solve normal distribution problems in this section by always first finding the Z-score. The
reason is that we will encounter close parallels called test statistics beginning in Chapter 5; these are, in
many instances, an equivalent of a Z-score.

Readers may find it helpful to familiarize themselves with one of the options above before continuing
on to the applications that follow.
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2.3.4 Normal probability examples

Combined SAT scores are approximated well by a normal model with mean 1100 and standard deviation
200.

EXAMPLE 2.59
What is the probability that a randomly selected SAT taker scores at least 1190 on the SAT?

The probability that a randomly selected SAT taker scores at least 1190 on the SAT is equivalent to the
proportion of all SAT takers that score at least 1190 on the SAT. First, always draw and label a picture of
the normal distribution. (Drawings need not be exact to be useful.) We are interested in the probability
that a randomly selected score will be above 1190, so we shade this upper tail:

700 1100 1500

The picture shows the mean and the values at 2 standard deviations above and below the mean. The simplest
way to find the shaded area under the curve makes use of the Z-score of the cutoff value. With µ = 1100,
σ = 200, and the cutoff value x = 1190, the Z-score is computed as

Z =
x− µ
σ

=
1190− 1100

200
=

90

200
= 0.45

Next, we want to find the area under the normal curve to right of Z = 0.45. Using technology, we find
P (Z > 0.45) = 0.3264. The probability that a randomly selected score is at least 1190 on the SAT is
0.3264.

ALWAYS DRAW A PICTURE FIRST, AND FIND THE Z-SCORE SECOND
For any normal probability situation, always always always draw and label the normal curve and shade
the area of interest first. The picture will provide an estimate of the probability.

After drawing a figure to represent the situation, identify the Z-score for the observation of interest.

GUIDED PRACTICE 2.60
If the probability that a randomly selected score is at least 1190 is 0.3264, what is the probability that the
score is less than 1190? Draw the normal curve representing this exercise, shading the lower region instead
of the upper one.44

44We found the probability in Example 2.59: 0.6736. A picture for this exercise is represented by the shaded area
below “0.6736” in Example 2.59.
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EXAMPLE 2.61
Edward earned a 1030 on his SAT. What is his percentile?

First, a picture is needed. Edward’s percentile is the proportion of people who do not get as high as a 1030.
These are the scores to the left of 1030.

700 1100 1500

Identifying the mean µ = 1100, the standard deviation σ = 200, and the cutoff for the tail area x = 1030
makes it easy to compute the Z-score:

Z =
x− µ
σ

=
1030− 1100

200
= −0.35

Using technology we find that P (Z < −0.35) = 0.3632. Edward is at the 36th percentile.

GUIDED PRACTICE 2.62
Use the results of Example 2.61 to compute the proportion of SAT takers who did better than Edward. Also
draw a new picture.45

The last several problems have focused on finding the probability or percentile for a particular obser-
vation. It is also possible to identify the value corresponding to a particular percentile.

45If Edward did better than 36% of SAT takers, then about 64% must have done better than him.

700 1100 1500
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EXAMPLE 2.63
Carlos believes he can get into his preferred college if he scores at least in the 80th percentile on the SAT.
What score should he aim for?

Here, we are given a percentile rather than a Z-score, so we work backwards. As always, first draw the
picture.

500 700 900 1100 1300 1500 1700

We want to find the observation that corresponds to the 80th percentile. First, we find the Z-score associated
with the 80th percentile. Using technology, we find that P (Z < 0.84) = 0.80. In any normal distribution, a
value with a Z-score of 0.84 will be at the 80th percentile. Once we have the Z-score, we work backwards to
find x.

Z =
x− µ
σ

0.84 =
x− 1100

200

0.84× 200 + 1100 = x

x = 1268

The 80th percentile on the SAT corresponds to a score of 1268.

GUIDED PRACTICE 2.64
Imani scored at the 72nd percentile on the SAT. What was her SAT score?46

IF THE DATA ARE NOT NEARLY NORMAL, DON’T USE THE NORMAL APPROXIMATION
Before using the normal approximation method, verify that the data or distribution is approximately
normal. If it is not, the normal approximation will give incorrect results. Also remember that all
answers based on normal approximations are in fact approximations and are not exact.

Finally, we should observe that it is possible for a normal random variable to fall 4, 5, or even more
standard deviations from the mean. The probability of being further than 4 standard deviations from the
mean is about 1-in-15,000. For 5 and 6 standard deviations, it is about 1-in-2 million and 1-in-500 million,
respectively. However, while the tails of the normal distribution extend infinitely in either direction, our
data sets are finite and normal approximation in the extreme tails is unlikely to be very accurate, even for
bell-shaped data sets.

46First, draw a picture! The closest percentile in the table to 0.72 is 0.7190, which corresponds to Z = 0.58. Next,
set up the Z-score formula and solve for x: 0.58 = x−1100

200
→ x = 1216. Imani scored 1216.
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2.3.5 68-95-99.7 rule

Here, we present a useful rule of thumb for the probability of falling within 1, 2, and 3 standard
deviations of the mean in the normal distribution. The 68-95-99.7 rule, also known as the empirical rule,
will be useful in a wide range of practical settings, especially when trying to make a quick estimate without
a calculator or Z-table.

µ − 3σ µ − 2σ µ − σ µ µ + σ µ + 2σ µ + 3σ

99.7%

95%

68%

Figure 2.30: Probabilities for falling within 1, 2, and 3 standard deviations of the
mean in a normal distribution.

GUIDED PRACTICE 2.65
Use the Z-table to confirm that about 68%, 95%, and 99.7% of observations fall within 1, 2, and 3, standard
deviations of the mean in the normal distribution, respectively. For instance, first find the area that falls
between Z = −1 and Z = 1, which should have an area of about 0.68. Similarly there should be an area of
about 0.95 between Z = −2 and Z = 2.47

It is possible for a normal random variable to fall 4, 5, or even more standard deviations from the
mean. However, these occurrences are very rare if the data are nearly normal. The probability of being
further than 4 standard deviations from the mean is about 1-in-15,000. For 5 and 6 standard deviations, it
is about 1-in-2 million and 1-in-500 million, respectively.

GUIDED PRACTICE 2.66
SAT scores closely follow the normal model with mean µ = 1100 and standard deviation σ = 200. (a) About
what percent of test takers score 700 to 1500? (b) What percent score between 1100 and 1500?48

47First draw the pictures. To find the area between Z = −1 and Z = 1, use the normal probability table to
determine the areas below Z = −1 and above Z = 1. Next verify the area between Z = −1 and Z = 1 is about 0.68.
Repeat this for Z = −2 to Z = 2 and also for Z = −3 to Z = 3.

48(a) 700 and 1500 represent two standard deviations above and below the mean, which means about 95% of test
takers will score between 700 and 1500. (b) Since the normal model is symmetric, then half of the test takers from

part (a) ( 95%
2

= 47.5% of all test takers) will score 700 to 1500 while 47.5% score between 1100 and 1500.
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2.3.6 Evaluating the normal approximation (special topic)

It is important to remember normality is always an approximation. Testing the appropriateness of the
normal assumption is a key step in many data analyses.

The distribution of heights of US males is well approximated by the normal model. We are interested
in proceeding under the assumption that the data are normally distributed, but first we must check to see
if this is reasonable.

There are two visual methods for checking the assumption of normality that can be implemented and
interpreted quickly. The first is a simple histogram with the best fitting normal curve overlaid on the plot,
as shown in the left panel of Figure 2.31. The sample mean x̄ and standard deviation s are used as the
parameters of the best fitting normal curve. The closer this curve fits the histogram, the more reasonable
the normal model assumption. Another more common method is examining a normal probability plot,49

shown in the right panel of Figure 2.31. The closer the points are to a perfect straight line, the more
confident we can be that the data follow the normal model.
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Figure 2.31: A sample of 100 male heights. The observations are rounded to the
nearest whole inch, explaining why the points appear to jump in increments in the
normal probability plot.

EXAMPLE 2.67
Consider all NBA players from the 2018-2019 season presented in Figure 2.32. Based on the graphs, are
NBA player heights normally distributed?

We first create a histogram and normal probability plot of the NBA player heights. The histogram in the
left panel is slightly left skewed, which contrasts with the symmetric normal distribution. The points in
the normal probability plot do not appear to closely follow a straight line but show what appears to be a
“wave”. NBA player heights do not appear to come from a normal distribution.

GUIDED PRACTICE 2.68
Figure 2.33 shows normal probability plots for two distributions that are skewed. One distribution is skewed
to the low end (left skewed) and the other to the high end (right skewed). Which is which?50

49Also commonly called a quantile-quantile plot.
50Examine where the points fall along the vertical axis. In the first plot, most points are near the low end with

fewer observations scattered along the high end; this describes a distribution that is right skewed. The second plot
shows the opposite features, and this distribution is left skewed.



110 CHAPTER 2. SUMMARIZING DATA

Height (inches)
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Figure 2.32: Histogram and normal probability plot for the NBA heights from the
2018-2019 season.
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Figure 2.33: Normal probability plots for Guided Practice 2.68.

2.3.7 Technology: finding normal probabilities

Get started quickly with a Desmos Normal Calculator that we’ve put together
(visit openintro.org/ahss/desmos).

http://www.openintro.org/redirect.php?go=desmos-normal&referrer=ahss3_pdf
http://www.openintro.org/redirect.php?go=openintro-ahss-desmos&referrer=ahss3_pdf
http://www.openintro.org/redirect.php?go=desmos-normal&referrer=ahss3_pdf
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TI-84: FINDING AREA UNDER THE NORMAL CURVE
Use 2ND VARS, normalcdf to find an area/proportion/probability between two Z-scores or to the left or
right of a Z-score.

1. Choose 2ND VARS (i.e. DISTR).

2. Choose 2:normalcdf.

3. Enter the lower (left) Z-score and the upper (right) Z-score.

• If finding just a lower tail area, set lower to -5.

• If finding just an upper tail area, set upper to 5.

4. Leave µ as 0 and σ as 1.

5. Down arrow, choose Paste, and hit ENTER.
TI-83: Do steps 1-2, then enter the lower bound and upper bound separated by a comma, e.g.
normalcdf(2, 5), and hit ENTER.

CASIO FX-9750GII: FINDING AREA UNDER THE NORMAL CURVE

1. Navigate to STAT (MENU, then hit 2).

2. Select DIST (F5), then NORM (F1), and then Ncd (F2).

3. If needed, set Data to Variable (Var option, which is F2).

4. Enter the Lower Z-score and the Upper Z-score. Set σ to 1 and µ to 0.

• If finding just a lower tail area, set Lower to -5.

• For an upper tail area, set Upper to 5.

5. Hit EXE, which will return the area probability (p) along with the Z-scores for the lower and upper
bounds.

GUIDED PRACTICE 2.69
Use a calculator or software to confirm that about 68%, 95%, and 99.7% of observations fall within 1, 2, and
3, standard deviations of the mean in the normal distribution, respectively.51

GUIDED PRACTICE 2.70
Find the area under the normal curve between -1.5 and 1.5. 52

EXAMPLE 2.71
Use a calculator to determine what percentile corresponds to a Z-score of 1.5 for a normal distribution.53

−3 −2 −1 0 1 2 3

To find an area under the normal curve using a calculator, first identify a lower bound and an upper bound.
We want all of the area to the left of 1.5, so the lower bound should be -∞. However, the area under the
curve is negligible when Z is smaller than -5, so we will use -5 as the lower bound. Using a lower bound of
-5 and an upper bound of 1.5, we get P (Z < 1.5) = 0.933.

51To find the area between Z = −1 and Z = 1, let lower bound be -1 and upper bound be 1. We find that
P (−1 < Z < 1) = 0.6827. Similarly, P (−2 < Z < 2) = 0.9545 and P (−3 < Z < 3) = 0.9973.

52Lower bound is -1.5 and upper bound is 1.5. The area under the normal curve between -1.5 and 1.5 = P (−1.5 <
Z < 1.5) = 0.866. Note that is not simply the average of 0.6827 and 0.9545, as the normal curve is not a rectangle.

53normalcdf gives the result without drawing the graph. To draw the graph, do 2nd VARS, DRAW, 1:ShadeNorm.
However, beware of errors caused by other plots that might interfere with this plot.

http://www.openintro.org/redirect.php?go=TI84_NORMAL_CURVE_AREA&referrer=ahss3_pdf
http://www.openintro.org/redirect.php?go=CASIO_NORMAL_CURVE_AREA&referrer=ahss3_pdf
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GUIDED PRACTICE 2.72
Find the area under the normal curve to right of Z = 2. 54

TI-84: FIND A Z-SCORE THAT CORRESPONDS TO A PERCENTILE
Use 2ND VARS, invNorm to find the Z-score that corresponds to a given percentile.

1. Choose 2ND VARS (i.e. DISTR).

2. Choose 3:invNorm.

3. Let Area be the percentile as a decimal (the area to the left of desired Z-score).

4. Leave µ as 0 and σ as 1.

5. Down arrow, choose Paste, and hit ENTER.
TI-83: Do steps 1-2, then enter the percentile as a decimal, e.g. invNorm(.40), then hit ENTER.

CASIO FX-9750GII: FIND A Z-SCORE THAT CORRESPONDS TO A PERCENTILE

1. Navigate to STAT (MENU, then hit 2).

2. Select DIST (F5), then NORM (F1), and then InvN (F3).

3. If needed, set Data to Variable (Var option, which is F2).

4. Decide which tail area to use (Tail), the tail area (Area), and then enter the σ and µ values.

5. Hit EXE.

EXAMPLE 2.73
Use a calculator to find the Z-score that corresponds to the 40th percentile.

Letting area be 0.40, a calculator gives -0.253. This means that Z = −0.253 corresponds to the 40th
percentile, that is, P (Z < −0.253) = 0.40.

GUIDED PRACTICE 2.74
Find the Z-score such that 20 percent of the area is to the right of that Z-score.55

54Now we want to shade to the right. Therefore our lower bound will be 2 and the upper bound will be +5 (or a
number bigger than 5) to get P (Z > 2) = 0.023.

55If 20% of the area is the right, then 80% of the area is to the left. Letting area be 0.80, we get Z = 0.841.

http://www.openintro.org/redirect.php?go=TI84_Z_SCORE_FOR_A_PERCENTILE&referrer=ahss3_pdf
http://www.openintro.org/redirect.php?go=CASIO_Z_SCORE_FOR_A_PERCENTILE&referrer=ahss3_pdf
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Section summary

• A Z-score represents the number of standard deviations a value in a data set is above or below the
mean. To calculate a Z-score use: Z = x−mean

SD
.

• The normal distribution is the most commonly used distribution in Statistics. Many distribution
are approximately normal, but none are exactly normal.

• The empirical rule (68-95-99.7 Rule) comes from the normal distribution. The closer a distribution is
to normal, the better this rule will hold.

• It is often useful to use the standard normal distribution, which has mean 0 and SD 1, to approximate
a discrete histogram. There are two common types of normal approximation problems, and for
each a key step is to find a Z-score.

A: Find the percent or probability of a value greater/less than a given x-value.

1. Verify that the distribution of interest is approximately normal.
2. Calculate the Z-score. Use the provided population mean and SD to standardize the given

x-value.
3. Use a calculator function (e.g. normcdf on a TI) or other technology to find the area

under the normal curve to the right/left of this Z-score; this is the estimate for the per-
cent/probability.

B: Find the x-value that corresponds to a given percentile.

1. Verify that the distribution of interest is approximately normal.
2. Find the Z-score that corresponds to the given percentile (using, for example, invNorm on a

TI).
3. Use the Z-score along with the given mean and SD to solve for the x -value.
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Exercises

2.25 Area under the curve, Part I. What percent of a standard normal distribution N(µ = 0, σ = 1) is
found in each region? Be sure to draw a graph.

(a) Z < −1.35 (b) Z > 1.48 (c) −0.4 < Z < 1.5 (d) |Z| > 2

2.26 Area under the curve, Part II. What percent of a standard normal distribution N(µ = 0, σ = 1) is
found in each region? Be sure to draw a graph.

(a) Z > −1.13 (b) Z < 0.18 (c) Z > 8 (d) |Z| < 0.5

2.27 GRE scores, Part I. Sophia who took the Graduate Record Examination (GRE) scored 160 on
the Verbal Reasoning section and 157 on the Quantitative Reasoning section. The mean score for Verbal
Reasoning section for all test takers was 151 with a standard deviation of 7, and the mean score for the
Quantitative Reasoning was 153 with a standard deviation of 7.67. Suppose that both distributions are
nearly normal.

(a) What is Sophia’s Z-score on the Verbal Reasoning section? On the Quantitative Reasoning section?
Draw a standard normal distribution curve and mark these two Z-scores.

(b) What do these Z-scores tell you?

(c) Relative to others, which section did she do better on?

(d) Find her percentile scores for the two exams.

(e) What percent of the test takers did better than her on the Verbal Reasoning section? On the Quantitative
Reasoning section?

(f) Explain why simply comparing raw scores from the two sections could lead to an incorrect conclusion
as to which section a student did better on.

(g) If the distributions of the scores on these exams are not nearly normal, would your answers to parts (b)
- (e) change? Explain your reasoning.

2.28 Triathlon times, Part I. In triathlons, it is common for racers to be placed into age and gender groups.
Friends Leo and Mary both completed the Hermosa Beach Triathlon, where Leo competed in the Men, Ages
30 - 34 group while Mary competed in the Women, Ages 25 - 29 group. Leo completed the race in 1:22:28
(4948 seconds), while Mary completed the race in 1:31:53 (5513 seconds). Obviously Leo finished faster,
but they are curious about how they did within their respective groups. Can you help them? Here is some
information on the performance of their groups:

• The finishing times of the Men, Ages 30 - 34 group has a mean of 4313 seconds with a standard
deviation of 583 seconds.

• The finishing times of the Women, Ages 25 - 29 group has a mean of 5261 seconds with a standard
deviation of 807 seconds.

• The distributions of finishing times for both groups are approximately Normal.

Remember: a better performance corresponds to a faster finish.

(a) What are the Z-scores for Leo’s and Mary’s finishing times? What do these Z-scores tell you?

(b) Did Leo or Mary rank better in their respective groups? Explain your reasoning.

(c) What percent of the triathletes did Leo finish faster than in his group?

(d) What percent of the triathletes did Mary finish faster than in her group?

(e) If the distributions of finishing times are not nearly normal, would your answers to parts (a) - (d)
change? Explain your reasoning.

2.29 GRE scores, Part II. In Exercise 2.27 we saw two distributions for GRE scores: N(µ = 151, σ = 7)
for the verbal part of the exam and N(µ = 153, σ = 7.67) for the quantitative part. Use this information to
compute each of the following:

(a) The score of a student who scored in the 80th percentile on the Quantitative Reasoning section.

(b) The score of a student who scored worse than 70% of the test takers in the Verbal Reasoning section.
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2.30 Triathlon times, Part II. In Exercise 2.28 we saw two distributions for triathlon times: N(µ = 4313, σ =
583) for Men, Ages 30 - 34 and N(µ = 5261, σ = 807) for the Women, Ages 25 - 29 group. Times are listed
in seconds. Use this information to compute each of the following:

(a) The cutoff time for the fastest 5% of athletes in the men’s group, i.e. those who took the shortest 5%
of time to finish.

(b) The cutoff time for the slowest 10% of athletes in the women’s group.

2.31 LA weather, Part I. The average daily high temperature in June in LA is 77◦F with a standard
deviation of 5◦F. Suppose that the temperatures in June closely follow a normal distribution.

(a) What is the probability of observing an 83◦F temperature or higher in LA during a randomly chosen
day in June?

(b) How cool are the coldest 10% of the days (days with lowest high temperature) during June in LA?

2.32 CAPM. The Capital Asset Pricing Model (CAPM) is a financial model that assumes returns on a
portfolio are normally distributed. Suppose a portfolio has an average annual return of 14.7% (i.e. an
average gain of 14.7%) with a standard deviation of 33%. A return of 0% means the value of the portfolio
doesn’t change, a negative return means that the portfolio loses money, and a positive return means that
the portfolio gains money.

(a) What percent of years does this portfolio lose money, i.e. have a return less than 0%?

(b) What is the cutoff for the highest 15% of annual returns with this portfolio?

2.33 LA weather, Part II. Exercise 2.31 states that average daily high temperature in June in LA is 77◦F
with a standard deviation of 5◦F, and it can be assumed that they to follow a normal distribution. We use
the following equation to convert ◦F (Fahrenheit) to ◦C (Celsius):

C = (F − 32)× 5

9
.

(a) What is the probability of observing a 28◦C (which roughly corresponds to 83◦F) temperature or higher
in June in LA? Calculate using the ◦C model from part (a).

(b) Did you get the same answer or different answers in part (b) of this question and part (a) of Exercise 2.31?
Are you surprised? Explain.

(c) Estimate the IQR of the temperatures (in ◦C) in June in LA.

2.34 Find the SD. Cholesterol levels for women aged 20 to 34 follow an approximately normal distribution
with mean 185 milligrams per deciliter (mg/dl). Women with cholesterol levels above 220 mg/dl are con-
sidered to have high cholesterol and about 18.5% of women fall into this category. What is the standard
deviation of the distribution of cholesterol levels for women aged 20 to 34?

2.35 Scores on stats final, Part I. Below are final exam scores of 20 Introductory Statistics students.

1

57,
2

66,
3

69,
4

71,
5

72,
6

73,
7

74,
8

77,
9

78,
10

78,
11

79,
12

79,
13

81,
14

81,
15

82,
16

83,
17

83,
18

88,
19

89,
20

94

The mean score is 77.7 points. with a standard deviation of 8.44 points. Use this information to determine
if the scores approximately follow the 68-95-99.7% Rule.

2.36 Heights of female college students, Part I. Below are heights of 25 female college students.

1

54,
2

55,
3

56,
4

56,
5

57,
6

58,
7

58,
8

59,
9

60,
10

60,
11

60,
12

61,
13

61,
14

62,
15

62,
16

63,
17

63,
18

63,
19

64,
20

65,
21

65,
22

67,
23

67,
24

69,
25

73

The mean height is 61.52 inches with a standard deviation of 4.58 inches. Use this information to determine
if the heights approximately follow the 68-95-99.7% Rule.

http://www.openintro.org/redirect.php?go=ahss_eoce_sol-la_weather_intro&referrer=ahss3_pdf
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2.4 Considering categorical data

How do we visualize and summarize categorical data? In this section, we will introduce tables and other

basic tools for categorical data that are used throughout this book and will answer the following questions:

• Based on the loan50 data, is there an assocation between the categorical variables of homeownership

and application type (individual, joint)?

• Using the email50 data, does email type provide any useful value in classifying email as spam or not

spam?

Learning objectives

1. Use a one-way table and a bar chart to summarize a categorical variable. Use counts (frequency) or

proportions (relative frequency).

2. Compare distributions of a categorical variable using a two-way table and a side-by-side bar chart,

segmented bar chart, or mosaic plot.

3. Calculate marginal and joint frequencies for two-way tables.

2.4.1 Contingency tables and bar charts

Figure 2.34 summarizes two variables: app type and homeownership. A table that summarizes data
for two categorical variables in this way is called a contingency table. Each value in the table represents
the number of times a particular combination of variable outcomes occurred. For example, the value 3496
corresponds to the number of loans in the data set where the borrower rents their home and the application
type was by an individual. Row and column totals are also included. The row totals provide the total
counts across each row (e.g. 3496 + 3839 + 1170 = 8505), and column totals are total counts down
each column. We can also create a table that shows only the overall percentages or proportions for each
combination of categories, or we can create a table for a single variable, such as the one shown in Figure 2.35
for the homeownership variable.

homeownership

rent mortgage own Total
individual 3496 3839 1170 8505

app type
joint 362 950 183 1495
Total 3858 4789 1353 10000

Figure 2.34: A contingency table for app type and homeownership.

homeownership Count
rent 3858
mortgage 4789
own 1353
Total 10000

Figure 2.35: A table summarizing the frequencies of each value for the
homeownership variable.

A bar chart (also called bar plot or bar graph) is a common way to display a single categorical
variable. The left panel of Figure 2.36 shows a bar chart for the homeownership variable. In the right panel,
the counts are converted into proportions, showing the proportion of observations that are in each level (e.g.
3858/10000 = 0.3858 for rent).
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Figure 2.36: Two bar charts of number. The left panel shows the counts, and the
right panel shows the proportions in each group.

2.4.2 Row and column proportions

Sometimes it is useful to understand the fractional breakdown of one variable in another, and we
can modify our contingency table to provide such a view. Figure 2.37 shows the row proportions for
Figure 2.34, which are computed as the counts divided by their row totals. The value 3496 at the intersection
of individual and rent is replaced by 3496/8505 = 0.411, i.e. 3496 divided by its row total, 8505. So what
does 0.411 represent? It corresponds to the proportion of individual applicants who rent.

rent mortgage own Total
individual 0.411 0.451 0.138 1.000
joint 0.242 0.635 0.122 1.000
Total 0.386 0.479 0.135 1.000

Figure 2.37: A contingency table with row proportions for the app type and
homeownership variables. The row total is off by 0.001 for the joint row due
to a rounding error.

A contingency table of the column proportions is computed in a similar way, where each column
proportion is computed as the count divided by the corresponding column total. Figure 2.38 shows such a
table, and here the value 0.906 indicates that 90.6% of renters applied as individuals for the loan. This rate
is higher compared to loans from people with mortgages (80.2%) or who own their home (85.1%). Because
these rates vary between the three levels of homeownership (rent, mortgage, own), this provides evidence
that the app type and homeownership variables are associated.

rent mortgage own Total
individual 0.906 0.802 0.865 0.851
joint 0.094 0.198 0.135 0.150
Total 1.000 1.000 1.000 1.000

Figure 2.38: A contingency table with column proportions for the app type and
homeownership variables. The total for the last column is off by 0.001 due to a
rounding error.

We could also have checked for an association between app type and homeownership in Figure 2.37
using row proportions. When comparing these row proportions, we would look down columns to see if the
fraction of loans where the borrower rents, has a mortgage, or owns varied across the individual to joint

application types.
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GUIDED PRACTICE 2.75
(a) What does 0.451 represent in Figure 2.37?
(b) What does 0.802 represent in Figure 2.38?56

GUIDED PRACTICE 2.76
(a) What does 0.122 at the intersection of joint and own represent in Figure 2.37?
(b) What does 0.135 represent in the Figure 2.38?57

EXAMPLE 2.77
Data scientists use statistics to filter spam from incoming email messages. By noting specific characteristics
of an email, a data scientist may be able to classify some emails as spam or not spam with high accuracy.
One such characteristic is whether the email contains no numbers, small numbers, or big numbers. Another
characteristic is the email format, which indicates whether or not an email has any HTML content, such
as bolded text. We’ll focus on email format and spam status using the email data set, and these variables
are summarized in a contingency table in Figure 2.39. Which would be more helpful to someone hoping to
classify email as spam or regular email for this table: row or column proportions?

A data scientist would be interested in how the proportion of spam changes within each email format. This
corresponds to column proportions: the proportion of spam in plain text emails and the proportion of spam
in HTML emails.

If we generate the column proportions, we can see that a higher fraction of plain text emails are spam
(209/1195 = 17.5%) than compared to HTML emails (158/2726 = 5.8%). This information on its own is
insufficient to classify an email as spam or not spam, as over 80% of plain text emails are not spam. Yet,
when we carefully combine this information with many other characteristics, we stand a reasonable chance
of being able to classify some emails as spam or not spam with confidence.

text HTML Total
spam 209 158 367
not spam 986 2568 3554
Total 1195 2726 3921

Figure 2.39: A contingency table for spam and format.

Example 2.77 points out that row and column proportions are not equivalent. Before settling on one
form for a table, it is important to consider each to ensure that the most useful table is constructed. However,
sometimes it simply isn’t clear which, if either, is more useful.

EXAMPLE 2.78
Look back to Tables 2.37 and 2.38. Are there any obvious scenarios where one might be more useful than
the other?

None that we thought were obvious! What is distinct about app type and homeownership vs the email
example is that these two variables don’t have a clear explanatory-response variable relationship that we
might hypothesize (see Section 1.3.3 for these terms). Usually it is most useful to “condition” on the
explanatory variable. For instance, in the email example, the email format was seen as a possible explanatory
variable of whether the message was spam, so we would find it more interesting to compute the relative
frequencies (proportions) for each email format.

56(a) 0.451 represents the proportion of individual applicants who have a mortgage. (b) 0.802 represents the
fraction of applicants with mortgages who applied as individuals.

57(a) 0.122 represents the fraction of joint borrowers who own their home. (b) 0.135 represents the home-owning
borrowers who had a joint application for the loan.
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2.4.3 Using a bar chart with two variables

Contingency tables using row or column proportions are especially useful for examining how two cat-
egorical variables are related. Segmented bar charts provide a way to visualize the information in these
tables.

A segmented bar chart, or stacked bar chart, is a graphical display of contingency table information.
For example, a segmented bar chart representing Figure 2.38 is shown in Figure 2.40(a), where we have first
created a bar chart using the homeownership variable and then divided each group by the levels of app type.

One related visualization to the segmented bar chart is the side-by-side bar chart, where an example
is shown in Figure 2.40(b).

For the last type of bar chart we introduce, the column proportions for the app type and homeownership

contingency table have been translated into a standardized segmented bar chart in Figure 2.40(c). This type
of visualization is helpful in understanding the fraction of individual or joint loan applications for borrowers
in each level of homeownership. Additionally, since the proportions of joint and individual vary across
the groups, we can conclude that the two variables are associated.
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Figure 2.40: (a) segmented bar chart for homeownership, where the counts
have been further broken down by app type. (b) Side-by-side bar chart for
homeownership and app type. (c) Standardized version of the segmented
bar chart. (d) Standardized side-by-side bar chart. See these bar charts on Tableau
Public .

http://www.openintro.org/redirect.php?go=tableau-bargraphs2V&referrer=ahss3_pdf
http://www.openintro.org/redirect.php?go=tableau-bargraphs2V&referrer=ahss3_pdf
http://www.openintro.org/redirect.php?go=tableau-bargraphs2V&referrer=ahss3_pdf
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EXAMPLE 2.79
Examine the four bar charts in Figure 2.40. When is the segmented, side-by-side, standardized segmented
bar chart, or standardized side-by-side the most useful?

The segmented bar chart is most useful when it’s reasonable to assign one variable as the explanatory
variable and the other variable as the response, since we are effectively grouping by one variable first and
then breaking it down by the others.

Side-by-side bar charts are more agnostic in their display about which variable, if any, represents the ex-
planatory and which the response variable. It is also easy to discern the number of cases in of the six
different group combinations. However, one downside is that it tends to require more horizontal space; the
narrowness of Figure 2.40(b) makes the plot feel a bit cramped. Additionally, when two groups are of very
different sizes, as we see in the own group relative to either of the other two groups, it is difficult to discern
if there is an association between the variables.

The standardized segmented bar chart is helpful if the primary variable in the segmented bar chart is
relatively imbalanced, e.g. the own category has only a third of the observations in the mortgage category,
making the simple segmented bar chart less useful for checking for an association. The major downside of
the standardized version is that we lose all sense of how many cases each of the bars represents.

The last plot is a standardized side-by-side bar chart. It shows the joint and individual groups as proportions
within each level of homeownership, and it offers similar benefits and tradeoffs to the standardized version
of the stacked bar plot.

2.4.4 Mosaic plots

A mosaic plot is a visualization technique suitable for contingency tables that resembles a standardized
segmented bar chart with the benefit that we still see the relative group sizes of the primary variable as well.

To get started in creating our first mosaic plot, we’ll break a square into columns for each category
of the homeownership variable, with the result shown in Figure 2.41(a). Each column represents a level of
homeownership, and the column widths correspond to the proportion of loans in each of those categories.
For instance, there are fewer loans where the borrower is an owner than where the borrower has a mortgage.
In general, mosaic plots use box areas to represent the number of cases in each category.

rent mortgage own

(a)

rent mortgage own

joint

indiv.

(b)

Figure 2.41: (a) The one-variable mosaic plot for homeownership. (b) Two-variable
mosaic plot for both homeownership and app type.

To create a completed mosaic plot, the single-variable mosaic plot is further divided into pieces in
Figure 2.41(b) using the app type variable. Each column is split proportional to the number of loans from
individual and joint borrowers. For example, the second column represents loans where the borrower has a
mortgage, and it was divided into individual loans (upper) and joint loans (lower). As another example, the
bottom segment of the third column represents loans where the borrower owns their home and applied jointly,
while the upper segment of this column represents borrowers who are homeowners and filed individually.
We can again use this plot to see that the homeownership and app type variables are associated, since
some columns are divided in different vertical locations than others, which was the same technique used for
checking an association in the standardized segmented bar chart.
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In Figure 2.42, we chose to first split by the homeowner status of the borrower. However, we could
have instead first split by the application type, as in Figure 2.42. Like with the bar charts, it’s common
to use the explanatory variable to represent the first split in a mosaic plot, and then for the response to
break up each level of the explanatory variable, if these labels are reasonable to attach to the variables under
consideration.

indiv. joint

rent

mortgage

own

Figure 2.42: Mosaic plot where loans are grouped by the homeownership variable
after they’ve been divided into the individual and joint application types.

2.4.5 The only pie chart you will see in this book

A pie chart is shown in Figure 2.43 alongside a bar chart representing the same information. Pie
charts can be useful for giving a high-level overview to show how a set of cases break down. However, it is
also difficult to decipher details in a pie chart. For example, it takes a couple seconds longer to recognize
that there are more loans where the borrower has a mortgage than rent when looking at the pie chart, while
this detail is very obvious in the bar chart. While pie charts can be useful, we prefer bar charts for their
ease in comparing groups.
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Figure 2.43: A pie chart and bar chart of homeownership. Compare multiple ways
of summarizing a single categorical variable on Tableau Public .

http://www.openintro.org/redirect.php?go=tableau-bargraphs1V&referrer=ahss3_pdf
http://www.openintro.org/redirect.php?go=tableau-bargraphs1V&referrer=ahss3_pdf
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Section summary

• Categorical variables, unlike numerical variables, are simply summarized by counts (how many)
and proportions. These are referred to as frequency and relative frequency, respectively.

• When summarizing one categorical variable, a one-way frequency table is useful. For summarizing
two categorical variables and their relationship, use a two-way frequency table (also known as a
contingency table).

• To graphically summarize a single categorical variable, use a bar chart. To summarize and compare
two categorical variables, use a side-by-side bar chart, a segmented bar chart, or a mosaic
plot.

• Pie charts are another option for summarizing categorical data, but they are more difficult to read
and bar charts are generally a better option.
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Exercises

2.37 Antibiotic use in children. The bar plot and the pie chart below show the distribution of pre-existing
medical conditions of children involved in a study on the optimal duration of antibiotic use in treatment of
tracheitis, which is an upper respiratory infection.
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(a) What features are apparent in the bar plot but not in the pie chart?

(b) What features are apparent in the pie chart but not in the bar plot?

(c) Which graph would you prefer to use for displaying these categorical data?

2.38 Views on immigration. 910 randomly sampled registered voters from Tampa, FL were asked if
they thought undocumented workers in the US should be (i) allowed to keep their jobs and apply for US
citizenship, (ii) allowed to keep their jobs as temporary guest workers but not allowed to apply for US
citizenship, or (iii) lose their jobs and have to leave the country. The results of the survey by political
ideology are shown below.58

Political ideology
Conservative Moderate Liberal Total

(i) Apply for citizenship 57 120 101 278
(ii) Guest worker 121 113 28 262

Response
(iii) Leave the country 179 126 45 350
(iv) Not sure 15 4 1 20
Total 372 363 175 910

(a) What percent of these Tampa, FL voters identify themselves as conservatives?

(b) What percent of these Tampa, FL voters are in favor of the citizenship option?

(c) What percent of these Tampa, FL voters identify themselves as conservatives and are in favor of the
citizenship option?

(d) What percent of these Tampa, FL voters who identify themselves as conservatives are also in favor of
the citizenship option? What percent of moderates share this view? What percent of liberals share this
view?

(e) Do political ideology and views on immigration appear to be independent? Explain your reasoning.

58SurveyUSA, News Poll #18927, data collected Jan 27-29, 2012.

http://www.openintro.org/redirect.php?go=textbook-SurveyUSA_18927&referrer=ahss3_pdf
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2.39 Views on the DREAM Act. A random sample of registered voters from Tampa, FL were asked
if they support the DREAM Act, a proposed law which would provide a path to citizenship for people
brought illegally to the US as children. The survey also collected information on the political ideology of the
respondents. Based on the mosaic plot shown below, do views on the DREAM Act and political ideology
appear to be independent? Explain your reasoning.59

Conservative Moderate Liberal

Support

Not support

Not sure

2.40 Raise taxes. A random sample of registered voters nationally were asked whether they think it’s
better to raise taxes on the rich or raise taxes on the poor. The survey also collected information on the
political party affiliation of the respondents. Based on the mosaic plot shown below, do views on raising
taxes and political affiliation appear to be independent? Explain your reasoning.60

Democrat Republican Indep / Other

Raise taxes on the rich

Raise taxes on the poor
Not sure

59SurveyUSA, News Poll #18927, data collected Jan 27-29, 2012.
60Public Policy Polling, Americans on College Degrees, Classic Literature, the Seasons, and More, data collected

Feb 20-22, 2015.

http://www.openintro.org/redirect.php?go=textbook-SurveyUSA_18927&referrer=ahss3_pdf
http://www.openintro.org/redirect.php?go=textbook-PPP_30215&referrer=ahss3_pdf
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2.5 Case study: malaria vaccine (special topic)

How large does an observed difference need to be for it to provide convincing evidence that something

real is going on, something beyond random variation? Answering this question requires the tools that we

will encounter in the later chapters on probability and inference. However, this is such an interesting and

important question, and we’ll also address it here using simulation. This section can be covered now or in

tandem with Chapter 5: Foundations for Inference.

Learning objectives

1. Recognize that an observed difference in sample statistics may be due to random chance and that

we use hypothesis testing to determine if this difference statistically significant (i.e. too large to be

attributed to random chance).

2. Set up competing hypotheses and use the results of a simulation to evaluate the degree of support the

data provide against the null hypothesis and for the alternative hypothesis.

2.5.1 Variability within data

EXAMPLE 2.80
Suppose your professor splits the students in class into two groups: students on the left and students on the
right. If p̂L and p̂R represent the proportion of students who own an Apple product on the left and right,
respectively, would you be surprised if p̂L did not exactly equal p̂R?

While the proportions would probably be close to each other, it would be unusual for them to be exactly
the same. We would probably observe a small difference due to chance.

GUIDED PRACTICE 2.81
If we don’t think the side of the room a person sits on in class is related to whether the person owns an
Apple product, what assumption are we making about the relationship between these two variables?61

We consider a study on a new malaria vaccine called PfSPZ. In this study, volunteer patients were
randomized into one of two experiment groups: 14 patients received an experimental vaccine or 6 patients
received a placebo vaccine. Nineteen weeks later, all 20 patients were exposed to a drug-sensitive malaria
parasite strain; the motivation of using a drug-sensitive strain of parasite here is for ethical considerations,
allowing any infections to be treated effectively. The results are summarized in Figure 2.44, where 9 of the
14 treatment patients remained free of signs of infection while all of the 6 patients in the control group
patients showed some baseline signs of infection.

61We would be assuming that these two variables are independent.
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outcome

infection no infection Total
vaccine 5 9 14

treatment
placebo 6 0 6
Total 11 9 20

Figure 2.44: Summary results for the malaria vaccine experiment.

GUIDED PRACTICE 2.82
Is this an observational study or an experiment? What implications does the study type have on what can
be inferred from the results?62

In this study, a smaller proportion of patients who received the vaccine showed signs of an infection
(35.7% versus 100%). However, the sample is very small, and it is unclear whether the difference provides
convincing evidence that the vaccine is effective.

EXAMPLE 2.83
Data scientists are sometimes called upon to evaluate the strength of evidence. When looking at the rates
of infection for patients in the two groups in this study, what comes to mind as we try to determine whether
the data show convincing evidence of a real difference?

The observed infection rates (35.7% for the treatment group versus 100% for the control group) suggest the
vaccine may be effective. However, we cannot be sure if the observed difference represents the vaccine’s
efficacy or is just from random chance. Generally there is a little bit of fluctuation in sample data, and we
wouldn’t expect the sample proportions to be exactly equal, even if the truth was that the infection rates
were independent of getting the vaccine. Additionally, with such small samples, perhaps it’s common to
observe such large differences when we randomly split a group due to chance alone!

Example 2.83 is a reminder that the observed outcomes in the data sample may not perfectly reflect
the true relationships between variables since there is random noise. While the observed difference in
rates of infection is large, the sample size for the study is small, making it unclear if this observed difference
represents efficacy of the vaccine or whether it is simply due to chance. We label these two competing claims,
H0 and HA, which are spoken as “H-nought” and “H-A”:

H0: Independence model. The variables treatment and outcome are independent. They have no
relationship, and the observed difference between the proportion of patients who developed an infection
in the two groups, 64.3%, was due to chance.

HA: Alternative model. The variables are not independent. The difference in infection rates of 64.3%
was not due to chance, and vaccine affected the rate of infection.

What would it mean if the independence model, which says the vaccine had no influence on the rate
of infection, is true? It would mean 11 patients were going to develop an infection no matter which group
they were randomized into, and 9 patients would not develop an infection no matter which group they were
randomized into. That is, if the vaccine did not affect the rate of infection, the difference in the infection
rates was due to chance alone in how the patients were randomized.

Now consider the alternative model: infection rates were influenced by whether a patient received the
vaccine or not. If this was true, and especially if this influence was substantial, we would expect to see some
difference in the infection rates of patients in the groups.

We choose between these two competing claims by assessing if the data conflict so much with H0 that
the independence model cannot be deemed reasonable. If this is the case, and the data support HA, then
we will reject the notion of independence and conclude there was discrimination.

62The study is an experiment, as patients were randomly assigned an experiment group. Since this is an experiment,
the results can be used to evaluate a causal relationship between the malaria vaccine and whether patients showed
signs of an infection.
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2.5.2 Simulating the study

We’re going to implement simulations, where we will pretend we know that the malaria vaccine being
tested does not work. Ultimately, we want to understand if the large difference we observed is common in
these simulations. If it is common, then maybe the difference we observed was purely due to chance. If it is
very uncommon, then the possibility that the vaccine was helpful seems more plausible.

Figure 2.44 shows that 11 patients developed infections and 9 did not. For our simulation, we will
suppose the infections were independent of the vaccine and we were able to rewind back to when the
researchers randomized the patients in the study. If we happened to randomize the patients differently, we
may get a different result in this hypothetical world where the vaccine doesn’t influence the infection. Let’s
complete another randomization using a simulation.

In this simulation, we take 20 notecards to represent the 20 patients, where we write down “infection”
on 11 cards and “no infection” on 9 cards. In this hypothetical world, we believe each patient that got an
infection was going to get it regardless of which group they were in, so let’s see what happens if we randomly
assign the patients to the treatment and control groups again. We thoroughly shuffle the notecards and
deal 14 into a vaccine pile and 6 into a placebo pile. Finally, we tabulate the results, which are shown in
Figure 2.45.

outcome

infection no infection Total
treatment vaccine 7 7 14
(simulated) placebo 4 2 6

Total 11 9 20

Figure 2.45: Simulation results, where any difference in infection rates is purely
due to chance.

GUIDED PRACTICE 2.84
What is the difference in infection rates between the two simulated groups in Figure 2.45? How does this
compare to the observed 64.3% difference in the actual data?63

2.5.3 Checking for independence

We computed one possible difference under the independence model in Guided Practice 2.84, which
represents one difference due to chance. While in this first simulation, we physically dealt out notecards
to represent the patients, it is more efficient to perform this simulation using a computer. Repeating the
simulation on a computer, we get another difference due to chance:

2

6
− 9

14
= −0.310

And another:

3

6
− 8

14
= −0.071

And so on until we repeat the simulation enough times that we have a good idea of what represents the
distribution of differences from chance alone. Figure 2.46 shows a stacked plot of the differences found from
100 simulations, where each dot represents a simulated difference between the infection rates (control rate
minus treatment rate).

Note that the distribution of these simulated differences is centered around 0. We simulated these
differences assuming that the independence model was true, and under this condition, we expect the difference
to be near zero with some random fluctuation, where near is pretty generous in this case since the sample
sizes are so small in this study.

634/6 − 7/14 = 0.167 or about 16.7% in favor of the vaccine. This difference due to chance is much smaller than
the difference observed in the actual groups.
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Figure 2.46: A stacked dot plot of differences from 100 simulations produced under
the independence model, H0, where in these simulations infections are unaffected
by the vaccine. Two of the 100 simulations had a difference of at least 64.3%, the
difference observed in the study.

EXAMPLE 2.85
Given the results of the simulation shown in Figure 2.46, about how often would you expect to observe a
result as large as 64.3% if H0 were true?

Because a result this large happened 2 times out the 100 simulations, we would expect such a large value
only 2% of the time if H0 were true.

There are two possible interpretations of the results of the study:

H0 Independence model. The vaccine has no effect on infection rate, and we just happened to observe
a rare event.

HA Alternative model. The vaccine has an effect on infection rate, and the difference we observed was
actually due to the vaccine being effective at combatting malaria, which explains the large difference
of 64.3%.

Based on the simulations, we have two options. (1) We conclude that the study results do not provide strong
enough evidence against the independence model, meaning we do not conclude that the vaccine had an effect
in this clinical setting. (2) We conclude the evidence is sufficiently strong to reject H0, and we assert that
the vaccine was useful.

Is 2% small enough to make us reject the independence model? That depends on how much evidence
we require. The smaller that probability is, the more evidence it provides against H0. Later, we will see
that researchers often use a cutoff of 5%, though it can depend upon the situation. Using the 5% cutoff, we
would reject the independence model in favor of the alternative. That is, we are concluding the data provide
strong evidence that the vaccine provides some protection against malaria in this clinical setting.

When there is strong enough evidence that the result points to a real difference and is not simply due
to random variation, we call the result statistically significant.

One field of statistics, statistical inference, is built on evaluating whether such differences are due to
chance. In statistical inference, data scientists evaluate which model is most reasonable given the data.
Errors do occur, just like rare events, and we might choose the wrong model. While we do not always
choose correctly, statistical inference gives us tools to control and evaluate how often these errors occur. In
Chapter 5, we give a formal introduction to the problem of model selection. We spend the next two chapters
building a foundation of probability and theory necessary to make that discussion rigorous.
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Exercises

2.41 Side effects of Avandia. Rosiglitazone is the active ingredient in the controversial type 2 diabetes
medicine Avandia and has been linked to an increased risk of serious cardiovascular problems such as stroke,
heart failure, and death. A common alternative treatment is pioglitazone, the active ingredient in a diabetes
medicine called Actos. In a nationwide retrospective observational study of 227,571 Medicare beneficiaries
aged 65 years or older, it was found that 2,593 of the 67,593 patients using rosiglitazone and 5,386 of
the 159,978 using pioglitazone had serious cardiovascular problems. These data are summarized in the
contingency table below.64

Cardiovascular problems
Yes No Total

Treatment
Rosiglitazone 2,593 65,000 67,593
Pioglitazone 5,386 154,592 159,978
Total 7,979 219,592 227,571

(a) Determine if each of the following statements is true or false. If false, explain why. Be careful: The
reasoning may be wrong even if the statement’s conclusion is correct. In such cases, the statement
should be considered false.

i. Since more patients on pioglitazone had cardiovascular problems (5,386 vs. 2,593), we can conclude
that the rate of cardiovascular problems for those on a pioglitazone treatment is higher.

ii. The data suggest that diabetic patients who are taking rosiglitazone are more likely to have cardio-
vascular problems since the rate of incidence was (2,593 / 67,593 = 0.038) 3.8% for patients on this
treatment, while it was only (5,386 / 159,978 = 0.034) 3.4% for patients on pioglitazone.

iii. The fact that the rate of incidence is higher for the rosiglitazone group proves that rosiglitazone
causes serious cardiovascular problems.

iv. Based on the information provided so far, we cannot tell if the difference between the rates of
incidences is due to a relationship between the two variables or due to chance.

(b) What proportion of all patients had cardiovascular problems?

(c) If the type of treatment and having cardiovascular problems were independent, about how many patients
in the rosiglitazone group would we expect to have had cardiovascular problems?

(d) We can investigate the relationship between outcome and treatment in this study using a randomization
technique. While in reality we would carry out the simulations required for randomization using statisti-
cal software, suppose we actually simulate using index cards. In order to simulate from the independence
model, which states that the outcomes were independent of the treatment, we write whether or not each
patient had a cardiovascular problem on cards, shuffled all the cards together, then deal them into two
groups of size 67,593 and 159,978. We repeat this simulation 1,000 times and each time record the num-
ber of people in the rosiglitazone group who had cardiovascular problems. Use the relative frequency
histogram of these counts to answer (i)-(iii).

i. What are the claims being tested?

ii. Compared to the number calculated in part (c),
which would provide more support for the alterna-
tive hypothesis, more or fewer patients with car-
diovascular problems in the rosiglitazone group?

iii. What do the simulation results suggest about the
relationship between taking rosiglitazone and hav-
ing cardiovascular problems in diabetic patients?

Simulated rosiglitazone cardiovascular events
2250 2350 2450

0

0.1

0.2

64D.J. Graham et al. “Risk of acute myocardial infarction, stroke, heart failure, and death in elderly Medicare
patients treated with rosiglitazone or pioglitazone”. In: JAMA 304.4 (2010), p. 411. issn: 0098-7484.
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2.42 Heart transplants. The Stanford University Heart Transplant Study was conducted to determine
whether an experimental heart transplant program increased lifespan. Each patient entering the program
was designated an official heart transplant candidate, meaning that he was gravely ill and would most likely
benefit from a new heart. Some patients got a transplant and some did not. The variable transplant

indicates which group the patients were in; patients in the treatment group got a transplant and those in the
control group did not. Of the 34 patients in the control group, 30 died. Of the 69 people in the treatment
group, 45 died. Another variable called survived was used to indicate whether or not the patient was alive
at the end of the study.65
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(a) Based on the mosaic plot, is survival independent of whether or not the patient got a transplant? Explain
your reasoning.

(b) What do the box plots below suggest about the efficacy (effectiveness) of the heart transplant treatment.

(c) What proportion of patients in the treatment group and what proportion of patients in the control group
died?

(d) One approach for investigating whether or not the treatment is effective is to use a randomization
technique.

i. What are the claims being tested?

ii. The paragraph below describes the set up for such approach, if we were to do it without using
statistical software. Fill in the blanks with a number or phrase, whichever is appropriate.

We write alive on cards representing patients who were alive at the end of
the study, and dead on cards representing patients who were not. Then,
we shuffle these cards and split them into two groups: one group of size
representing treatment, and another group of size representing control. We
calculate the difference between the proportion of dead cards in the treatment and control
groups (treatment - control) and record this value. We repeat this 100 times to build a
distribution centered at . Lastly, we calculate the fraction of simulations
where the simulated differences in proportions are . If this fraction is low,
we conclude that it is unlikely to have observed such an outcome by chance and that the
null hypothesis should be rejected in favor of the alternative.

iii. What do the simulation results shown below suggest about the effectiveness of the transplant pro-
gram?

simulated differences in proportions
−0.25 −0.15 −0.05 0.05 0.15 0.25
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65B. Turnbull et al. “Survivorship of Heart Transplant Data”. In: Journal of the American Statistical Association
69 (1974), pp. 74–80.

http://www.openintro.org/redirect.php?go=textbook-heart_transplant_1974&referrer=ahss3_pdf
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Chapter highlights

A raw data matrix/table may have thousands of rows. The data need to be summarized in order to makes
sense of all the information. In this chapter, we looked at ways to summarize data graphically, numeri-
cally, and verbally.

Categorical data

• A single categorical variable is summarized with counts or proportionsproportion in a one-way
table. A bar chart is used to show the frequency or relative frequency of the categories that the
variable takes on.

• Two categorical variables can be summarized in a two-way table and with a side-by-side bar chart
or a segmented bar chart.

Numerical data

• When looking at a single numerical variable, we try to understand the distribution of the variable.
The distribution of a variable can be represented with a frequency table and with a graph, such as a
stem-and-leaf plot or dot plot for small data sets, or a histogram for larger data sets. If only a
summary is desired, a box plot may be used.

• The distribution of a variable can be described and summarized with center (mean or median),
spread (SD or IQR), and shape (right skewed, left skewed, approximately symmetric).

• Z-scores and percentiles are useful for identifying a data point’s relative position within a data set.

• When a distribution is nearly normal, we can use the empirical rule (68-95-99.7 rule), and we can
use a normal model to approximate the histogram.

• Outliers are values that appear extreme relative to the rest of the data. Investigating outliers can
provide insight into properties of the data or may reveal data collection/entry errors.

• When comparing the distribution of two variables, use two dot plots, two histograms, a back-to-
back stem-and-leaf, or parallel box plots.

• To look at the association between two numerical variables, use a scatterplot.

Graphs and numbers can summarize data, but they alone are insufficient. It is the role of the researcher or
data scientist to ask questions, to use these tools to identify patterns and departure from patterns, and to
make sense of this in the context of the data. Strong writing skills are critical for being able to communicate
the results to a wider audience.
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Chapter exercises

2.43 Make-up exam. In a class of 25 students, 24 of them took an exam in class and 1 student took
a make-up exam the following day. The professor graded the first batch of 24 exams and found an average
score of 74 points with a standard deviation of 8.9 points. The student who took the make-up the following
day scored 64 points on the exam.

(a) Does the new student’s score increase or decrease the average score?

(b) What is the new average?

(c) Does the new student’s score increase or decrease the standard deviation of the scores?

2.44 Infant mortality. The infant mortality rate is defined as the number of infant deaths per 1,000 live
births. This rate is often used as an indicator of the level of health in a country. The relative frequency
histogram below shows the distribution of estimated infant death rates for 224 countries for which such data
were available in 2014.66

(a) Estimate Q1, the median, and Q3 from the
histogram.

(b) Would you expect the mean of this data set
to be smaller or larger than the median?
Explain your reasoning.
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2.45 TV watchers. Students in an AP Statistics class were asked how many hours of television they
watch per week (including online streaming). This sample yielded an average of 4.71 hours, with a standard
deviation of 4.18 hours. Is the distribution of number of hours students watch television weekly symmetric?
If not, what shape would you expect this distribution to have? Explain your reasoning.

2.46 A new statistic. The statistic x̄
median

can be used as a measure of skewness. Suppose we have a
distribution where all observations are greater than 0, xi > 0. What is the expected shape of the distribution
under the following conditions? Explain your reasoning.

(a) x̄
median

= 1

(b) x̄
median

< 1

(c) x̄
median

> 1

2.47 Oscar winners. The first Oscar awards for best actor and best actress were given out in 1929. The
histograms below show the age distribution for all of the best actor and best actress winners from 1929 to
2018. Summary statistics for these distributions are also provided. Compare the distributions of ages of
best actor and actress winners.67

Best actor
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Age (in years)

Best Actress

Mean 36.2
SD 11.9
n 92

Best Actor

Mean 43.8
SD 8.83
n 92

66CIA Factbook, Country Comparisons, 2014.
67Oscar winners from 1929 – 2012, data up to 2009 from the Journal of Statistics Education data archive and more

current data from wikipedia.org.

http://www.openintro.org/redirect.php?go=ahss_eoce_sol-makeup_exam&referrer=ahss3_pdf
http://www.openintro.org/redirect.php?go=tableau-oscar-winner&referrer=ahss3_pdf
http://www.openintro.org/redirect.php?go=tableau-oscar-winner&referrer=ahss3_pdf
http://www.openintro.org/redirect.php?go=textbook-cia_factbook&referrer=ahss3_pdf
http://www.openintro.org/redirect.php?go=textbook-oscar_winners_up_to_2012&referrer=ahss3_pdf
http://www.openintro.org/redirect.php?go=textbook-wikipedia_org&referrer=ahss3_pdf
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2.48 Exam scores. The average on a history exam (scored out of 100 points) was 85, with a standard
deviation of 15. Is the distribution of the scores on this exam symmetric? If not, what shape would you
expect this distribution to have? Explain your reasoning.

2.49 Stats scores. Below are the final exam scores of twenty introductory statistics students.

57, 66, 69, 71, 72, 73, 74, 77, 78, 78, 79, 79, 81, 81, 82, 83, 83, 88, 89, 94

Create a box plot of the distribution of these scores. The five number summary provided below may be
useful.

Min Q1 Q2 (Median) Q3 Max

57 72.5 78.5 82.5 94

2.50 Marathon winners. The histogram and box plots below show the distribution of finishing times for
male and female winners of the New York Marathon between 1970 and 1999.
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(a) What features of the distribution are apparent in the histogram and not the box plot? What features
are apparent in the box plot but not in the histogram?

(b) What may be the reason for the bimodal distribution? Explain.

(c) Compare the distribution of marathon times for men and women based on the box plot shown below.

2.0 2.4 2.8 3.2

Women

Men

(d) The time series plot shown below is another way to look at these data. Describe what is visible in this
plot but not in the others.
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2.51 Birth weight. In a large study of birth weight of newborns, the weights of 23,419 newborn boys were
recorded. The distribution of weights was approximately normal with a mean of 7.44 lbs (3376 grams) and a
standard deviation of 1.33 lbs (603 grams). The government classifies a newborn as having low birth weight
if the weight is less than 5.5 pounds.68

(a) What percent of these newborns had a low birth weight?

(b) Approximately what percent of these babies weighed greater than 10 pounds?

(c) Approximately how many of these newborns weighed greater than 10 pounds?

(d) How much would a newborn have to weigh in order to be at the 90th percentile among this group?

2.52 Auto insurance premiums. Suppose a newspaper article states that the distribution of auto insurance
premiums for residents of California is approximately normal with a mean of $1,650. The article also states
that 25% of California residents pay more than $1,800.

(a) What is the Z-score that corresponds to the top 25% (or the 75th percentile) of the standard normal
distribution?

(b) What is the mean insurance cost? What is the cutoff for the 75th percentile?

(c) Identify the standard deviation of insurance premiums in California.

2.53 Speeding on the I-5, Part I. The distribution of passenger vehicle speeds traveling on the Interstate
5 Freeway (I-5) in California is nearly normal with a mean of 72.6 miles/hour and a standard deviation of
4.78 miles/hour.69

(a) What percent of passenger vehicles travel slower than 80 miles/hour?

(b) What percent of passenger vehicles travel between 60 and 80 miles/hour?

(c) How fast do the fastest 5% of passenger vehicles travel?

(d) The speed limit on this stretch of the I-5 is 70 miles/hour. Approximate what percentage of the passenger
vehicles travel above the speed limit on this stretch of the I-5.

2.54 Heights of 10 year olds, Part I. Heights of 10 year olds, regardless of gender, closely follow a normal
distribution with mean 55 inches and standard deviation 6 inches.

(a) What is the probability that a randomly chosen 10 year old is shorter than 48 inches?

(b) What is the probability that a randomly chosen 10 year old is between 60 and 65 inches?

(c) If the tallest 10% of the class is considered “very tall”, what is the height cutoff for “very tall”?

68www.biomedcentral.com/1471-2393/8/5
69S. Johnson and D. Murray. “Empirical Analysis of Truck and Automobile Speeds on Rural Interstates: Impact

of Posted Speed Limits”. In: Transportation Research Board 89th Annual Meeting. 2010.

http://www.openintro.org/redirect.php?go=textbook-birthweight_for_Scottish_singleton_births&referrer=ahss3_pdf
http://www.openintro.org/redirect.php?go=textbook-rural_auto_speeds_2010&referrer=ahss3_pdf
http://www.openintro.org/redirect.php?go=textbook-rural_auto_speeds_2010&referrer=ahss3_pdf
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Chapter 3
Probability and probability
distributions

3.1 Defining probability

3.2 Conditional probability

3.3 Simulations

3.4 Random variables

3.5 Geometric distribution

3.6 Binomial distribution
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Probability forms a foundation of statistics, and you’re probably already aware of

many of the ideas. However, formalization of the concepts is new for most. This

chapter aims to introduce probability concepts through examples that will be familiar

to most people.

For videos, slides, and other resources, please visit

www.openintro.org/ahss

http://www.openintro.org/redirect.php?go=stat&referrer=ahss3_pdf
http://www.openintro.org/redirect.php?go=ahss&referrer=ahss3_pdf
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3.1 Defining probability

What is the probability of rolling an even number on a die? Of getting 5 heads in row when tossing

a coin? Of drawing a Heart or an Ace from a deck of cards? The study of probability is fun and

interesting in its own right, but it also forms the foundation for statistical models and inferential

procedures, many of which we will investigate in subsequent chapters.

Learning objectives

1. Describe the long-run relative frequency interpretation of probability and understand its rela-

tionship to the “Law of Large Numbers”.

2. Use Venn diagrams to represent events and their probabilities and to visualize the complement,

union, and intersection of events.

3. Use the General Addition Rule to find the probability that at least one of several events occurs.

4. Understand when events are disjoint (mutually exclusive) and how that simplifies the General

Addition Rule.

5. Apply the Multiplication Rule for finding the joint probability of independent events.

3.1.1 Introductory examples

EXAMPLE 3.1

A “die”, the singular of dice, is a cube with six faces numbered 1, 2, 3, 4, 5, and 6. What is the
chance of getting 1 when rolling a die?

If the die is fair, then the chance of a 1 is as good as the chance of any other number. Since there
are six outcomes, the chance must be 1-in-6 or, equivalently, 1/6.

EXAMPLE 3.2

What is the chance of getting a 1 or 2 in the next roll?

1 and 2 constitute two of the six equally likely possible outcomes, so the chance of getting one of
these two outcomes must be 2/6 = 1/3.

EXAMPLE 3.3

What is the chance of getting either 1, 2, 3, 4, 5, or 6 on the next roll?

100%. The outcome must be one of these numbers.

EXAMPLE 3.4

What is the chance of not rolling a 2?

Since the chance of rolling a 2 is 1/6 or 16.6̄%, the chance of not rolling a 2 must be 100%−16.6̄% =
83.3̄% or 5/6.

Alternatively, we could have noticed that not rolling a 2 is the same as getting a 1, 3, 4, 5, or 6,
which makes up five of the six equally likely outcomes and has probability 5/6.
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EXAMPLE 3.5

Consider rolling two dice. If 1/6th of the time the first die is a 1 and 1/6th of those times the second
die is a 1, what is the chance of getting two 1s?

If 16.6̄% of the time the first die is a 1 and 1/6th of those times the second die is also a 1, then the
chance that both dice are 1 is (1/6)× (1/6) or 1/36.

3.1.2 Probability

We use probability to build tools to describe and understand apparent randomness. We often
frame probability in terms of a random process giving rise to an outcome.

Roll a die → 1, 2, 3, 4, 5, or 6
Flip a coin → H or T

Rolling a die or flipping a coin is a seemingly random process and each gives rise to an outcome.

PROBABILITY

The probability of an outcome is the proportion of times the outcome would occur if we
observed the random process an infinite number of times.

Probability is defined as a proportion, and it always takes values between 0 and 1 (inclusively).
It may also be displayed as a percentage between 0% and 100%.

Probability can be illustrated by rolling a die many times. Consider the event “roll a 1”. The
relative frequency of an event is the proportion of times the event occurs out of the number of
trials. Let p̂n be the proportion of outcomes that are 1 after the first n rolls. As the number of rolls
increases, p̂n (the relative frequency of rolls) will converge to the probability of rolling a 1, p = 1/6.
Figure 3.1 shows this convergence for 100,000 die rolls. The tendency of p̂n to stabilize around p,
that is, the tendency of the relative frequency to stabilize around the true probability, is described
by the Law of Large Numbers.

n (number of rolls)

1 10 100 1,000 10,000 100,000

0.00

0.05

0.10

0.15

0.20

0.25

0.30

p̂n

Figure 3.1: The fraction of die rolls that are 1 at each stage in a simulation. The
relative frequency tends to get closer to the probability 1/6 ≈ 0.167 as the number
of rolls increases.

LAW OF LARGE NUMBERS

As more observations are collected, the observed proportion p̂n of occurrences with a particular
outcome after n trials converges to the true probability p of that outcome.



3.1. DEFINING PROBABILITY 139

Occasionally the proportion will veer off from the probability and appear to defy the Law of
Large Numbers, as p̂n does many times in Figure 3.1. However, these deviations become smaller as
the number of rolls increases.

Above we write p as the probability of rolling a 1. We can also write this probability as

P (rolling a 1)

As we become more comfortable with this notation, we will abbreviate it further. For instance,
if it is clear that the process is “rolling a die”, we could abbreviate P (rolling a 1) as P (1).

GUIDED PRACTICE 3.6

Random processes include rolling a die and flipping a coin. (a) Think of another random process.
(b) Describe all the possible outcomes of that process. For instance, rolling a die is a random process
with potential outcomes 1, 2, ..., 6. 1

What we think of as random processes are not necessarily random, but they may just be too
difficult to understand exactly. The fourth example in the footnote solution to Guided Practice 3.6
suggests a roommate’s behavior is a random process. However, even if a roommate’s behavior is not
truly random, modeling her behavior as a random process can still be useful.

MODELING A PROCESS AS RANDOM

It can be helpful to model a process as random even if it is not truly random.

3.1.3 Disjoint or mutually exclusive outcomes

Two outcomes are called disjoint or mutually exclusive if they cannot both happen in the
same trial. For instance, if we roll a die, the outcomes 1 and 2 are disjoint since they cannot both
occur on a single roll. On the other hand, the outcomes 1 and “rolling an odd number” are not
disjoint since both occur if the outcome of the roll is a 1. The terms disjoint and mutually exclusive
are equivalent and interchangeable.

Calculating the probability of disjoint outcomes is easy. When rolling a die, the outcomes 1

and 2 are disjoint, and we compute the probability that one of these outcomes will occur by adding
their separate probabilities:

P (1 or 2) = P (1) + P (2) = 1/6 + 1/6 = 1/3

What about the probability of rolling a 1, 2, 3, 4, 5, or 6? Here again, all of the outcomes are
disjoint so we add the probabilities:

P (1 or 2 or 3 or 4 or 5 or 6)

= P (1) + P (2) + P (3) + P (4) + P (5) + P (6)

= 1/6 + 1/6 + 1/6 + 1/6 + 1/6 + 1/6 = 1.

The Addition Rule guarantees the accuracy of this approach when the outcomes are disjoint.

1Here are four examples. (i) Whether someone gets sick in the next month or not is an apparently random process
with outcomes sick and not. (ii) We can generate a random process by randomly picking a person and measuring
that person’s height. The outcome of this process will be a positive number. (iii) Whether the stock market goes up
or down next week is a seemingly random process with possible outcomes up, down, and no change. Alternatively, we
could have used the percent change in the stock market as a numerical outcome. (iv) Whether your roommate cleans
her dishes tonight probably seems like a random process with possible outcomes cleans dishes and leaves dishes.
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ADDITION RULE OF DISJOINT OUTCOMES

If A1 and A2 represent two disjoint outcomes, then the probability that one of them occurs is
given by

P (A1 or A2) = P (A1) + P (A2)

If there are many disjoint outcomes A1, ..., Ak, then the probability that one of these outcomes
will occur is

P (A1) + P (A2) + · · ·+ P (Ak)

GUIDED PRACTICE 3.7

We are interested in the probability of rolling a 1, 4, or 5. (a) Explain why the outcomes 1, 4, and
5 are disjoint. (b) Apply the Addition Rule for disjoint outcomes to determine P (1 or 4 or 5).2

GUIDED PRACTICE 3.8

In the email data set in Chapter 2, the number variable described whether no number (labeled
none), only one or more small numbers (small), or whether at least one big number appeared in an
email (big). Of the 3,921 emails, 549 had no numbers, 2,827 had only one or more small numbers,
and 545 had at least one big number. (a) Are the outcomes none, small, and big disjoint? (b)
Determine the proportion of emails with value small and big separately. (c) Use the Addition Rule
for disjoint outcomes to compute the probability a randomly selected email from the data set has a
number in it, small or big.3

Statisticians rarely work with individual outcomes and instead consider sets or collections of
outcomes. Let A represent the event where a die roll results in 1 or 2 and B represent the event
that the die roll is a 4 or a 6. We write A as the set of outcomes {1, 2} and B = {4, 6}. These
sets are commonly called events. Because A and B have no elements in common, they are disjoint
events. A and B are represented in Figure 3.2.

1 2 3 4 5 6

A

B

D

Figure 3.2: Three events, A, B, and D, consist of outcomes from rolling a die. A
and B are disjoint since they do not have any outcomes in common.

The Addition Rule applies to both disjoint outcomes and disjoint events. The probability that
one of the disjoint events A or B occurs is the sum of the separate probabilities:

P (A or B) = P (A) + P (B) = 1/3 + 1/3 = 2/3

2(a) The random process is a die roll, and at most one of these outcomes can come up. This means they are
disjoint outcomes. (b) P (1 or 4 or 5) = P (1) + P (4) + P (5) = 1

6
+ 1

6
+ 1

6
= 3

6
= 1

2
3(a) Yes. Each email is categorized in only one level of number. (b) Small: 2827

3921
= 0.721. Big: 545

3921
= 0.139. (c)

P (small or big) = P (small) + P (big) = 0.721 + 0.139 = 0.860.
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GUIDED PRACTICE 3.9

(a) Verify the probability of event A, P (A), is 1/3 using the Addition Rule. (b) Do the same for
event B.4

GUIDED PRACTICE 3.10

(a) Using Figure 3.2 as a reference, what outcomes are represented by event D? (b) Are events B
and D disjoint? (c) Are events A and D disjoint?5

GUIDED PRACTICE 3.11

In Guided Practice 3.10, you confirmed B and D from Figure 3.2 are disjoint. Compute the proba-
bility that either event B or event D occurs.6

3.1.4 Probabilities when events are not disjoint

Let’s consider calculations for two events that are not disjoint in the context of a regular deck
of 52 cards, represented in Figure 3.3. If you are unfamiliar with the cards in a regular deck, please
see the footnote.7

2♣ 3♣ 4♣ 5♣ 6♣ 7♣ 8♣ 9♣ 10♣ J♣ Q♣ K♣ A♣
2♦ 3♦ 4♦ 5♦ 6♦ 7♦ 8♦ 9♦ 10♦ J♦ Q♦ K♦ A♦
2♥ 3♥ 4♥ 5♥ 6♥ 7♥ 8♥ 9♥ 10♥ J♥ Q♥ K♥ A♥
2♠ 3♠ 4♠ 5♠ 6♠ 7♠ 8♠ 9♠ 10♠ J♠ Q♠ K♠ A♠

Figure 3.3: Representations of the 52 unique cards in a deck.

GUIDED PRACTICE 3.12

(a) What is the probability that a randomly selected card is a diamond? (b) What is the probability
that a randomly selected card is a face card?8

Venn diagrams are useful when outcomes can be categorized as “in” or “out” for two or three
variables, attributes, or random processes. The Venn diagram in Figure 3.4 uses a circle to represent
diamonds and another to represent face cards. If a card is both a diamond and a face card, it falls
into the intersection of the circles. If it is a diamond but not a face card, it will be in part of the
left circle that is not in the right circle (and so on). The total number of cards that are diamonds is
given by the total number of cards in the diamonds circle: 10 + 3 = 13. The probabilities are also
shown (e.g. 10/52 = 0.1923).

4(a) P (A) = P (1 or 2) = P (1) + P (2) = 1
6

+ 1
6

= 2
6

= 1
3

. (b) Similarly, P (B) = 1/3.
5(a) Outcomes 2 and 3. (b) Yes, events B and D are disjoint because they share no outcomes. (c) The events A

and D share an outcome in common, 2, and so are not disjoint.
6Since B and D are disjoint events, use the Addition Rule: P (B or D) = P (B) + P (D) = 1

3
+ 1

3
= 2

3
.

7The 52 cards are split into four suits: ♣ (club), ♦ (diamond), ♥ (heart), ♠ (spade). Each suit has its 13 cards
labeled: 2, 3, ..., 10, J (jack), Q (queen), K (king), and A (ace). Thus, each card is a unique combination of a suit and
a label, e.g. 4♥ and J♣. The 12 cards represented by the jacks, queens, and kings are called face cards. The cards
that are ♦ or ♥ are typically colored red while the other two suits are typically colored black.

8(a) There are 52 cards and 13 diamonds. If the cards are thoroughly shuffled, each card has an equal chance
of being drawn, so the probability that a randomly selected card is a diamond is P (♦) = 13

52
= 0.250. (b) Likewise,

there are 12 face cards, so P (face card) = 12
52

= 3
13

= 0.231.
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10 3 9
0.1923 0.0577 0.1731

There are also
30 cards that are
neither diamonds

nor face cards

Diamonds, 0.2500

Face cards, 0.2308

Figure 3.4: A Venn diagram for diamonds and face cards.

GUIDED PRACTICE 3.13

Using the Venn diagram, verify P (face card) = 12/52 = 3/13.9

Let A represent the event that a randomly selected card is a diamond and B represent the
event that it is a face card. How do we compute P (A or B)? Events A and B are not disjoint – the
cards J♦, Q♦, and K♦ fall into both categories – so we cannot use the Addition Rule for disjoint
events. Instead we use the Venn diagram. We start by adding the probabilities of the two events:

P (A) + P (B) = P (♦) + P (face card) = 13/52 + 12/52

However, the three cards that are in both events were counted twice, once in each probability. We
must correct this double counting:

P (A or B) = P (♦) + P (face card)

= P (♦) + P (face card)− P (♦ and face card)

= 13/52 + 12/52− 3/52

= 22/52 = 11/26

Equation (3.14) is an example of the General Addition Rule.

GENERAL ADDITION RULE

If A and B are any two events, disjoint or not, then the probability that A or B will occur is

P (A or B) = P (A) + P (B)− P (A and B)

where P (A and B) is the probability that both events occur.

SYMBOLIC NOTATION FOR “AND” AND “OR”

The symbol ∩ means intersection and is equivalent to “and”.
The symbol ∪ means union and is equivalent to “or”.
It is common to see the General Addition Rule written as

P (A ∪B) = P (A) + P (B)− P (A ∩B)

“OR” IS INCLUSIVE

When we write, “or” in statistics, we mean “and/or” unless we explicitly state otherwise. Thus,
A or B occurs means A, B, or both A and B occur. This is equivalent to at least one of A or
B occurring.

9The Venn diagram shows face cards split up into “face card but not ♦” and “face card and ♦”. Since these
correspond to disjoint events, P (face card) is found by adding the two corresponding probabilities: 3

52
+ 9

52
= 12

52
= 3

13
.
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GUIDED PRACTICE 3.14

(a) If A and B are disjoint, describe why this implies P (A and B) = 0. (b) Using part (a), verify
that the General Addition Rule simplifies to the simpler Addition Rule for disjoint events if A and
B are disjoint.10

GUIDED PRACTICE 3.15

In the email data set with 3,921 emails, 367 were spam, 2,827 contained some small numbers but
no big numbers, and 168 had both characteristics. Create a Venn diagram for this setup.11

GUIDED PRACTICE 3.16

(a) Use your Venn diagram from Guided Practice 3.15 to determine the probability a randomly drawn
email from the email data set is spam and had small numbers (but not big numbers). (b) What is
the probability that the email had either of these attributes?12

3.1.5 Complement of an event

Rolling a die produces a value in the set {1, 2, 3, 4, 5, 6}. This set of all possible outcomes
is called the sample space (S) for rolling a die. We often use the sample space to examine the
scenario where an event does not occur.

Let D = {2, 3} represent the event that the outcome of a die roll is 2 or 3. Then the comple-
ment represents all outcomes in our sample space that are not in D, which is denoted by Dc = {1,
4, 5, 6}. That is, Dc is the set of all possible outcomes not already included in D. Figure 3.5 shows
the relationship between D, Dc, and the sample space S.

1 4 5 62 3

D DC

S

Figure 3.5: Event D = {2, 3} and its complement, Dc = {1, 4, 5, 6}. S represents
the sample space, which is the set of all possible events.

GUIDED PRACTICE 3.17

(a) Compute P (Dc) = P (rolling a 1, 4, 5, or 6). (b) What is P (D) + P (Dc)?13

10(a) If A and B are disjoint, A and B can never occur simultaneously. (b) If A and B are disjoint, then the last
term of Equation (3.14) is 0 (see part (a)) and we are left with the Addition Rule for disjoint events.

11Both the counts and corresponding probabilities (e.g. 2659/3921 = 0.678)
are shown. Notice that the number of emails represented in the left circle
corresponds to 2659 + 168 = 2827, and the number represented in the right
circle is 168 + 199 = 367.

small numbers and no big numbers spam

2659 168 199
0.678 0.043 0.051

Other emails: 3921−2659−168−199 = 895 (0.228)

12(a) The solution is represented by the intersection of the two circles: 0.043. (b) This is the sum of the three
disjoint probabilities shown in the circles: 0.678 + 0.043 + 0.051 = 0.772.

13(a) The outcomes are disjoint and each has probability 1/6, so the total probability is 4/6 = 2/3. (b) We can
also see that P (D) = 1

6
+ 1

6
= 1/3. Since D and Dc are disjoint, P (D) + P (Dc) = 1.
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GUIDED PRACTICE 3.18

Events A = {1, 2} and B = {4, 6} are shown in Figure 3.2 on page 140. (a) Write out what Ac and
Bc represent. (b) Compute P (Ac) and P (Bc). (c) Compute P (A) + P (Ac) and P (B) + P (Bc).14

An event A together with its complement Ac comprise the entire sample space. Because of this
we can say that P (A) + P (Ac) = 1.

COMPLEMENT

The complement of event A is denoted Ac, and Ac represents all outcomes not in A. A and Ac

are mathematically related:

P (A) + P (Ac) = 1, i.e. P (A) = 1− P (Ac)

In simple examples, computingA orAc is feasible in a few steps. However, using the complement
can save a lot of time as problems grow in complexity.

GUIDED PRACTICE 3.19

A die is rolled 10 times. (a) What is the complement of getting at least one 6 in 10 rolls of the die?
(b) What is the complement of getting at most three 6’s in 10 rolls of the die?15

3.1.6 Independence

Just as variables and observations can be independent, random processes can be independent,
too. Two processes are independent if knowing the outcome of one provides no useful information
about the outcome of the other. For instance, flipping a coin and rolling a die are two independent
processes – knowing the coin was heads does not help determine the outcome of a die roll. On the
other hand, stock prices usually move up or down together, so they are not independent.

Example 3.5 provides a basic example of two independent processes: rolling two dice. We
want to determine the probability that both will be 1. Suppose one of the dice is red and the
other white. If the outcome of the red die is a 1, it provides no information about the outcome
of the white die. We first encountered this same question in Example 3.5 (page 138), where we
calculated the probability using the following reasoning: 1/6th of the time the red die is a 1, and
1/6th of those times the white die will also be 1. This is illustrated in Figure 3.6. Because the rolls
are independent, the probabilities of the corresponding outcomes can be multiplied to get the final
answer: (1/6)× (1/6) = 1/36. This can be generalized to many independent processes.

All rolls

1/6th of the first
rolls are a 1.

1/6th of those times where
the first roll is a 1 the
second roll is also a 1.

Figure 3.6: 1/6th of the time, the first roll is a 1. Then 1/6th of those times, the
second roll will also be a 1.

14Brief solutions: (a) Ac = {3, 4, 5, 6} and Bc = {1, 2, 3, 5}. (b) Noting that each outcome is disjoint, add the
individual outcome probabilities to get P (Ac) = 2/3 and P (Bc) = 2/3. (c) A and Ac are disjoint, and the same is
true of B and Bc. Therefore, P (A) + P (Ac) = 1 and P (B) + P (Bc) = 1.

15(a) The complement of getting at least one 6 in ten rolls of a die is getting zero 6’s in the 10 rolls. (b) The
complement of getting at most three 6’s in 10 rolls is getting four, five, ..., nine, or ten 6’s in 10 rolls.
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EXAMPLE 3.20

What if there was also a blue die independent of the other two? What is the probability of rolling
the three dice and getting all 1s?

The same logic applies from Example 3.5. If 1/36th of the time the white and red dice are both 1,
then 1/6th of those times the blue die will also be 1, so multiply:

P (white = 1 and red = 1 and blue = 1) = P (white = 1)× P (red = 1)× P (blue = 1)

= (1/6)× (1/6)× (1/6) = 1/216

Examples 3.5 and 3.20 illustrate what is called the Multiplication Rule for independent pro-
cesses.

MULTIPLICATION RULE FOR INDEPENDENT PROCESSES

If A and B represent events from two different and independent processes, then the probability
that both A and B occur can be calculated as the product of their separate probabilities:

P (A and B) = P (A)× P (B)

Similarly, if there are k events A1, ..., Ak from k independent processes, then the probability
they all occur is

P (A1)× P (A2)× · · · × P (Ak)

GUIDED PRACTICE 3.21

About 9% of people are left-handed. Suppose 2 people are selected at random from the U.S. pop-
ulation. Because the sample size of 2 is very small relative to the population, it is reasonable to
assume these two people are independent. (a) What is the probability that both are left-handed?
(b) What is the probability that both are right-handed?16

GUIDED PRACTICE 3.22

Suppose 5 people are selected at random.17

(a) What is the probability that all are right-handed?

(b) What is the probability that all are left-handed?

(c) What is the probability that not all of the people are right-handed?

16(a) The probability the first person is left-handed is 0.09, which is the same for the second person. We apply the
Multiplication Rule for independent processes to determine the probability that both will be left-handed: 0.09×0.09 =
0.0081.

(b) It is reasonable to assume the proportion of people who are ambidextrous (both right- and left-handed) is nearly
0, which results in P (right-handed) = 1− 0.09 = 0.91. Using the same reasoning as in part (a), the probability that
both will be right-handed is 0.91× 0.91 = 0.8281.

17(a) The abbreviations RH and LH are used for right-handed and left-handed, respectively. Since each are indepen-
dent, we apply the Multiplication Rule for independent processes:

P (all five are RH) = P (first = RH, second = RH, ..., fifth = RH)

= P (first = RH)× P (second = RH)× · · · × P (fifth = RH)

= 0.91× 0.91× 0.91× 0.91× 0.91 = 0.624

(b) Using the same reasoning as in (a), 0.09× 0.09× 0.09× 0.09× 0.09 = 0.0000059
(c) Use the complement, P (all five are RH), to answer this question:

P (not all RH) = 1− P (all RH) = 1− 0.624 = 0.376
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Suppose the variables handedness and gender are independent, i.e. knowing someone’s gender
provides no useful information about their handedness and vice-versa. Then we can compute
whether a randomly selected person is right-handed and female18 using the Multiplication Rule:

P (right-handed and female) = P (right-handed)× P (female)

= 0.91× 0.50 = 0.455

GUIDED PRACTICE 3.23

Three people are selected at random.19

(a) What is the probability that the first person is male and right-handed?

(b) What is the probability that the first two people are male and right-handed?.

(c) What is the probability that the third person is female and left-handed?

(d) What is the probability that the first two people are male and right-handed and the third
person is female and left-handed?

Sometimes we wonder if one outcome provides useful information about another outcome. The
question we are asking is, are the occurrences of the two events independent? We say that two
events A and B are independent if they satisfy Equation (3.21).

EXAMPLE 3.24

If we shuffle up a deck of cards and draw one, is the event that the card is a heart independent of
the event that the card is an ace?

The probability the card is a heart is 1/4 and the probability that it is an ace is 1/13. The probability
the card is the ace of hearts is 1/52. We check whether Equation 3.21 is satisfied:

P (♥)× P (ace) =
1

4
× 1

13
=

1

52
= P (♥ and ace)

Because the equation holds, the event that the card is a heart and the event that the card is an ace
are independent events.

18The actual proportion of the U.S. population that is female is about 50%, and so we use 0.5 for the probability
of sampling a woman. However, this probability does differ in other countries.

19Brief answers are provided. (a) This can be written in probability notation as P (a randomly selected person is
male and right-handed) = 0.455. (b) 0.207. (c) 0.045. (d) 0.0093.
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Section summary

• When an outcome depends upon a chance process, we can define the probability of the
outcome as the proportion of times it would occur if we repeated the process an infinite number
of times. Also, even when an outcome is not truly random, modeling it with probability can
be useful.

• The Law of Large Numbers states that the relative frequency, or proportion of times an
outcome occurs after n repetitions, stabilizes around the true probability as n gets large.

• The probability of an event is always between 0 and 1, inclusive.

• The probability of an event and the probability of its complement add up to 1. Sometime
we use P (A) = 1− P (not A) when P (not A) is easier to calculate than P (A).

• A and B are disjoint, i.e. mutually exclusive, if they cannot happen together. In this case,
the events do not overlap and P (A and B) = 0.

• In the special case where A and B are disjoint events: P (A or B) = P (A) + P (B).

• When A and B are not disjoint, adding P (A) and P (B) will overestimate P (A or B) because
the overlap of A and B will be added twice. Therefore, when A and B are not disjoint, use
the General Addition Rule:
P (A or B) = P (A) + P (B)− P (A and B).20

• To find the probability that at least one of several events occurs, use a special case of the rule
of complements: P (at least one) = 1− P (none).

• When only considering two events, the probability that one or the other happens is equal to
the probability that at least one of the two events happens. When dealing with more than two
events, the General Addition Rule becomes very complicated. Instead, to find the probability
that A or B or C occurs, find the probability that none of them occur and subtract that value
from 1.

• Two events are independent when the occurrence of one does not change the likelihood of
the other.

• In the special case where A and B are independent: P (A and B) = P (A)× P (B).

20Often written: P (A ∪B) = P (A) + P (B)− P (A ∩B).
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Exercises

3.1 True or false. Determine if the statements below are true or false, and explain your reasoning.

(a) If a fair coin is tossed many times and the last eight tosses are all heads, then the chance that the next
toss will be heads is somewhat less than 50%.

(b) Drawing a face card (jack, queen, or king) and drawing a red card from a full deck of playing cards are
mutually exclusive events.

(c) Drawing a face card and drawing an ace from a full deck of playing cards are mutually exclusive events.

3.2 Roulette wheel. The game of roulette involves spinning a wheel with 38 slots: 18 red, 18 black, and 2
green. A ball is spun onto the wheel and will eventually land in a slot, where each slot has an equal chance
of capturing the ball.

(a) You watch a roulette wheel spin 3 consecutive times and the ball
lands on a red slot each time. What is the probability that the
ball will land on a red slot on the next spin?

(b) You watch a roulette wheel spin 300 consecutive times and the
ball lands on a red slot each time. What is the probability that
the ball will land on a red slot on the next spin?

(c) Are you equally confident of your answers to parts (a) and (b)?
Why or why not?

Photo by H̊akan Dahlström
(http://flic.kr/p/93fEzp)

CC BY 2.0 license

3.3 Four games, one winner. Below are four versions of the same game. Your archnemesis gets to
pick the version of the game, and then you get to choose how many times to flip a coin: 10 times or 100
times. Identify how many coin flips you should choose for each version of the game. It costs $1 to play each
game. Explain your reasoning.

(a) If the proportion of heads is larger than 0.60, you win $1.

(b) If the proportion of heads is larger than 0.40, you win $1.

(c) If the proportion of heads is between 0.40 and 0.60, you win $1.

(d) If the proportion of heads is smaller than 0.30, you win $1.

3.4 Backgammon. Backgammon is a board game for two players in which the playing pieces are moved
according to the roll of two dice. Players win by removing all of their pieces from the board, so it is usually
good to roll high numbers. You are playing backgammon with a friend and you roll two 6s in your first
roll and two 6s in your second roll. Your friend rolls two 3s in his first roll and again in his second row.
Your friend claims that you are cheating, because rolling double 6s twice in a row is very unlikely. Using
probability, show that your rolls were just as likely as his.

3.5 Coin flips. If you flip a fair coin 10 times, what is the probability of

(a) getting all tails?

(b) getting all heads?

(c) getting at least one tails?

3.6 Dice rolls. If you roll a pair of fair dice, what is the probability of

(a) getting a sum of 1?

(b) getting a sum of 5?

(c) getting a sum of 12?

http://www.openintro.org/redirect.php?go=textbook-flickr_hakan_dahlstrom_roulette_wheel&referrer=ahss3_pdf
http://www.openintro.org/redirect.php?go=textbook-CC_BY_2&referrer=ahss3_pdf
http://www.openintro.org/redirect.php?go=ahss_eoce_sol-global_warming&referrer=ahss3_pdf
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3.7 Swing voters. A Pew Research survey asked 2,373 randomly sampled registered voters their
political affiliation (Republican, Democrat, or Independent) and whether or not they identify as swing
voters. 35% of respondents identified as Independent, 23% identified as swing voters, and 11% identified as
both.21

(a) Are being Independent and being a swing voter disjoint, i.e. mutually exclusive?

(b) Draw a Venn diagram summarizing the variables and their associated probabilities.

(c) What percent of voters are Independent but not swing voters?

(d) What percent of voters are Independent or swing voters?

(e) What percent of voters are neither Independent nor swing voters?

(f) Is the event that someone is a swing voter independent of the event that someone is a political Indepen-
dent?

3.8 Poverty and language. The American Community Survey is an ongoing survey that provides data
every year to give communities the current information they need to plan investments and services. The
2010 American Community Survey estimates that 14.6% of Americans live below the poverty line, 20.7%
speak a language other than English (foreign language) at home, and 4.2% fall into both categories.22

(a) Are living below the poverty line and speaking a foreign language at home disjoint?

(b) Draw a Venn diagram summarizing the variables and their associated probabilities.

(c) What percent of Americans live below the poverty line and only speak English at home?

(d) What percent of Americans live below the poverty line or speak a foreign language at home?

(e) What percent of Americans live above the poverty line and only speak English at home?

(f) Is the event that someone lives below the poverty line independent of the event that the person speaks
a foreign language at home?

3.9 Disjoint vs. independent. In parts (a) and (b), identify whether the events are disjoint, independent,
or neither (events cannot be both disjoint and independent).

(a) You and a randomly selected student from your class both earn A’s in this course.

(b) You and your class study partner both earn A’s in this course.

(c) If two events can occur at the same time, must they be dependent?

3.10 Guessing on an exam. In a multiple choice exam, there are 5 questions and 4 choices for each
question (a, b, c, d). Nancy has not studied for the exam at all and decides to randomly guess the answers.
What is the probability that:

(a) the first question she gets right is the 5th question?

(b) she gets all of the questions right?

(c) she gets at least one question right?

21Pew Research Center, With Voters Focused on Economy, Obama Lead Narrows, data collected between April
4-15, 2012.

22U.S. Census Bureau, 2010 American Community Survey 1-Year Estimates, Characteristics of People by Language
Spoken at Home.

http://www.openintro.org/redirect.php?go=ahss_eoce_sol-global_warming&referrer=ahss3_pdf
http://www.openintro.org/redirect.php?go=textbook-obama_economy_pew_2012&referrer=ahss3_pdf
http://www.openintro.org/redirect.php?go=textbook-acs_language_2010&referrer=ahss3_pdf
http://www.openintro.org/redirect.php?go=textbook-acs_language_2010&referrer=ahss3_pdf
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3.11 Educational attainment. The family college data set contains a sample of 792 cases with two
variables, teen and parents, and is summarized below.23 The teen variable is either college or not, where
the college label means the teen went to college immediately after high school. The parents variable takes
the value degree if at least one parent of the teenager completed a college degree.

parents

degree not Total
college 231 214 445

teen
not 49 298 347
Total 280 512 792

Table 3.7: Contingency table summarizing the family college data set.

(a) For a randomly selected case, what is the probability that a parent completed a college degree?

(b) For a randomly selected case, what is the probability that the teen went to college immediately after
high school?

(c) For a randomly selected case, what is the probability that a parent completed a college degree and teen
went to college immediately after high school?

(d) Is P(a parent completed college degree and teen went to college immediately after high school) =
P(parent completed college degree) x P(teen went to college immediately after high school)? Explain
why this is or is not the case.

3.12 School absences. Data collected at elementary schools in DeKalb County, GA suggest that each
year roughly 25% of students miss exactly one day of school, 15% miss 2 days, and 28% miss 3 or more days
due to sickness.24

(a) What is the probability that a student chosen at random doesn’t miss any days of school due to sickness
this year?

(b) What is the probability that a student chosen at random misses no more than one day?

(c) What is the probability that a student chosen at random misses at least one day?

(d) If a parent has two kids at a DeKalb County elementary school, what is the probability that neither kid
will miss any school? Note any assumption you must make to answer this question.

(e) If a parent has two kids at a DeKalb County elementary school, what is the probability that both kids
will miss some school, i.e. at least one day? Note any assumption you make.

(f) If you made an assumption in part (d) or (e), do you think it was reasonable? If you didn’t make any
assumptions, double check your earlier answers.

23A simulated data set based on real population summaries at nces.ed.gov/pubs2001/2001126.pdf.
24S.S. Mizan et al. “Absence, Extended Absence, and Repeat Tardiness Related to Asthma Status among Elemen-

tary School Children”. In: Journal of Asthma 48.3 (2011), pp. 228–234.

http://www.openintro.org/redirect.php?go=textbook-student_parent_college_2001&referrer=ahss3_pdf
http://www.openintro.org/redirect.php?go=textbook-tardiness_asthma_2011&referrer=ahss3_pdf
http://www.openintro.org/redirect.php?go=textbook-tardiness_asthma_2011&referrer=ahss3_pdf
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3.2 Conditional probability

In this section we will use conditional probabilities to answer the following questions:

• What is the likelihood that a machine learning algorithm will misclassify a photo as being

about fashion if it is not actually about fashion?

• How much more likely are children to attend college whose parents attended college than

children whose parents did not attend college?

• Given that a person receives a positive test result for a disease, what is the probability that

the person actually has the disease?

Learning objectives

1. Understand conditional probability and how to calculate it.

2. Calculate joint and conditional probabilities based on a two-way table.

3. Use the General Multiplication Rule to find the probability of joint events.

4. Determine whether two events are independent and whether they are mutually exclusive, based

on the definitions of those terms.

5. Draw a tree diagram with at least two branches to organize possible outcomes and their

probabilities. Understand that the second branch represents conditional probabilities.

6. Use the tree diagram or Bayes’ Theorem to solve “inverted” conditional probabilities.



152 CHAPTER 3. PROBABILITY AND PROBABILITY DISTRIBUTIONS

3.2.1 Exploring probabilities with a contingency table

The photo classify data set represents a sample of 1822 photos from a photo sharing website.
Data scientists have been working to improve a classifier for whether the photo is about fashion or
not, and these 659 photos represent a test for their classifier. Each photo gets two classifications:
the first is called mach learn and gives a classification from a machine learning (ML) system of
either pred fashion or pred not. Each of these 1822 photos have also been classified carefully by
a team of people, which we take to be the source of truth; this variable is called truth and takes
values fashion and not. Figure 3.8 summarizes the results.

truth

fashion not Total
pred fashion 197 22 219

mach learn
pred not 112 1491 1603
Total 309 1513 1822

Figure 3.8: Contingency table summarizing the photo classify data set.

ML Predicts Fashion

Fashion Photos

0.110.01

0.06

Neither: 0.82

Figure 3.9: A Venn diagram using boxes for the photo classify data set.

EXAMPLE 3.25

If a photo is actually about fashion, what is the chance the ML classifier correctly identified the
photo as being about fashion?

We can estimate this probability using the data. Of the 309 fashion photos, the ML algorithm
correctly classified 197 of the photos:

P (mach learn is pred fashion given truth is fashion) =
197

309
= 0.638

EXAMPLE 3.26

We sample a photo from the data set and learn the ML algorithm predicted this photo was not
about fashion. What is the probability that it was incorrect and the photo is about fashion?

If the ML classifier suggests a photo is not about fashion, then it comes from the second row in the
data set. Of these 1603 photos, 112 were actually about fashion:

P (truth is fashion given mach learn is pred not) =
112

1603
= 0.070
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3.2.2 Marginal and joint probabilities

Figure 3.8 includes row and column totals for each variable separately in the photo classify

data set. These totals represent marginal probabilities for the sample, which are the probabilities
based on a single variable without regard to any other variables. For instance, a probability based
solely on the mach learn variable is a marginal probability:

P (mach learn is pred fashion) =
219

1822
= 0.12

A probability of outcomes for two or more variables or processes is called a joint probability:

P (mach learn is pred fashion and truth is fashion) =
197

1822
= 0.11

It is common to substitute a comma for “and” in a joint probability, although using either the word
“and” or a comma is acceptable:

P (mach learn is pred fashion, truth is fashion)

means the same thing as

P (mach learn is pred fashion and truth is fashion)

MARGINAL AND JOINT PROBABILITIES

If a probability is based on a single variable, it is a marginal probability. The probability of
outcomes for two or more variables or processes is called a joint probability.

We use table proportions to summarize joint probabilities for the photo classify sample.
These proportions are computed by dividing each count in Figure 3.8 by the table’s total, 1822,
to obtain the proportions in Figure 3.10. The joint probability distribution of the mach learn and
truth variables is shown in Figure 3.11.

truth: fashion truth: not Total
mach learn: pred fashion 0.1081 0.0121 0.1202
mach learn: pred not 0.0615 0.8183 0.8798
Total 0.1696 0.8304 1.00

Figure 3.10: Probability table summarizing the photo classify data set.

Joint outcome Probability
mach learn is pred fashion and truth is fashion 0.1081
mach learn is pred fashion and truth is not 0.0121
mach learn is pred not and truth is fashion 0.0615
mach learn is pred not and truth is not 0.8183
Total 1.0000

Figure 3.11: Joint probability distribution for the photo classify data set.

GUIDED PRACTICE 3.27

Verify Figure 3.11 represents a probability distribution: events are disjoint, all probabilities are
non-negative, and the probabilities sum to 1.25

25Each of the four outcome combination are disjoint, all probabilities are indeed non-negative, and the sum of the
probabilities is 0.1081 + 0.0121 + 0.0615 + 0.8183 = 1.00.
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We can compute marginal probabilities using joint probabilities in simple cases. For example,
the probability that a randomly selected photo from the data set is about fashion is found by
summing the outcomes in which truth takes value fashion:

P (truth is fashion) = P (mach learn is pred fashion and truth is fashion)

+ P (mach learn is pred not and truth is fashion)

= 0.1081 + 0.0615

= 0.1696

3.2.3 Defining conditional probability

The ML classifier predicts whether a photo is about fashion, even if it is not perfect. We would
like to better understand how to use information from a variable like mach learn to improve our
probability estimation of a second variable, which in this example is truth.

The probability that a random photo from the data set is about fashion is about 0.17. If we
knew the machine learning classifier predicted the photo was about fashion, could we get a better
estimate of the probability the photo is actually about fashion? Absolutely. To do so, we limit our
view to only those 219 cases where the ML classifier predicted that the photo was about fashion and
look at the fraction where the photo was actually about fashion:

P (truth is fashion given mach learn is pred fashion) =
197

219
= 0.900

We call this a conditional probability because we computed the probability under a condition:
the ML classifier prediction said the photo was about fashion.

There are two parts to a conditional probability, the outcome of interest and the condition.
It is useful to think of the condition as information we know to be true, and this information usually
can be described as a known outcome or event. We generally separate the text inside our probability
notation into the outcome of interest and the condition with a vertical bar:

P (truth is fashion given mach learn is pred fashion)

= P (truth is fashion | mach learn is pred fashion) =
197

219
= 0.900

The vertical bar “|” is read as given.
In the last equation, we computed the probability a photo was about fashion based on the

condition that the ML algorithm predicted it was about fashion as a fraction:

P (truth is fashion | mach learn is pred fashion)

=
# cases where truth is fashion and mach learn is pred fashion

# cases where mach learn is pred fashion

=
197

219
= 0.900

We considered only those cases that met the condition, mach learn is pred fashion, and then we
computed the ratio of those cases that satisfied our outcome of interest, photo was actually about
fashion.

Frequently, marginal and joint probabilities are provided instead of count data. For example,
disease rates are commonly listed in percentages rather than in a count format. We would like to
be able to compute conditional probabilities even when no counts are available, and we use the last
equation as a template to understand this technique.
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We considered only those cases that satisfied the condition, where the ML algorithm predicted
fashion. Of these cases, the conditional probability was the fraction representing the outcome of
interest, that the photo was about fashion. Suppose we were provided only the information in Fig-
ure 3.10, i.e. only probability data. Then if we took a sample of 1000 photos, we would anticipate
about 12.0% or 0.120 × 1000 = 120 would be predicted to be about fashion (mach learn is pred

fashion). Similarly, we would expect about 10.8% or 0.108 × 1000 = 108 to meet both the in-
formation criteria and represent our outcome of interest. Then the conditional probability can be
computed as

P (truth is fashion | mach learn is pred fashion)

=
# (truth is fashion and mach learn is pred fashion)

# (mach learn is pred fashion)

=
108

120
=

0.108

0.120
= 0.90

Here we are examining exactly the fraction of two probabilities, 0.108 and 0.120, which we can write
as

P (truth is fashion and mach learn is pred fashion) and P (mach learn is pred fashion).

The fraction of these probabilities is an example of the general formula for conditional probability.

CONDITIONAL PROBABILITY

The conditional probability of the outcome of interest A given condition B is computed as the
following:

P (A|B) =
P (A and B)

P (B)

GUIDED PRACTICE 3.28

(a) Write out the following statement in conditional probability notation: “The probability that the
ML prediction was correct, if the photo was about fashion”. Here the condition is now based on the
photo’s truth status, not the ML algorithm.

(b) Determine the probability from part (a). Figure 3.10 on page 153 may be helpful.26

GUIDED PRACTICE 3.29

(a) Determine the probability that the algorithm is incorrect if it is known the photo is about fashion.

(b) Using the answers from part (a) and Guided Practice 3.28(b), compute

P (mach learn is pred fashion | truth is fashion)

+ P (mach learn is pred not | truth is fashion)

(c) Provide an intuitive argument to explain why the sum in (b) is 1.27

26(a) If the photo is about fashion and the ML algorithm prediction was correct, then the ML algorithm my have
a value of pred fashion:

P (mach learn is pred fashion | truth is fashion)

(b) The equation for conditional probability indicates we should first find
P (mach learn is pred fashion and truth is fashion) = 0.1081 and P (truth is not) = 0.1696. Then the ratio
represents the conditional probability: 0.1081/0.1696 = 0.6374.

27(a) This probability is
P (mach learn is pred not, truth is fashion)

P (truth is fashion)
= 0.0615

0.1696
= 0.3626. (b) The total equals 1. (c) Under

the condition the photo is about fashion, the ML algorithm must have either predicted it was about fashion or
predicted it was not about fashion. The complement still works for conditional probabilities, provided the probabilities
are conditioned on the same information.
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3.2.4 Smallpox in Boston, 1721

The smallpox data set provides a sample of 6,224 individuals from the year 1721 who were
exposed to smallpox in Boston.28 Doctors at the time believed that inoculation, which involves
exposing a person to the disease in a controlled form, could reduce the likelihood of death.

Each case represents one person with two variables: inoculated and result. The variable
inoculated takes two levels: yes or no, indicating whether the person was inoculated or not. The
variable result has outcomes lived or died. These data are summarized in Tables 3.12 and 3.13.

inoculated
yes no Total

lived 238 5136 5374
result

died 6 844 850
Total 244 5980 6224

Figure 3.12: Contingency table for the smallpox data set.

inoculated
yes no Total

lived 0.0382 0.8252 0.8634
result

died 0.0010 0.1356 0.1366
Total 0.0392 0.9608 1.0000

Figure 3.13: Table proportions for the smallpox data, computed by dividing each
count by the table total, 6224.

GUIDED PRACTICE 3.30

Write out, in formal notation, the probability a randomly selected person who was not inoculated
died from smallpox, and find this probability.29

GUIDED PRACTICE 3.31

Determine the probability that an inoculated person died from smallpox. How does this result
compare with the result of Guided Practice 3.30?30

GUIDED PRACTICE 3.32

The people of Boston self-selected whether or not to be inoculated. (a) Is this study observational
or was this an experiment? (b) Can we infer any causal connection using these data? (c) What are
some potential confounding variables that might influence whether someone lived or died and also
affect whether that person was inoculated?31

28Fenner F. 1988. Smallpox and Its Eradication (History of International Public Health, No. 6). Geneva: World
Health Organization. ISBN 92-4-156110-6.

29P (result = died | not inoculated) =
P (result = died and not inoculated)

P (not inoculated)
= 0.1356

0.9608
= 0.1411.

30P (died | inoculated) =
P (died and inoculated)

P (inoculated)
= 0.0010

0.0392
= 0.0255. The death rate for individuals who were

inoculated is only about 1 in 40 while the death rate is about 1 in 7 for those who were not inoculated.
31Brief answers: (a) Observational. (b) No, we cannot infer causation from this observational study. (c) Accessi-

bility to the latest and best medical care, so income may play a role. There are other valid answers for part (c).
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3.2.5 General multiplication rule

Section 3.1.6 introduced the Multiplication Rule for independent processes. Here we provide
the General Multiplication Rule for events that might not be independent.

GENERAL MULTIPLICATION RULE

If A and B represent two outcomes or events, then

P (A and B) = P (A|B)× P (B)

For the term P (A|B), it is useful to think of A as the outcome of interest and B as the condition.

This General Multiplication Rule is simply a rearrangement of the definition for conditional
probability.

EXAMPLE 3.33

Consider the smallpox data set. Suppose we are given only two pieces of information: 96.08%
of residents were not inoculated, and 85.88% of the residents who were not inoculated ended up
surviving. How could we compute the probability that a resident was not inoculated and lived?

We will compute our answer using the General Multiplication Rule and then verify it using Fig-
ure 3.13. We want to determine

P (lived and not inoculated)

and we are given that

P (lived | not inoculated) = 0.8588

P (not inoculated) = 0.9608

Among the 96.08% of people who were not inoculated, 85.88% survived:

P (lived and not inoculated) = 0.8588× 0.9608 = 0.8251

This is equivalent to the General Multiplication Rule. We can confirm this probability in Figure 3.13
at the intersection of no and lived (with a small rounding error).

GUIDED PRACTICE 3.34

Use P (inoculated) = 0.0392 and P (lived | inoculated) = 0.9754 to determine the probability
that a person was both inoculated and lived.32

GUIDED PRACTICE 3.35

If 97.54% of the inoculated people lived, what proportion of inoculated people must have died?33

GUIDED PRACTICE 3.36

Based on the probabilities computed above, does it appear that inoculation is effective at reducing
the risk of death from smallpox?34

32The answer is 0.0382, which can be verified using Figure 3.13.
33There were only two possible outcomes: lived or died. This means that 100% - 97.54% = 2.46% of the people

who were inoculated died.
34The samples are large relative to the difference in death rates for the “inoculated” and “not inoculated” groups,

so it seems there is an association between inoculated and outcome. However, as noted in the solution to Guided
Practice 3.32, this is an observational study and we cannot be sure if there is a causal connection. (Further research
has shown that inoculation is effective at reducing death rates.)
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3.2.6 Sampling without replacement

EXAMPLE 3.37

Professors sometimes select a student at random to answer a question. If each student has an equal
chance of being selected and there are 15 people in your class, what is the chance that she will pick
you for the next question?

If there are 15 people to ask and none are skipping class, then the probability is 1/15, or about
0.067.

EXAMPLE 3.38

If the professor asks 3 questions, what is the probability that you will not be selected? Assume that
she will not pick the same person twice in a given lecture.

For the first question, she will pick someone else with probability 14/15. When she asks the second
question, she only has 14 people who have not yet been asked. Thus, if you were not picked on the
first question, the probability you are again not picked is 13/14. Similarly, the probability you are
again not picked on the third question is 12/13, and the probability of not being picked for any of
the three questions is

P (not picked in 3 questions)

= P (Q1 = not picked, Q2 = not picked, Q3 = not picked.)

=
14

15
× 13

14
× 12

13
=

12

15
= 0.80

GUIDED PRACTICE 3.39

What rule permitted us to multiply the probabilities in Example 3.38?35

EXAMPLE 3.40

Suppose the professor randomly picks without regard to who she already selected, i.e. students can
be picked more than once. What is the probability that you will not be picked for any of the three
questions?

Each pick is independent, and the probability of not being picked for any individual question is
14/15. Thus, we can use the Multiplication Rule for independent processes.

P (not picked in 3 questions)

= P (Q1 = not picked, Q2 = not picked, Q3 = not picked.)

=
14

15
× 14

15
× 14

15
= 0.813

You have a slightly higher chance of not being picked compared to when she picked a new person
for each question. However, you now may be picked more than once.

35The three probabilities we computed were actually one marginal probability, P (Q1=not picked), and two condi-
tional probabilities:

P (Q2 = not picked | Q1 = not picked) P (Q3 = not picked | Q1 = not picked, Q2 = not picked)

Using the General Multiplication Rule, the product of these three probabilities is the probability of not being picked
in 3 questions.
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GUIDED PRACTICE 3.41

Under the setup of Example 3.40, what is the probability of being picked to answer all three ques-
tions?36

If we sample from a small population without replacement, we no longer have independence
between our observations. In Example 3.38, the probability of not being picked for the second ques-
tion was conditioned on the event that you were not picked for the first question. In Example 3.40,
the professor sampled her students with replacement: she repeatedly sampled the entire class
without regard to who she already picked.

GUIDED PRACTICE 3.42

Your department is holding a raffle. They sell 30 tickets and offer seven prizes. (a) They place the
tickets in a hat and draw one for each prize. The tickets are sampled without replacement, i.e. the
selected tickets are not placed back in the hat. What is the probability of winning a prize if you buy
one ticket? (b) What if the tickets are sampled with replacement?37

GUIDED PRACTICE 3.43

Compare your answers in Guided Practice 3.42. How much influence does the sampling method
have on your chances of winning a prize?38

Had we repeated Guided Practice 3.42 with 300 tickets instead of 30, we would have found
something interesting: the results would be nearly identical. The probability would be 0.0233
without replacement and 0.0231 with replacement.

SAMPLING WITHOUT REPLACEMENT

When the sample size is only a small fraction of the population (under 10%), observations can
be considered independent even when sampling without replacement.

36P (being picked to answer all three questions) =
(

1
15

)3
= 0.00030.

37(a) First determine the probability of not winning. The tickets are sampled without replacement, which means
the probability you do not win on the first draw is 29/30, 28/29 for the second, ..., and 23/24 for the seventh. The
probability you win no prize is the product of these separate probabilities: 23/30. That is, the probability of winning
a prize is 1− 23/30 = 7/30 = 0.233. (b) When the tickets are sampled with replacement, there are seven independent
draws. Again we first find the probability of not winning a prize: (29/30)7 = 0.789. Thus, the probability of winning
(at least) one prize when drawing with replacement is 0.211.

38There is about a 10% larger chance of winning a prize when using sampling without replacement. However, at
most one prize may be won under this sampling procedure.
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3.2.7 Independence considerations in conditional probability

If two processes are independent, then knowing the outcome of one should provide no informa-
tion about the other. We can show this is mathematically true using conditional probabilities.

GUIDED PRACTICE 3.44

Let X and Y represent the outcomes of rolling two dice. (a) What is the probability that the first die,
X, is 1? (b) What is the probability that both X and Y are 1? (c) Use the formula for conditional
probability to compute P (Y = 1 |X = 1). (d) What is P (Y = 1)? Is this different from the answer
from part (c)? Explain.39

We can show in Guided Practice 3.44(c) that the conditioning information has no influence by
using the Multiplication Rule for independence processes:

P (Y = 1|X = 1) =
P (Y = 1 and X = 1)

P (X = 1)

=
P (Y = 1)× P (X = 1)

P (X = 1)

= P (Y = 1)

GUIDED PRACTICE 3.45

Ron is watching a roulette table in a casino and notices that the last five outcomes were black. He
figures that the chances of getting black six times in a row is very small (about 1/64) and puts his
paycheck on red. What is wrong with his reasoning?40

3.2.8 Checking for independent and mutually exclusive events

If A and B are independent events, then the probability of A being true is unchanged if B is
true. Mathematically, this is written as

P (A|B) = P (A)

The General Multiplication Rule states that P (A and B) equals P (A|B) × P (B). If A and B are
independent events, we can replace P (A|B) with P (A) and the following multiplication rule applies:

P (A and B) = P (A)× P (B)

CHECKING WHETHER TWO EVENTS ARE INDEPENDENT

When checking whether two events A and B are independent, verify one of the following equa-
tions holds (there is no need to check both equations):

P (A|B) = P (A) P (A and B) = P (A)× P (B)

If the equation that is checked holds true (the left and right sides are equal), A and B are
independent. If the equation does not hold, then A and B are dependent.

39Brief solutions: (a) 1/6. (b) 1/36. (c)
P (Y= 1 and X= 1)

P (X= 1)
=

1/36
1/6

= 1/6. (d) The probability is the same as in

part (c): P (Y = 1) = 1/6. The probability that Y = 1 was unchanged by knowledge about X, which makes sense as
X and Y are independent.

40He has forgotten that the next roulette spin is independent of the previous spins. Casinos do employ this practice;
they post the last several outcomes of many betting games to trick unsuspecting gamblers into believing the odds are
in their favor. This is called the gambler’s fallacy.
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EXAMPLE 3.46

Are teenager college attendance and parent college degrees independent or dependent? Figure 3.14
may be helpful.

We’ll use the first equation above to check for independence. If the teen and parents variables are
independent, it must be true that

P (teen college | parent degree) = P (teen college)

Using Figure 3.14, we check whether equality holds in this equation.

P (teen college | parent degree)
?
= P (teen college)

0.83 6= 0.56

The value 0.83 came from a probability calculation using Figure 3.14: 231
280 ≈ 0.83. Because the sides

are not equal, teenager college attendance and parent degree are dependent. That is, we estimate
the probability a teenager attended college to be higher if we know that one of the teen’s parents
has a college degree.

parents

degree not Total
college 231 214 445

teen
not 49 298 347
Total 280 512 792

Figure 3.14: Contingency table summarizing the family college data set.

GUIDED PRACTICE 3.47

Use the second equation in the box above to show that teenager college attendance and parent
college degrees are dependent.41

If A and B are mutually exclusive events, then A and B cannot occur at the same time.
Mathematically, this is written as

P (A and B) = 0

The General Addition Rule states that P (A or B) equals P (A) + P (B)− P (A and B). If A and B
are mutually exclusive events, we can replace P (A and B) with 0 and the following addition rule
applies:

P (A or B) = P (A) + P (B)

41We check for equality in the following equation:

P (teen college, parent degree)
?
= P (teen college)× P (parent degree)

231

792
= 0.292 6=

445

792
×

280

792
= 0.199

These terms are not equal, which confirms what we learned in Example 3.46: teenager college attendance and parent
college degrees are dependent.
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CHECKING WHETHER TWO EVENTS ARE MUTUALLY EXCLUSIVE (DISJOINT)

If A and B are mutually exclusive events, then they cannot occur at the same time. If asked to
determine if events A and B are mutually exclusive, verify one of the following equations holds
(there is no need to check both equations):

P (A and B) = 0 P (A or B) = P (A) + P (B)

If the equation that is checked holds true (the left and right sides are equal), A and B are
mutually exclusive. If the equation does not hold, then A and B are not mutually exclusive.

EXAMPLE 3.48

Are teen college attendance and parent college degrees mutually exclusive?

Looking in the table, we see that there are 231 instances where both the teenager attended college
and parents have a degree, indicating the probability of both events occurring is greater than 0.
Since we have found an example where both of these events happen together, these two events are
not mutually exclusive. We could more formally show this by computing the probability both events
occur at the same time:

P (teen college, parent degree) =
231

792
6= 0

Since this probability is not zero, teenager college attendance and parent college degrees are not
mutually exclusive.

MUTUALLY EXCLUSIVE AND INDEPENDENT ARE DIFFERENT

If two events are mutually exclusive, then if one is true, the other cannot be true. This implies
the two events are in some way connected, meaning they must be dependent.
If two events are independent, then if one occurs, it is still possible for the other to occur,
meaning the events are not mutually exclusive.

DEPENDENT EVENTS NEED NOT BE MUTUALLY EXCLUSIVE.

If two events are dependent, we cannot simply conclude they are mutually exclusive. For
example, the college attendance of teenagers and a college degree by one of their parents are
dependent, but those events are not mutually exclusive.
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3.2.9 Tree diagrams

Tree diagrams are a tool to organize outcomes and probabilities around the structure of the
data. They are most useful when two or more processes occur in a sequence and each process is
conditioned on its predecessors.

The smallpox data fit this description. We see the population as split by inoculation: yes

and no. Following this split, survival rates were observed for each group. This structure is reflected
in the tree diagram shown in Figure 3.15. The first branch for inoculation is said to be the
primary branch while the other branches are secondary.

Inoculated Result

yes,  0.0392

lived,  0.9754
0.0392*0.9754  =  0.03824

died,  0.0246
0.0392*0.0246  =  0.00096

no,  0.9608

lived,  0.8589
0.9608*0.8589  =  0.82523

died,  0.1411
0.9608*0.1411  =  0.13557

Figure 3.15: A tree diagram of the smallpox data set.

Tree diagrams are annotated with marginal and conditional probabilities, as shown in Fig-
ure 3.15. This tree diagram splits the smallpox data by inoculation into the yes and no groups
with respective marginal probabilities 0.0392 and 0.9608. The secondary branches are conditioned
on the first, so we assign conditional probabilities to these branches. For example, the top branch
in Figure 3.15 is the probability that lived conditioned on the information that inoculated.

We may (and usually do) construct joint probabilities at the end of each branch in our tree by
multiplying the numbers we come across as we move from left to right. These joint probabilities are
computed using the General Multiplication Rule:

P (inoculated and lived) = P (inoculated)× P (lived | inoculated)

= 0.0392× 0.9754

= 0.0382

EXAMPLE 3.49

What is the probability that a randomly selected person who was inoculated died?

This is equivalent to P (died | inoculated). This conditional probability can be found in the second
branch as 0.0246.
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EXAMPLE 3.50

What is the probability that a randomly selected person lived?

There are two ways that a person could have lived: be inoculated and live OR not be inoculated
and live. To find this probability, we sum the two disjoint probabilities:

P (lived) = 0.0392× 0.9745 + 0.9608× 0.8589 = 0.03824 + 0.82523 = 0.86347

GUIDED PRACTICE 3.51

After an introductory statistics course, 78% of students can successfully construct tree diagrams.
Of those who can construct tree diagrams, 97% passed, while only 57% of those students who could
not construct tree diagrams passed. (a) Organize this information into a tree diagram. (b) What
is the probability that a student who was able to construct tree diagrams did not pass? (c) What
is the probability that a randomly selected student was able to successfully construct tree diagrams
and passed? (d) What is the probability that a randomly selected student passed? 42

3.2.10 Bayes’ Theorem

In many instances, we are given a conditional probability of the form

P (statement about variable 1 | statement about variable 2)

but we would really like to know the inverted conditional probability:

P (statement about variable 2 | statement about variable 1)

For example, instead of wanting to know P (lived | inoculated), we might want to know P (inoculated
| lived). This is more challenging because it cannot be read directly from the tree diagram. In these
instances we use Bayes’ Theorem. Let’s begin by looking at a new example.

42(a) The tree diagram is shown to the right.
(b) P (not pass | able to construct tree
diagram) = 0.03. (c) P (able to construct tree
diagrams and passed) = P (able to construct
tree diagrams) × P (passed | able to construct
tree diagrams) = 0.78 × 0.97 = 0.7566.
(d) P (passed) = 0.7566 + 0.1254 = 0.8820.

Able to construct
tree diagrams

Pass class

yes,  0.78

pass,  0.97
0.78*0.97  =  0.7566

fail,  0.03
0.78*0.03  =  0.0234

no,  0.22

pass,  0.57
0.22*0.57  =  0.1254

fail,  0.43
0.22*0.43  =  0.0946
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EXAMPLE 3.52

In Canada, about 0.35% of women over 40 will develop breast cancer in any given year. A common
screening test for cancer is the mammogram, but this test is not perfect. In about 11% of patients
with breast cancer, the test gives a false negative: it indicates a woman does not have breast
cancer when she does have breast cancer. Similarly, the test gives a false positive in 7% of patients
who do not have breast cancer: it indicates these patients have breast cancer when they actually do
not. If we tested a random woman over 40 for breast cancer using a mammogram and the test came
back positive – that is, the test suggested the patient has cancer – what is the probability that the
patient actually has breast cancer?

We are given sufficient information to quickly compute the probability of testing positive if a woman
has breast cancer (1.00− 0.11 = 0.89). However, we seek the inverted probability of cancer given a
positive test result:

P (has BC | mammogram+)

Here, “has BC” is an abbreviation for the patient actually having breast cancer, and “mammogram+”
means the mammogram screening was positive, which in this case means the test suggests the patient
has breast cancer. (Watch out for the non-intuitive medical language: a positive test result suggests
the possible presence of cancer in a mammogram screening.) We can use the conditional probability

formula from the previous section: P (A|B) = P (A and B)
P (B) . Our conditional probability can be found

as follows:

P (has BC | mammogram+) =
P (has BC and mammogram+)

P (mammogram+)

The probability that a mammogram is positive is as follows.

P (mammogram+) = P (has BC and mammogram+) + P (no BC and mammogram+)

A tree diagram is useful for identifying each probability and is shown in Figure 3.16. Using the tree
diagram, we find that

P (has BC | mammogram+)

=
P (has BC and mammogram+)

P (has BC and mammogram+) + P (no BC and mammogram+)

=
0.0035(0.89)

0.0035(0.89) + 0.9965(0.07)

=
0.00312

0.07288
≈ 0.0428

That is, even if a patient has a positive mammogram screening, there is still only a 4% chance that
she has breast cancer.

Example 3.52 highlights why doctors often run more tests regardless of a first positive test
result. When a medical condition is rare, a single positive test isn’t generally definitive.
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Truth Mammogram

cancer,  0.0035

positive,  0.89
0.0035*0.89 = 0.00312

negative,  0.11
0.0035*0.11 = 0.00038

no cancer,  0.9965

positive,  0.07
0.9965*0.07 = 0.06976

negative,  0.93
0.9965*0.93 = 0.92675

Figure 3.16: Tree diagram for Example 3.52, computing the probability a random
patient who tests positive on a mammogram actually has breast cancer.

Consider again the last equation of Example 3.52. Using the tree diagram, we can see that the
numerator (the top of the fraction) is equal to the following product:

P (has BC and mammogram+) = P (mammogram+| has BC)P (has BC)

The denominator – the probability the screening was positive – is equal to the sum of probabilities
for each positive screening scenario:

P (mammogram+) = P (mammogram+ and no BC) + P (mammogram+ and has BC)

In the example, each of the probabilities on the right side was broken down into a product of a
conditional probability and marginal probability using the tree diagram.

P (mammogram+) = P (mammogram+ and no BC) + P (mammogram+ and has BC)

= P (mammogram+| no BC)P (no BC)

+ P (mammogram+| has BC)P (has BC)

We can see an application of Bayes’ Theorem by substituting the resulting probability expressions
into the numerator and denominator of the original conditional probability.

P (has BC| mammogram+)

=
P (mammogram+| has BC)P (has BC)

P (mammogram+| no BC)P (no BC) + P (mammogram+| has BC)P (has BC)
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BAYES’ THEOREM: INVERTING PROBABILITIES

Consider the following conditional probability for variable 1 and variable 2:

P (outcome A1 of variable 1| outcome B of variable 2)

Bayes’ Theorem states that this conditional probability can be identified as the following frac-
tion:

P (B|A1)P (A1)

P (B|A1)P (A1) + P (B|A2)P (A2) + · · ·+ P (B|Ak)P (Ak)

where A2, A3, ..., and Ak represent all other possible outcomes of the first variable.

Bayes’ Theorem is just a generalization of what we have done using tree diagrams. The formula
need not be memorized, since it can always be derived using a tree diagram:

• The numerator identifies the probability of getting both A1 and B.

• The denominator is the overall probability of getting B. Traverse each branch of the tree
diagram that ends with event B. Add up the required products.

GUIDED PRACTICE 3.53

Jose visits campus every Thursday evening. However, some days the parking garage is full, often
due to college events. There are academic events on 35% of evenings, sporting events on 20% of
evenings, and no events on 45% of evenings. When there is an academic event, the garage fills up
about 25% of the time, and it fills up 70% of evenings with sporting events. On evenings when
there are no events, it only fills up about 5% of the time. If Jose comes to campus and finds the
garage full, what is the probability that there is a sporting event? Use a tree diagram to solve this
problem.

The tree diagram, with three primary branches, is
shown to the right. We want

P (sporting event|garage full)

=
P (sporting event and garage full)

P (garage full)

=
0.14

0.0875 + 0.14 + 0.0225
= 0.56.

If the garage is full, there is a 56% probability that
there is a sporting event.

Event Garage full

Academic,  0.35
Full,  0.25

0.35*0.25 = 0.0875

Spaces Available,  0.75
0.35*0.75 = 0.2625

Sporting,  0.20
Full,  0.7

0.2*0.7 = 0.14

Spaces Available,  0.3
0.2*0.3 = 0.06

None,  0.45
Full,  0.05

0.45*0.05 = 0.0225

Spaces Available,  0.95
0.45*0.95 = 0.4275

The last several exercises offered a way to update our belief about whether there is a sporting
event, academic event, or no event going on at the school based on the information that the parking
lot was full. This strategy of updating beliefs using Bayes’ Theorem is actually the foundation of an
entire section of statistics called Bayesian statistics. While Bayesian statistics is very important
and useful, we will not have time to cover it in this book.
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Section summary

• A conditional probability can be written as P (A|B) and is read, “Probability of A given
B”. P (A|B) is the probability of A, given that B has occurred. In a conditional probability,
we are given some information. In an unconditional probability, such as P (A), we are not
given any information.

• Sometimes P (A|B) can be deduced. For example, when drawing without replacement from a
deck of cards, P (2nd draw is an Ace | 1st draw was an Ace) = 3

51 . When this is not the case,
as when working with a table or a Venn diagram, one must use the conditional probability

rule P (A|B) = P (A and B)
P (B) .

• In the last section, we saw that two events are independent when the outcome of one has no
effect on the outcome of the other. When A and B are independent, P (A|B) = P (A).

• When A and B are dependent, find the probability of A and B using the General Multi-
plication Rule: P (A and B) = P (A|B)× P (B).

• In the special case where A and B are independent, P (A and B) = P (A)× P (B).

• If A and B are mutually exclusive, they must be dependent, since the occurrence of one
of them changes the probability that the other occurs to 0.

• When sampling without replacement, such as drawing cards from a deck, make sure to use
conditional probabilities when solving and problems.

• Sometimes, the conditional probability P (B|A) may be known, but we are interested in the
“inverted” probability P (A|B). Bayes’ Theorem helps us solve such conditional probabilities
that cannot be easily answered. However, rather than memorize Bayes’ Theorem, one can

generally draw a tree diagram and apply the conditional probability rule P (A|B) = P (A and B)
P (B) .
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Exercises

3.13 Joint and conditional probabilities. P(A) = 0.3, P(B) = 0.7

(a) Can you compute P(A and B) if you only know P(A) and P(B)?

(b) Assuming that events A and B arise from independent random processes,

i. what is P(A and B)?

ii. what is P(A or B)?

iii. what is P(A|B)?

(c) If we are given that P(A and B) = 0.1, are the random variables giving rise to events A and B indepen-
dent?

(d) If we are given that P(A and B) = 0.1, what is P(A|B)?

3.14 PB & J. Suppose 80% of people like peanut butter, 89% like jelly, and 78% like both. Given that a
randomly sampled person likes peanut butter, what’s the probability that he also likes jelly?

3.15 Global warming. A Pew Research poll asked 1,306 Americans “From what you’ve read and
heard, is there solid evidence that the average temperature on earth has been getting warmer over the past
few decades, or not?”. The table below shows the distribution of responses by party and ideology, where
the counts have been replaced with relative frequencies.43

Response
Earth is Not Don’t Know
warming warming Refuse Total

Conservative Republican 0.11 0.20 0.02 0.33
Party and Mod/Lib Republican 0.06 0.06 0.01 0.13
Ideology Mod/Cons Democrat 0.25 0.07 0.02 0.34

Liberal Democrat 0.18 0.01 0.01 0.20
Total 0.60 0.34 0.06 1.00

(a) Are believing that the earth is warming and being a liberal Democrat mutually exclusive?

(b) What is the probability that a randomly chosen respondent believes the earth is warming or is a liberal
Democrat?

(c) What is the probability that a randomly chosen respondent believes the earth is warming given that he
is a liberal Democrat?

(d) What is the probability that a randomly chosen respondent believes the earth is warming given that he
is a conservative Republican?

(e) Does it appear that whether or not a respondent believes the earth is warming is independent of their
party and ideology? Explain your reasoning.

(f) What is the probability that a randomly chosen respondent is a moderate/liberal Republican given that
he does not believe that the earth is warming?

43Pew Research Center, Majority of Republicans No Longer See Evidence of Global Warming, data collected on
October 27, 2010.

http://www.openintro.org/redirect.php?go=ahss_eoce_sol-global_warming&referrer=ahss3_pdf
http://www.openintro.org/redirect.php?go=textbook-republicans_global_warming_2010&referrer=ahss3_pdf
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3.16 Health coverage, relative frequencies. The Behavioral Risk Factor Surveillance System (BRFSS)
is an annual telephone survey designed to identify risk factors in the adult population and report emerging
health trends. The following table displays the distribution of health status of respondents to this survey
(excellent, very good, good, fair, poor) and whether or not they have health insurance.

Health Status
Excellent Very good Good Fair Poor Total

Health No 0.0230 0.0364 0.0427 0.0192 0.0050 0.1262
Coverage Yes 0.2099 0.3123 0.2410 0.0817 0.0289 0.8738

Total 0.2329 0.3486 0.2838 0.1009 0.0338 1.0000

(a) Are being in excellent health and having health coverage mutually exclusive?

(b) What is the probability that a randomly chosen individual has excellent health?

(c) What is the probability that a randomly chosen individual has excellent health given that he has health
coverage?

(d) What is the probability that a randomly chosen individual has excellent health given that he doesn’t
have health coverage?

(e) Do having excellent health and having health coverage appear to be independent?

3.17 Marbles in an urn. Imagine you have an urn containing 5 red, 3 blue, and 2 orange marbles in it.

(a) What is the probability that the first marble you draw is blue?

(b) Suppose you drew a blue marble in the first draw. If drawing with replacement, what is the probability
of drawing a blue marble in the second draw?

(c) Suppose you instead drew an orange marble in the first draw. If drawing with replacement, what is the
probability of drawing a blue marble in the second draw?

(d) If drawing with replacement, what is the probability of drawing two blue marbles in a row?

(e) When drawing with replacement, are the draws independent? Explain.

3.18 Socks in a drawer. In your sock drawer you have 4 blue, 5 gray, and 3 black socks. Half asleep one
morning you grab 2 socks at random and put them on. Find the probability you end up wearing

(a) 2 blue socks

(b) no gray socks

(c) at least 1 black sock

(d) a green sock

(e) matching socks

3.19 Chips in a bag. Imagine you have a bag containing 5 red, 3 blue, and 2 orange chips.

(a) Suppose you draw a chip and it is blue. If drawing without replacement, what is the probability the
next is also blue?

(b) Suppose you draw a chip and it is orange, and then you draw a second chip without replacement. What
is the probability this second chip is blue?

(c) If drawing without replacement, what is the probability of drawing two blue chips in a row?

(d) When drawing without replacement, are the draws independent? Explain.



3.2. CONDITIONAL PROBABILITY 171

3.20 Books on a bookshelf. The table below shows the distribution of books on a bookcase based on
whether they are nonfiction or fiction and hardcover or paperback.

Format
Hardcover Paperback Total

Type
Fiction 13 59 72
Nonfiction 15 8 23
Total 28 67 95

(a) Find the probability of drawing a hardcover book first then a paperback fiction book second when
drawing without replacement.

(b) Determine the probability of drawing a fiction book first and then a hardcover book second, when
drawing without replacement.

(c) Calculate the probability of the scenario in part (b), except this time complete the calculations under
the scenario where the first book is placed back on the bookcase before randomly drawing the second
book.

(d) The final answers to parts (b) and (c) are very similar. Explain why this is the case.

3.21 Student outfits. In a classroom with 24 students, 7 students are wearing jeans, 4 are wearing
shorts, 8 are wearing skirts, and the rest are wearing leggings. If we randomly select 3 students without
replacement, what is the probability that one of the selected students is wearing leggings and the other two
are wearing jeans? Note that these are mutually exclusive clothing options.

3.22 The birthday problem. Suppose we pick three people at random. For each of the following questions,
ignore the special case where someone might be born on February 29th, and assume that births are evenly
distributed throughout the year.

(a) What is the probability that the first two people share a birthday?

(b) What is the probability that at least two people share a birthday?

3.23 Drawing box plots. After an introductory statistics course, 80% of students can successfully construct
box plots. Of those who can construct box plots, 86% passed, while only 65% of those students who could
not construct box plots passed.

(a) Construct a tree diagram of this scenario.

(b) Calculate the probability that a student is able to construct a box plot if it is known that he passed.

3.24 Predisposition for thrombosis. A genetic test is used to determine if people have a predisposition
for thrombosis, which is the formation of a blood clot inside a blood vessel that obstructs the flow of blood
through the circulatory system. It is believed that 3% of people actually have this predisposition. The
genetic test is 99% accurate if a person actually has the predisposition, meaning that the probability of a
positive test result when a person actually has the predisposition is 0.99. The test is 98% accurate if a
person does not have the predisposition. What is the probability that a randomly selected person who tests
positive for the predisposition by the test actually has the predisposition?

3.25 It’s never lupus. Lupus is a medical phenomenon where antibodies that are supposed to attack
foreign cells to prevent infections instead see plasma proteins as foreign bodies, leading to a high risk of
blood clotting. It is believed that 2% of the population suffer from this disease. The test is 98% accurate
if a person actually has the disease. The test is 74% accurate if a person does not have the disease. There
is a line from the Fox television show House that is often used after a patient tests positive for lupus: “It’s
never lupus.” Do you think there is truth to this statement? Use appropriate probabilities to support your
answer.

3.26 Exit poll. Edison Research gathered exit poll results from several sources for the Wisconsin recall
election of Scott Walker. They found that 53% of the respondents voted in favor of Scott Walker. Addition-
ally, they estimated that of those who did vote in favor for Scott Walker, 37% had a college degree, while
44% of those who voted against Scott Walker had a college degree. Suppose we randomly sampled a person
who participated in the exit poll and found that he had a college degree. What is the probability that he
voted in favor of Scott Walker?44

44New York Times, Wisconsin recall exit polls.

http://www.openintro.org/redirect.php?go=ahss_eoce_sol-student_outfits&referrer=ahss3_pdf
http://www.openintro.org/redirect.php?go=ahss_eoce_sol-tree_lupus&referrer=ahss3_pdf
http://www.openintro.org/redirect.php?go=textbook-nytimes_wi_exit_polls_2012&referrer=ahss3_pdf
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3.3 Simulations

What is the probability of getting a sum greater than 16 in three rolls of a die? Finding all possible

combinations that satisfy this would be tedious, but we could conduct a physical simulation or a

computer simulation to estimate this probability. With modern computing power, simulations have

become an important and powerful tool for data scientists. In this section, we will look at the

concepts that underlie simulations.

Learning objectives

1. Understand the purpose of a simulation and recognize the application of the long-run relative

frequency interpretation of probability.

2. Understand how random digit tables work and how to assign digits to outcomes.

3. Be able to repeat a simulation a set number of trials or until a condition is true, and use the

results to estimate the probability of interest.

3.3.1 Setting up and carrying out simulations

In the previous section we saw how to apply the binomial formula to find the probability of
exactly x successes in n independent trials when a success has probability p. Sometimes we have a
problem we want to solve but we don’t know the appropriate formula, or even worse, a formula may
not exist. In this case, one common approach is to estimate the probability using simulations.

You may already be familiar with simulations. Want to know the probability of rolling a sum
of 7 with a pair of dice? Roll a pair of dice many, many, many times and see what proportion of
times the sum is 7. The more times you roll the pair of dice, the better the estimate will tend to be.
Of course, such experiments can be time consuming or even infeasible.

In this section, we consider simulations using random numbers. Random numbers (or tech-
nically, psuedo-random numbers) can be produced using a calculator or computer. Random digits
are produced such that each digit, 0-9, is equally likely to come up in each spot. You’ll find that
occasionally we may have the same number in a row – sometimes multiple times – but in the long
run, each digit should appear 1/10th of the time.

Column
Row 1-5 6-10 11-15 16-20

1 43087 41864 51009 39689
2 63432 72132 40269 56103
3 19025 83056 62511 52598
4 85117 16706 31083 24816
5 16285 56280 01494 90240
6 94342 18473 50845 77757
7 61099 14136 39052 50235
8 37537 58839 56876 02960
9 04510 16172 90838 15210
10 27217 12151 52645 96218

Figure 3.17: Random number table. A full page of random numbers may be found
in Appendix C.1 on page 509.
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EXAMPLE 3.54

Mika’s favorite brand of cereal is running a special where 20% of the cereal boxes contain a prize.
Mika really wants that prize. If her mother buys 6 boxes of the cereal over the next few months,
what is the probability Mika will get a prize?

To solve this problem using simulation, we need to be able to assign digits to outcomes. Each box
should have a 20% chance of having a prize and an 80% chance of not having a prize. Therefore, a
valid assignment would be:

0, 1→ prize

2-9→ no prize

Of the ten possible digits (0, 1, 2, ..., 8, 9 ), two of them, i.e. 20% of them, correspond to winning
a prize, which exactly matches the odds that a cereal box contains a prize.

In Mika’s simulation, one trial will consist of 6 boxes of cereal, and therefore a trial will require six
digits (each digit will correspond to one box of cereal). We will repeat the simulation for 20 trials.
Therefore we will need 20 sets of 6 digits. Let’s begin on row 1 of the random digit table, shown
in Figure 3.17. If a trial consisted of 5 digits, we could use the first 5 digits going across: 43087.
Because here a trial consists of 6 digits, it may be easier to read down the table, rather than read
across. We will let trial 1 consist of the first 6 digits in column 1 (461819 ), trial 2 consist of the
first 6 digits in column 2 (339564 ), etc. For this simulation, we will end up using the first 6 rows of
each of the 20 columns.

In trial 1, there are two 1 ’s, so we record that as a success; in this trial there were actually two
prizes. In trial 2 there were no 0 ’s or 1 ’s, therefore we do not record this as a success. In trial 3
there were three prizes, so we record this as a success. The rest of this exercise is left as a Guided
Practice problem for you to complete.

GUIDED PRACTICE 3.55

Finish the simulation above and report the estimate for the probability that Mika will get a prize if
her mother buys 6 boxes of cereal where each one has a 20% chance of containing a prize.45

GUIDED PRACTICE 3.56

In the previous example, the probability that a box of cereal contains a prize is 20%. The question
presented is equivalent to asking, what is the probability of getting at least one prize in six randomly
selected boxes of cereal. This probability question can be solved explicitly using the method of
complements. Find this probability. How does the estimate arrived at by simulation compare to
this probability?46

45The trials that contain at least one 0 or 1 and therefore are successes are trials: 1, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13,
14, 15, 17, 18, 19, and 20. There were 17 successes among the 20 trials, so our estimate of the probability based on
this simulation is 17/20 = 0.85.

46The true probability is given by 1 − P (no prizes in six boxes) = 1 − 0.86 = 0.74. The estimate arrived at by
simulation was 11% too high. Note: We only repeated the simulation 20 times. If we had repeated it 1000 times, we
would (very likely) have gotten an estimate closer to the true probability.
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We can also use simulations to estimate quantities other than probabilities. Consider the
following example.

EXAMPLE 3.57

Let’s say that instead of buying exactly 6 boxes of cereal, Mika’s mother agrees to buy boxes of this
cereal until she finds one with a prize. On average, how many boxes of cereal would one have to
buy until one gets a prize?

For this question, we can use the same digit assignment. However, our stopping rule is different.
Each trial may require a different number of digits. For each trial, the stopping rule is: look at
digits until we encounter a 0 or a 1. Then, record how many digits/boxes of cereal it took. Repeat
the simulation for 20 trials, and then average the numbers from each trial.

Let’s begin again at row 1. We can read across or down, depending upon what is most convenient.
Since there are 20 columns and we want 20 trials, we will read down the columns. Starting at column
1, we count how many digits (boxes of cereal) we encounter until we reach a 0 or 1 (which represent
a prize). For trial 1 we see 461, so we record 3. For trial 2 we see 3395641, so we record 7. For trial
3, we see 0, so we record 1. The rest of this exercise is left as a Guided Practice problem for you to
complete.

GUIDED PRACTICE 3.58

Finish the simulation above and report your estimate for the average number of boxes of cereal one
would have to buy until encountering a prize, where the probability of a prize in each box is 20%.47

EXAMPLE 3.59

Now, consider a case where the probability of interest is not 20%, but rather 28%. Which digits
should correspond to success and which to failure?

This example is more complicated because with only 10 digits, there is no way to select exactly 28%
of them. Therefore, each observation will have to consist of two digits. We can use two digits at a
time and assign pairs of digits as follows:

00-27 → success

28-99 → failure

GUIDED PRACTICE 3.60

Assume the probability of winning a particular casino game is 45%. We want to carry out a simu-
lation to estimate the probability that we will win at least 5 times in 10 plays. We will use 30 trials
of the simulation. Assign digits to outcomes. Also, how many total digits will we require to run this
simulation?48

47For the 20 trials, the number of digits we see until we encounter a 0 or 1 is: 3,7,1,4,9, 4,1,2,4,5, 5,1,1,1,3, 8,5,2,2,6.
Now we take the average of these 20 numbers to get 74/20 = 3.7.

48One possible assignment is: 00-44 → win and 45-99 → lose. Each trial requires 10 pairs of digits, so we will
need 30 sets of 10 pairs of digits for a total of 30× 10× 2 = 600 digits.
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GUIDED PRACTICE 3.61

Assume carnival spinner has 7 slots. We want to carry out a simulation to estimate the probability
that we will win at least 10 times in 60 plays. Repeat 100 trials of the simulation. Assign digits to
outcomes. Also, how many total digits will we require to run this simulation?49

Does anyone perform simulations like this? Sort of. Simulations are used a lot in statistics, and
these often require the same principles covered in this section to properly set up those simulations.
The difference is in implementation after the setup. Rather than use a random number table, a data
scientist will write a program that uses a pseudo-random number generator in a computer to run
the simulations very quickly – often times millions of trials each second, which provides much more
accurate estimates than running a couple dozen trials by hand.

Section summary

• When a probability is difficult to determine via a formula, one can set up a simulation to
estimate the probability.

• The relative frequency theory of probability and the Law of Large Numbers are the
mathematical underpinning of simulations. A larger number of trials should tend to produce
better estimates.

• The first step to setting up a simulation is to assign digits to represent outcomes. This should
be done in such a way as to give the event of interest the correct probability. Then, using a
random number table, calculator, or computer, generate random digits (outcomes). Repeat
this a specified number of trials or until a given stopping rule. When this is finished, count
up how many times the event happened and divide that by the number of trials to get the
estimate of the probability.

49Note that 1/7 = 0.142857... This makes it tricky to assign digits to outcomes. The best approach here would be
to exclude some of the digits from the simulation. We can assign 0 to success and 1-6 to failure. This corresponds to
a 1/7 chance of getting a success. If we encounter a 7, 8, or 9, we will just skip over it. Because we don’t know how
many 7, 8, or 9 ’s we will encounter, we do not know how many total digits we will end up using for the simulation.
(If you want a challenge, try to estimate the total number of digits you would need.)
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Exercises

3.27 Smog check, Part I . Suppose 16% of cars fail pollution tests (smog checks) in California. We would
like to estimate the probability that an entire fleet of seven cars would pass using a simulation. We assume
each car is independent. We only want to know if the entire fleet passed, i.e. none of the cars failed. What
is wrong with each of the following simulations to represent whether an entire (simulated) fleet passed?

(a) Flip a coin seven times where each toss represents a car. A head means the car passed and a tail means
it failed. If all cars passed, we report PASS for the fleet. If at least one car failed, we report FAIL.

(b) Read across a random number table starting at line 5. If a number is a 0 or 1, let it represent a failed
car. Otherwise the car passes. We report PASS if all cars passed and FAIL otherwise.

(c) Read across a random number table, looking at two digits for each simulated car. If a pair is in the
range [00-16], then the corresponding car failed. If it is in [17-99], the car passed. We report PASS if
all cars passed and FAIL otherwise.

3.28 Left-handed. Studies suggest that approximately 10% of the world population is left-handed. Use ten
simulations to answer each of the following questions. For each question, describe your simulation scheme
clearly.

(a) What is the probability that at least one out of eight people are left-handed?

(b) On average, how many people would you have to sample until the first person who is left-handed?

(c) On average, how many left-handed people would you expect to find among a random sample of six
people?

3.29 Smog check, Part II . Consider the fleet of seven cars in Exercise 3.27. Remember that 16% of cars
fail pollution tests (smog checks) in California, and that we assume each car is independent.

(a) Write out how to calculate the probability of the fleet failing, i.e. at least one of the cars in the fleet
failing, via simulation.

(b) Simulate 5 fleets. Based on these simulations, estimate the probability at least one car will fail in a fleet.

(c) Compute the probability at least one car fails in a fleet of seven.

3.30 To catch a thief. Suppose that at a retail store, 1/5th of all employees steal some amount of merchan-
dise. The stores would like to put an end to this practice, and one idea is to use lie detector tests to catch
and fire thieves. However, there is a problem: lie detectors are not 100% accurate. Suppose it is known that
a lie detector has a failure rate of 25%. A thief will slip by the test 25% of the time and an honest employee
will only pass 75% of the time.

(a) Describe how you would simulate whether an employee is honest or is a thief using a random number
table. Write your simulation very carefully so someone else can read it and follow the directions exactly.

(b) Using a random number table, simulate 20 employees working at this store and determine if they are
honest or not. Make sure to record the random digits assigned to each employee as you will refer back
to these in part (c).

(c) Determine the result of the lie detector test for each simulated employee from part (b) using a new
simulation scheme.

(d) How many of these employees are “honest and passed” and how many are “honest and failed”?

(e) How many of these employees are “thief and passed” and how many are “thief and failed”?

(f) Suppose the management decided to fire everyone who failed the lie detector test. What percent of fired
employees were honest? What percent of not fired employees were thieves?
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3.4 Random variables

The chance of landing on single number in the game of roulette is 1/38 and the pay is 35:1. The

chance of landing on Red is 18/38 and the pay is 1:1. Which game has the higher expected value?

The higher standard deviation of expected winnings? How do we interpret these quantities in this

context? If you were to play each game 20 times, what would the distribution of possible outcomes

look like? In this section, we define and summarize random variables such as this, and we look at

some of their properties.

Learning objectives

1. Define a probability distribution and what makes a distribution a valid probability distribution.

2. Summarize a discrete probability distribution graphically using a histogram and verbally with

respect to center, spread, and shape.

3. Calculate and interpret the mean (expected value) and standard deviation of a random variable.

4. Calculate the mean and standard deviation of a transformed random variable.

5. Calculate the mean of the sum or difference of random variables.

6. Calculate the standard deviation of the sum or difference of random variables when those

variables are independent.

3.4.1 Introduction to expected value

EXAMPLE 3.62

Two books are assigned for a statistics class: a textbook and its corresponding study guide. The
university bookstore determined 20% of enrolled students do not buy either book, 55% buy the
textbook only, and 25% buy both books, and these percentages are relatively constant from one
term to another. If there are 100 students enrolled, how many books should the bookstore expect
to sell to this class?

Around 20 students will not buy either book (0 books total), about 55 will buy one book (55 books
total), and approximately 25 will buy two books (totaling 50 books for these 25 students). The
bookstore should expect to sell about 105 books for this class.

GUIDED PRACTICE 3.63

Would you be surprised if the bookstore sold slightly more or less than 105 books?50

50If they sell a little more or a little less, this should not be a surprise. Hopefully Chapter 2 helped make clear
that there is natural variability in observed data. For example, if we would flip a coin 100 times, it will not usually
come up heads exactly half the time, but it will probably be close.
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EXAMPLE 3.64

The textbook costs $137 and the study guide $33. How much revenue should the bookstore expect
from this class of 100 students?

About 55 students will just buy a textbook, providing revenue of

$137× 55 = $7, 535

The roughly 25 students who buy both the textbook and the study guide would pay a total of

($137 + $33)× 25 = $170× 25 = $4, 250

Thus, the bookstore should expect to generate about $7, 535 + $4, 250 = $11, 785 from these 100
students for this one class. However, there might be some sampling variability so the actual amount
may differ by a little bit.
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Figure 3.18: Probability distribution for the bookstore’s revenue from one student.
The triangle represents the average revenue per student.

EXAMPLE 3.65

What is the average revenue per student for this course?

The expected total revenue is $11,785, and there are 100 students. Therefore the expected revenue
per student is $11, 785/100 = $117.85.

3.4.2 Probability distributions

A probability distribution is a table of all disjoint outcomes and their associated probabili-
ties. Figure 3.19 shows the probability distribution for the sum of two dice.

RULES FOR PROBABILITY DISTRIBUTIONS

A probability distribution is a list of the possible outcomes with corresponding probabilities
that satisfies three rules:

1. The outcomes listed must be disjoint.

2. Each probability must be between 0 and 1.

3. The probabilities must total 1.
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GUIDED PRACTICE 3.66

Figure 3.20 suggests three distributions for household income in the United States. Only one is
correct. Which one must it be? What is wrong with the other two?51

Dice sum 2 3 4 5 6 7 8 9 10 11 12

Probability 1
36

2
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Figure 3.19: Probability distribution for the sum of two dice.

Income range ($1000s) 0-25 25-50 50-100 100+
(a) 0.18 0.39 0.33 0.16
(b) 0.38 -0.27 0.52 0.37
(c) 0.28 0.27 0.29 0.16

Figure 3.20: Proposed distributions of US household incomes (Guided Prac-
tice 3.66).

Chapter 2 emphasized the importance of plotting data to provide quick summaries. Probability
distributions can also be summarized in a histogram or bar plot. The probability distribution for the
sum of two dice is shown in Figure 3.19 and its histogram is plotted in Figure 3.21. The distribution
of US household incomes is shown in Figure 3.22 as a bar plot. The presence of the 100+ category
makes it difficult to represent it with a regular histogram.
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Figure 3.21: A histogram for the probability distribution of the sum of two dice.

In these bar plots, the bar heights represent the probabilities of outcomes. If the outcomes are
numerical and discrete, it is usually (visually) convenient to make a histogram, as in the case of
the sum of two dice. Another example of plotting the bars at their respective locations is shown in
Figure 3.18.

51The probabilities of (a) do not sum to 1. The second probability in (b) is negative. This leaves (c), which sure
enough satisfies the requirements of a distribution. One of the three was said to be the actual distribution of US
household incomes, so it must be (c).
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Figure 3.22: A bar graph for the probability distribution of US household income.
Because it is artificially separated into four unequal bins, this graph fails to show
the shape or skew of the distribution.

3.4.3 Expectation

We call a variable or process with a numerical outcome a random variable, and we usually
represent this random variable with a capital letter such as X, Y , or Z. The amount of money a
single student will spend on her statistics books is a random variable, and we represent it by X.

RANDOM VARIABLE

A random process or variable with a numerical outcome.

The possible outcomes of X are labeled with a corresponding lower case letter x and subscripts.
For example, we write x1 = $0, x2 = $137, and x3 = $170, which occur with probabilities 0.20, 0.55,
and 0.25. The distribution of X is summarized in Figure 3.18 and Figure 3.23.

i 1 2 3 Total
xi $0 $137 $170 –
P (xi) 0.20 0.55 0.25 1.00

Figure 3.23: The probability distribution for the random variable X, representing
the bookstore’s revenue from a single student. We use P (xi) to represent the
probability of xi.

We computed the average outcome of X as $117.85 in Example 3.65. We call this average the
expected value of X, denoted by E(X). The expected value of a random variable is computed by
adding each outcome weighted by its probability:

E(X) = 0 · P (0) + 137 · P (137) + 170 · P (170)

= 0 · 0.20 + 137 · 0.55 + 170 · 0.25 = 117.85

EXPECTED VALUE OF A DISCRETE RANDOM VARIABLE

If X takes outcomes x1, x2, ..., xn with probabilities P (x1), P (x2), ..., P (xn), the mean, or
expected value, of X is the sum of each outcome multiplied by its corresponding probability:

µX = E(X) = x1 · P (x1) + x2 · P (x2) + · · ·+ xn · P (xn)

=

n∑
i=1

xi · P (xi)
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The expected value for a random variable represents the average outcome. For example, E(X) =
117.85 represents the average amount the bookstore expects to make from a single student, which
we could also write as µ = 117.85. While the bookstore will make more than this on some students
and less than this on other students, the average of many randomly selected students will be near
$117.85.

It is also possible to compute the expected value of a continuous random variable. However, it
requires a little calculus and we save it for a later class.52

In physics, the expectation holds the same meaning as the center of gravity. The distribution
can be represented by a series of weights at each outcome, and the mean represents the balancing
point. This is represented in Figures 3.18 and 3.24. The idea of a center of gravity also expands
to continuous probability distributions. Figure 3.25 shows a continuous probability distribution
balanced atop a wedge placed at the mean.

0 137 170

117.85

Figure 3.24: A weight system representing the probability distribution for X. The
string holds the distribution at the mean to keep the system balanced.

µ

Figure 3.25: A continuous distribution can also be balanced at its mean.

52µX =
∫
xf(x)dx where f(x) represents a function for the density curve.
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3.4.4 Variability in random variables

Suppose you ran the university bookstore. Besides how much revenue you expect to generate,
you might also want to know the volatility (variability) in your revenue.

The variance and standard deviation can be used to describe the variability of a random variable.
Section 2.2.2 introduced a method for finding the variance and standard deviation for a data set. We
first computed deviations from the mean (xi−µ), squared those deviations, and took an average to
get the variance. In the case of a random variable, we again compute squared deviations. However,
we take their sum weighted by their corresponding probabilities, just like we did for the expectation.
This weighted sum of squared deviations equals the variance, and we calculate the standard deviation
by taking the square root of the variance, just as we did in Section 2.2.2.

VARIANCE AND STANDARD DEVIATION OF A DISCRETE RANDOM VARIABLE

If X takes outcomes x1, x2, ..., xn with probabilities P (x1), P (x2), ..., P (xn) and expected
value µX = E(X), then to find the standard deviation of X, we first find the variance and then
take its square root.

V ar(X) = σ2
x = (x1 − µX)2 · P (x1) + (x2 − µX)2 · P (x2) + · · ·+ (xn − µX)2 · P (xn)

=

n∑
i=1

(xi − µX)2 · P (xi)

SD(X) = σX =

√√√√ n∑
i=1

(xi − µX)2 · P (xi)

Just as it is possible to compute the mean of a continuous random variable using calculus, we
can also use calculus to compute the variance.53 However, this topic is beyond the scope of the AP
exam.

EXAMPLE 3.67

Compute the expected value, variance, and standard deviation of X, the revenue of a single statistics
student for the bookstore.

It is useful to construct a table that holds computations for each outcome separately, then add up
the results.

i 1 2 3 Total
xi $0 $137 $170
P (xi) 0.20 0.55 0.25
xi · P (xi) 0 75.35 42.50 117.85

Thus, the expected value is µX = 117.85, which we computed earlier. The variance can be con-
structed using a similar table:

i 1 2 3 Total
xi $0 $137 $170
P (xi) 0.20 0.55 0.25
xi − µX -117.85 19.15 52.15
(xi − µX)2 13888.62 366.72 2719.62
(xi − µX)2 · P (xi) 2777.7 201.7 679.9 3659.3

The variance of X is σ2
X = 3659.3, which means the standard deviation is σX =

√
3659.3 = $60.49.

53σ2
x =

∫
(x− µX)2f(x)dx where f(x) represents a function for the density curve.
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GUIDED PRACTICE 3.68

The bookstore also offers a chemistry textbook for $159 and a book supplement for $41. From past
experience, they know about 25% of chemistry students just buy the textbook while 60% buy both
the textbook and supplement.54

(a) What proportion of students don’t buy either book? Assume no students buy the supplement
without the textbook.

(b) Let Y represent the revenue from a single student. Write out the probability distribution of
Y , i.e. a table for each outcome and its associated probability.

(c) Compute the expected revenue from a single chemistry student.

(d) Find the standard deviation to describe the variability associated with the revenue from a
single student.

3.4.5 Linear transformations of a random variable

An online store is selling a limited edition t-shirt. The maximum a person is allowed to buy
is 3. Let X be a random variable that represents how many of the t-shirts a t-shirt buyer orders.
The probability distribution of X is given in the following table.

xi 1 2 3
P (xi) 0.6 0.3 0.1

Using the methods of the previous section we can find that the mean µX = 1.5 and the standard
deviation σX = 0.67. Suppose that the cost of each t-shirt is $30 and that there is flat rate $5 shipping
fee. The amount of money a t-shirt buyer pays, then, is 30X + 5, where X is the number of t-shirts
ordered. To calculate the mean and standard deviation for the amount of money a t-shirt buyers
pays, we could define a new variable Y as follows:

Y = 30X + 5

GUIDED PRACTICE 3.69

Verify that the distribution of Y is given by the table below.55

yi $35 $65 $95
P (yi) 0.6 0.3 0.1

54(a) 100% - 25% - 60% = 15% of students do not buy any books for the class. Part (b) is represented by the first
two lines in the table below. The expectation for part (c) is given as the total on the line yi · P (yi). The result of

part (d) is the square-root of the variance listed on in the total on the last line: σY =
√
V ar(Y ) =

√
4800 = 69.28.

i (scenario) 1 (noBook) 2 (textbook) 3 (both) Total
yi 0.00 159.00 200.00

P (yi) 0.15 0.25 0.60
yi · P (yi) 0.00 39.75 120.00 E(Y ) = 159.75
yi − µY -159.75 -0.75 40.25

(yi − µY)2 25520.06 0.56 1620.06
(yi − µY)2 · P (yi) 3828.0 0.1 972.0 V ar(Y ) ≈ 4800

5530× 1 + 5 = 35; 30× 2 + 5 = 65; 30× 3 + 5 = 95
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Using this new table, we can compute the mean and standard deviation of the cost for t-
shirt orders. However, because Y is a linear transformation of X, we can use the properties from
Section 2.2.7. Recall that multiplying every X by 30 multiplies both the mean and standard deviation
by 30. Adding 5 only adds 5 to the mean, not the standard deviation. Therefore,

µ30X+5 = E(30X + 5) σ30X+5 = SD(30X + 5)

= 30× E(X) + 5 = 30× SD(X)

= 30× 1.5 + 5 = 30× 0.67

= 50.00 = 20.10

Among t-shirt buyers, they spend an average of $50.00, with a standard deviation of $20.10.

LINEAR TRANSFORMATIONS OF A RANDOM VARIABLE

If X is a random variable, then a linear transformation is given by aX + b, where a and b are
some fixed numbers.

E(aX + b) = a× E(X) + b SD(aX + b) = |a| × SD(X)

3.4.6 Linear combinations of random variables

So far, we have thought of each variable as being a complete story in and of itself. Sometimes
it is more appropriate to use a combination of variables. For instance, the amount of time a person
spends commuting to work each week can be broken down into several daily commutes. Similarly,
the total gain or loss in a stock portfolio is the sum of the gains and losses in its components.

EXAMPLE 3.70

John travels to work five days a week. We will use X1 to represent his travel time on Monday, X2 to
represent his travel time on Tuesday, and so on. Write an equation using X1, ..., X5 that represents
his travel time for the week, denoted by W .

His total weekly travel time is the sum of the five daily values:

W = X1 +X2 +X3 +X4 +X5

Breaking the weekly travel time W into pieces provides a framework for understanding each source
of randomness and is useful for modeling W .

EXAMPLE 3.71

It takes John an average of 18 minutes each day to commute to work. What would you expect his
average commute time to be for the week?

We were told that the average (i.e. expected value) of the commute time is 18 minutes per day:
E(Xi) = 18. To get the expected time for the sum of the five days, we can add up the expected
time for each individual day:

E(W ) = E(X1 +X2 +X3 +X4 +X5)

= E(X1) + E(X2) + E(X3) + E(X4) + E(X5)

= 18 + 18 + 18 + 18 + 18 = 90 minutes

The expectation of the total time is equal to the sum of the expected individual times. More
generally, the expectation of a sum of random variables is always the sum of the expectation for
each random variable.
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GUIDED PRACTICE 3.72

Elena is selling a TV at a cash auction and also intends to buy a toaster oven in the auction. If
X represents the profit for selling the TV and Y represents the cost of the toaster oven, write an
equation that represents the net change in Elena’s cash.56

GUIDED PRACTICE 3.73

Based on past auctions, Elena figures she should expect to make about $175 on the TV and pay
about $23 for the toaster oven. In total, how much should she expect to make or spend?57

GUIDED PRACTICE 3.74

Would you be surprised if John’s weekly commute wasn’t exactly 90 minutes or if Elena didn’t make
exactly $152? Explain.58

Two important concepts concerning combinations of random variables have so far been in-
troduced. First, a final value can sometimes be described as the sum of its parts in an equation.
Second, intuition suggests that putting the individual average values into this equation gives the
average value we would expect in total. This second point needs clarification – it is guaranteed to
be true in what are called linear combinations of random variables.

A linear combination of two random variables X and Y is a fancy phrase to describe a
combination

aX + bY

where a and b are some fixed and known numbers. For John’s commute time, there were five random
variables – one for each work day – and each random variable could be written as having a fixed
coefficient of 1:

1X1 + 1X2 + 1X3 + 1X4 + 1X5

For Elena’s net gain or loss, the X random variable had a coefficient of +1 and the Y random
variable had a coefficient of -1.

When considering the average of a linear combination of random variables, it is safe to plug
in the mean of each random variable and then compute the final result. For a few examples of
nonlinear combinations of random variables – cases where we cannot simply plug in the means – see
the footnote.59

LINEAR COMBINATIONS OF RANDOM VARIABLES AND THE AVERAGE RESULT

If X and Y are random variables, then a linear combination of the random variables is given
by aX + bY , where a and b are some fixed numbers. To compute the average value of a linear
combination of random variables, plug in the average of each individual random variable and
compute the result:

E(aX + bY ) = a× E(X) + b× E(Y )

Recall that the expected value is the same as the mean, i.e. E(X) = µX.

56She will make X dollars on the TV but spend Y dollars on the toaster oven: X − Y .
57E(X − Y ) = E(X)− E(Y ) = 175− 23 = $152. She should expect to make about $152.
58No, since there is probably some variability. For example, the traffic will vary from one day to next, and auction

prices will vary depending on the quality of the merchandise and the interest of the attendees.
59If X and Y are random variables, consider the following combinations: X1+Y , X × Y , X/Y . In such cases,

plugging in the average value for each random variable and computing the result will not generally lead to an accurate
average value for the end result.
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EXAMPLE 3.75

Leonard has invested $6000 in Google Inc. (stock ticker: GOOG) and $2000 in Exxon Mobil Corp.
(XOM). If X represents the change in Google’s stock next month and Y represents the change in
Exxon Mobil stock next month, write an equation that describes how much money will be made or
lost in Leonard’s stocks for the month.

For simplicity, we will suppose X and Y are not in percents but are in decimal form (e.g. if Google’s
stock increases 1%, then X = 0.01; or if it loses 1%, then X = −0.01). Then we can write an
equation for Leonard’s gain as

$6000×X + $2000× Y

If we plug in the change in the stock value for X and Y , this equation gives the change in value of
Leonard’s stock portfolio for the month. A positive value represents a gain, and a negative value
represents a loss.

GUIDED PRACTICE 3.76

Suppose Google and Exxon Mobil stocks have recently been rising 2.1% and 0.4% per month,
respectively. Compute the expected change in Leonard’s stock portfolio for next month.60

GUIDED PRACTICE 3.77

You should have found that Leonard expects a positive gain in Guided Practice 3.76. However,
would you be surprised if he actually had a loss this month?61

3.4.7 Variability in linear combinations of random variables

Quantifying the average outcome from a linear combination of random variables is helpful, but
it is also important to have some sense of the uncertainty associated with the total outcome of that
combination of random variables. The expected net gain or loss of Leonard’s stock portfolio was
considered in Guided Practice 3.76. However, there was no quantitative discussion of the volatility
of this portfolio. For instance, while the average monthly gain might be about $134 according to
the data, that gain is not guaranteed. Figure 3.26 shows the monthly changes in a portfolio like
Leonard’s during the 36 months from 2009 to 2011. The gains and losses vary widely, and quantifying
these fluctuations is important when investing in stocks.

Monthly returns (2009−2011)

−1000 −500 0 500 1000

Figure 3.26: The change in a portfolio like Leonard’s for the 36 months from 2009
to 2011, where $6000 is in Google’s stock and $2000 is in Exxon Mobil’s.

Just as we have done in many previous cases, we use the variance and standard deviation
to describe the uncertainty associated with Leonard’s monthly returns. To do so, the standard
deviations and variances of each stock’s monthly return will be useful, and these are shown in
Figure 3.27. The stocks’ returns are nearly independent.

60E($6000×X + $2000× Y ) = $6000× 0.021 + $2000× 0.004 = $134.
61No. While stocks tend to rise over time, they are often volatile in the short term.
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Mean (x̄) Standard deviation (s) Variance (s2)
GOOG 0.0210 0.0849 0.0072
XOM 0.0038 0.0520 0.0027

Figure 3.27: The mean, standard deviation, and variance of the GOOG and XOM
stocks. These statistics were estimated from historical stock data, so notation used
for sample statistics has been used.

We want to describe the uncertainty of Leonard’s monthly returns by finding the standard
deviation of the return on his combined portfolio. First, we note that the variance of a sum has a
nice property: the variance of a sum is the sum of the variances. That is, if X and Y are independent
random variables:

V ar(X + Y ) = V ar(X) + V ar(Y )

Because the standard deviation is the square root of the variance, we can rewrite this equation using
standard deviations:

(SDX+Y )2 = (SDX)2 + (SDY )2

This equation might remind you of a theorem from geometry: c2 = a2 + b2. The equation for
the standard deviation of the sum of two independent random variables looks analogous to the
Pythagorean Theorem. Just as the Pythagorean Theorem only holds for right triangles, this equation
only holds when X and Y are independent.62

STANDARD DEVIATION OF THE SUM AND DIFFERENCE OF RANDOM VARIABLES

If X and Y are independent random variables:

SDX+Y = SDX−Y =
√

(SDX)2 + (SDY )2

Because SDY = SD−Y , the standard deviation of the difference of two variables equals the
standard deviation of the sum of two variables. This property holds for more than two variables as
well. For example, if X, Y, and Z are independent random variables:

SDX+Y+Z = SDX−Y−Z =
√

(SDX)2 + (SDY )2 + (SDZ)2

If we need the standard deviation of a linear combination of independent variables, such as
aX+ bY , we can consider aX and bY as two new variables. Recall that multiplying all of the values
of variable by a positive constant multiplies the standard deviation by that constant. Thus, SDaX

= a× SDX and SDbY = b× SDY . It follows that:

SDaX+bY =
√

(a× SDX)2 + (b× SDY )2

This equation can be used to compute the standard deviation of Leonard’s monthly return. Recall
that Leonard has $6,000 in Google stock and $2,000 in Exxon Mobil’s stock. From Figure 3.27, the
standard deviation of Google stock is 0.0849 and the standard deviation of Exxon Mobile stock is
0.0520.

SD6000X+2000Y =
√

(6000× SDX)2 + (2000× SDY )2

=
√

(6000× 0.0849)2 + (2000× .0520)2

=
√

270,304 = 520

The standard deviation of the total is $520. While an average monthly return of $134 on an $8000
investment is nothing to scoff at, the monthly returns are so volatile that Leonard should not expect
this income to be very stable.

62Another word for independent is orthogonal, meaning right angle! When X and Y are dependent, the equation
for SDX+Y becomes analogous to the law of cosines.
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STANDARD DEVIATION OF LINEAR COMBINATIONS OF RANDOM VARIABLES

To find the standard deviation of a linear combination of random variables, we first consider
aX and bY separately. We find the standard deviation of each, and then we apply the equation
for the standard deviation of the sum of two variables:

SDaX+bY =
√

(a× SDX)2 + (b× SDY )2

This equation is valid as long as the random variables X and Y are independent of each other.

EXAMPLE 3.78

Suppose John’s daily commute has a standard deviation of 4 minutes. What is the uncertainty in
his total commute time for the week?

The expression for John’s commute time is

X1 +X2 +X3 +X4 +X5

Each coefficient is 1, so the standard deviation of the total weekly commute time is

SD =
√

(1× 4)2 + (1× 4)2 + (1× 4)2 + (1× 4)2 + (1× 4)2

=
√

5× (4)2

= 8.94

The standard deviation for John’s weekly work commute time is about 9 minutes.

GUIDED PRACTICE 3.79

The computation in Example 3.78 relied on an important assumption: the commute time for each
day is independent of the time on other days of that week. Do you think this is valid? Explain.63

GUIDED PRACTICE 3.80

Consider Elena’s two auctions from Guided Practice 3.72 on page 185. Suppose these auctions are
approximately independent and the variability in auction prices associated with the TV and toaster
oven can be described using standard deviations of $25 and $8. Compute the standard deviation of
Elena’s net gain.64

Consider again Guided Practice 3.80. The negative coefficient for Y in the linear combination
was eliminated when we squared the coefficients. This generally holds true: negatives in a linear
combination will have no impact on the variability computed for a linear combination, but they do
impact the expected value computations.

63One concern is whether traffic patterns tend to have a weekly cycle (e.g. Fridays may be worse than other days).
If that is the case, and John drives, then the assumption is probably not reasonable. However, if John walks to work,
then his commute is probably not affected by any weekly traffic cycle.

64The equation for Elena can be written as: (1)×X + (−1)× Y . To find the SD of this new variable we do:

SD(1)×X+(−1)×Y =
√

(1× SDX)2 + (−1× SDY )2 = (1× 25)2 + (−1× 8)2 = 26.25

The SD is about $26.25.
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3.4.8 Normal approximation for sums of random variables

We have seen that many distributions are approximately normal. The sum and the difference
of normally distributed variables is also normal. While we cannot prove this here, the usefulness of
it is seen in the following example.

EXAMPLE 3.81

Three friends are playing a cooperative video game in which they have to complete a puzzle as fast
as possible. Assume that the individual times of the 3 friends are independent of each other. The
individual times of the friends in similar puzzles are approximately normally distributed with the
following means and standard deviations.

Mean SD
Friend 1 5.6 0.11
Friend 2 5.8 0.13
Friend 3 6.1 0.12

To advance to the next level of the game, the friends’ total time must not exceed 17.1 minutes.
What is the probability that they will advance to the next level?

Because each friend’s time is approximately normally distributed, the sum of their times is also
approximately normally distributed. We will do a normal approximation, but first we need to find
the mean and standard deviation of the sum. We learned how to do this in Section 3.4.

Let the three friends be labeled X, Y , Z. We want P (X + Y + Z < 17.1). The mean and standard
deviation of the sum of X, Y , and Z is given by:

µsum = E(X + Y + Z) σsum =
√

(SDX)2 + (SDY )2 + (SDZ)2

= E(X) + E(Y ) + E(Z) =
√

(0.11)2 + (0.13)2 + (0.12)2

= 5.6 + 5.8 + 6.1 = 0.208

= 17.5

Now we can find the Z-score.

Z =
xsum − µsum

σsum

=
17.1− 17.5

0.208
= −1.92

Finally, we want the probability that the sum is less than 17.5, so we shade the area to the left of
Z = −1.92. Using technology, we get

P (Z < −1.92) = 0.027

There is a 2.7% chance that the friends will advance to the next level.

GUIDED PRACTICE 3.82

What is the probability that Friend 2 will complete the puzzle with a faster time than Friend 1?
Hint: find P (Y < X), or P (Y −X < 0).65

65First find the mean and standard deviation of Y − X. The mean of Y − X is µY−X = 5.8 − 5.6 = 0.2. The

standard deviation is SDY−X =
√

(0.13)2 + (0.11)2 = 0.170. Then Z = 0−0.2
0.170

= −1.18 and P (Z < −1.18) = .119.
There is an 11.9% chance that Friend 2 will complete the puzzle with a faster time than Friend 1.
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Section summary

• A discrete probability distribution can be summarized in a table that consists of all
possible outcomes of a random variable and the probabilities of those outcomes. The outcomes
must be disjoint, and the sum of the probabilities must equal 1.

• A probability distribution can be represented with a histogram and, like the distributions of
data that we saw in Chapter 2, can be summarized by its center, spread, and shape.

• When given a probability distribution table, we can calculate the mean (expected value) and
standard deviation of a random variable using the following formulas.

E(X) = µX =
∑

xi · P (xi)

= x1 · P (x1) + x2 · P (x2) + · · ·+ xn · P (xn)

V ar(X) = σ2
x =

∑
(xi − µX)2 · P (xi)

SD(X) = σX =
√∑

(xi − µX)2 · P (xi)

=
√

(x1 − µX)2 · P (x1) + (x2 − µX)2 · P (x2) + · · ·+ (xn − µX)2 · P (xn)

We can think of P (xi) as the weight, and each term is weighted its appropriate amount.

• The mean of a probability distribution does not need to be a value in the distribution. It rep-
resents the average of many, many repetitions of a random process. The standard deviation
represents the typical variation of the outcomes from the mean, when the random process is
repeated over and over.

• Linear transformations. Adding a constant to every value in a probability distribution adds
that value to the mean, but it does not affect the standard deviation. When multiplying every
value by a constant, this multiplies the mean by the constant and it multiplies the standard
deviation by the absolute value of the constant.

• Combining random variables. Let X and Y be random variables and let a and b be
constants.

– The expected value of the sum is the sum of the expected values.

E(X + Y ) = E(X) + E(Y )

E(aX + bY ) = a× E(X) + b× E(Y )

– When X and Y are independent: The standard deviation of a sum or a difference is the
square root of the sum of each standard deviation squared.

SD(X + Y ) =
√

(SD(X))2 + (SD(Y ))2

SD(X − Y ) =
√

(SD(X))2 + (SD(Y ))2

SD(aX + bY ) =
√

(a× SD(X))2 + (b× SD(Y ))2

The SD properties require that X and Y be independent. The expected value properties hold
true whether or not X and Y are independent.

• Because the sum or difference of two normally distributed variables is itself a normally dis-
tributed variable, the normal approximation is also used in the following type of problem.

Find the probability that a sum X + Y or a difference X − Y is greater/less than some value.

1. Verify that the distribution of X and the distribution of Y are approximately normal.

2. Find the mean of the sum or difference. Recall: the mean of a sum is the
sum of the means. The mean of a difference is the difference of the means.
Find the SD of the sum or difference using:
SD(X + Y ) = SD(X − Y ) =

√
(SD(X))2 + (SD(Y ))2.

3. Calculate the Z-score. Use the calculated mean and SD to standardize the given sum or
difference.

4. Find the appropriate area under the normal curve.
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Exercises

3.31 Patreon contributions. The distribution of monthly contributions made to a particular Patreon
creator is given as follows:

Monthly Contribution $3 $5 $10 $25
Proportion 0.50 0.30 0.15 0.05

(a) Compute the average monthly contribution made to this creator.

(b) Compute the standard deviation of the monthly contributions made to this creator.

3.32 Experiment launch impact. An online shopping website develops new features and iterates on its
product recommendations on a regular basis. The team also uses an experiment when launching each new
feature to assess the impact of the change on the total sales. Below is a summary table of the impacts that
the team observes:

Number of Sales From Launch -200 0 +200 +500
Proportion of Launches 0.1 0.5 0.3 0.1

(a) Compute the average impact for the experiments.

(b) Compute the standard deviation of the impact from these experiments.

3.33 Hearts win. In a new card game, you start with a well-shuffled full deck and draw 3 cards without
replacement. If you draw 3 hearts, you win $50. If you draw 3 black cards, you win $25. For any other
draws, you win nothing.

(a) Create a probability model for the amount you win at this game, and find the expected winnings. Also
compute the standard deviation of this distribution.

(b) If the game costs $5 to play, what would be the expected value and standard deviation of the net profit
(or loss)? (Hint: profit = winnings − cost; X − 5)

(c) If the game costs $5 to play, should you play this game? Explain.

3.34 Ace of clubs wins. Consider the following card game with a well-shuffled deck of cards. If you draw
a red card, you win nothing. If you get a spade, you win $5. For any club, you win $10 plus an extra $20
for the ace of clubs.

(a) Create a probability model for the amount you win at this game. Also, find the expected winnings for
a single game and the standard deviation of the winnings.

(b) What is the maximum amount you would be willing to pay to play this game? Explain your reasoning.

3.35 Portfolio return. A portfolio’s value increases by 18% during a financial boom and by 9% during
normal times. It decreases by 12% during a recession. What is the expected return on this portfolio if each
scenario is equally likely?

3.36 Baggage fees. An airline charges the following baggage fees: $25 for the first bag and $35 for the
second. Suppose 54% of passengers have no checked luggage, 34% have one piece of checked luggage and
12% have two pieces. We suppose a negligible portion of people check more than two bags.

(a) Build a probability model, compute the average revenue per passenger, and compute the corresponding
standard deviation.

(b) About how much revenue should the airline expect for a flight of 120 passengers? With what standard
deviation? Note any assumptions you make and if you think they are justified.

3.37 American roulette. The game of American roulette involves spinning a wheel with 38 slots: 18 red,
18 black, and 2 green. A ball is spun onto the wheel and will eventually land in a slot, where each slot has
an equal chance of capturing the ball. Gamblers can place bets on red or black. If the ball lands on their
color, they double their money. If it lands on another color, they lose their money. Suppose you bet $1 on
red. What’s the expected value and standard deviation of your winnings?
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3.38 European roulette. The game of European roulette involves spinning a wheel with 37 slots: 18 red,
18 black, and 1 green. A ball is spun onto the wheel and will eventually land in a slot, where each slot has
an equal chance of capturing the ball. Gamblers can place bets on red or black. If the ball lands on their
color, they double their money. If it lands on another color, they lose their money.

(a) Suppose you play roulette and bet $3 on a single round. What is the expected value and standard
deviation of your total winnings?

(b) Suppose you bet $1 in three different rounds. What is the expected value and standard deviation of
your total winnings?

(c) How do your answers to parts (a) and (b) compare? What does this say about the riskiness of the two
games?

3.39 Lemonade at The Cafe. Drink pitchers at The Cafe are intended to hold about 64 ounces of lemonade
and glasses hold about 12 ounces. However, when the pitchers are filled by a server, they do not always fill
it with exactly 64 ounces. There is some variability. Similarly, when they pour out some of the lemonade,
they do not pour exactly 12 ounces. The amount of lemonade in a pitcher is normally distributed with mean
64 ounces and standard deviation 1.732 ounces. The amount of lemonade in a glass is normally distributed
with mean 12 ounces and standard deviation 1 ounce.

(a) How much lemonade would you expect to be left in a pitcher after pouring one glass of lemonade?

(b) What is the standard deviation of the amount left in a pitcher after pouring one glass of lemonade?

(c) What is the probability that more than 50 ounces of lemonade is left in a pitcher after pouring one glass
of lemonade?

3.40 Spray paint, Part I. Suppose the area that can be painted using a single can of spray paint is slightly
variable and follows a nearly normal distribution with a mean of 25 square feet and a standard deviation of
3 square feet. Suppose also that you buy three cans of spray paint.

(a) How much area would you expect to cover with these three cans of spray paint?

(b) What is the standard deviation of the area you expect to cover with these three cans of spray paint?

(c) The area you wanted to cover is 80 square feet. What is the probability that you will be able to cover
this entire area with these three cans of spray paint?

3.41 GRE scores, Part III. In Exercises 2.27 and 2.29 we saw two distributions for GRE scores:
N(µ = 151, σ = 7) for the verbal part of the exam and N(µ = 153, σ = 7.67) for the quantitative part.
Suppose performance on these two sections is independent. Use this information to compute each of the
following:

(a) The probability of a combined (verbal + quantitative) score above 320.

(b) The score of a student who scored better than 90% of the test takers overall.

3.42 Betting on dinner, Part I . Suppose a restaurant is running a promotion where prices of menu items
are random following some underlying distribution. If you’re lucky, you can get a basket of fries for $3, or
if you’re not so lucky you might end up having to pay $10 for the same menu item. The price of basket
of fries is drawn from a normal distribution with mean $6 and standard deviation of $2. The price of a
fountain drink is drawn from a normal distribution with mean $3 and standard deviation of $1. What is the
probability that you pay more than $10 for a dinner consisting of a basket of fries and a fountain drink?

http://www.openintro.org/redirect.php?go=ahss_eoce_sol-gre_scores_part_III&referrer=ahss3_pdf
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3.5 Geometric distribution

How many times should we expect to roll a die until we get a 1? How many people should we expect

to see at a hospital until we get someone with blood type O+? These questions can be answered

using the geometric distribution.

Learning objectives

1. Determine if a scenario is geometric.

2. Calculate the probabilities of the possible values of a geometric random variable.

3. Find and interpret the mean (expected value) and standard deviation of a geometric distribu-

tion.

4. Understand the shape of the geometric distribution.

3.5.1 Bernoulli distribution

Many health insurance plans in the United States have a deductible, where the insured individ-
ual is responsible for costs up to the deductible, and then the costs above the deductible are shared
between the individual and insurance company for the remainder of the year.

Suppose a health insurance company found that 70% of the people they insure stay below their
deductible in any given year. Each of these people can be thought of as a trial. We label a person a
success if her healthcare costs do not exceed the deductible. We label a person a failure if she does
exceed her deductible in the year. Because 70% of the individuals will not exceed their deductible,
we denote the probability of a success as p = 0.7. The probability of a failure is sometimes
denoted with q = 1− p, which would be 0.3 in for the insurance example.

When an individual trial only has two possible outcomes, often labeled as success or failure,
it is called a Bernoulli random variable. We chose to label a person who does not exceed her
deductible as a “success” and all others as “failures”. However, we could just as easily have reversed
these labels. The mathematical framework we will build does not depend on which outcome is
labeled a success and which a failure, as long as we are consistent.
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Bernoulli random variables are often denoted as 1 for a success and 0 for a failure. In addition
to being convenient in entering data, it is also mathematically handy. Suppose we observe ten trials:

1 1 1 0 1 0 0 1 1 0

Then the sample proportion, p̂, is the sample mean of these observations:

p̂ =
# of successes

# of trials
=

1 + 1 + 1 + 0 + 1 + 0 + 0 + 1 + 1 + 0

10
= 0.6

This mathematical inquiry of Bernoulli random variables can be extended even further. Because 0

and 1 are numerical outcomes, we can define the mean and standard deviation of a Bernoulli random
variable.66

BERNOULLI RANDOM VARIABLE

If X is a random variable that takes value 1 with probability of success p and 0 with probability
1− p, then X is a Bernoulli random variable with mean and standard deviation

µ = p σ =
√
p(1− p)

In general, it is useful to think about a Bernoulli random variable as a random process with
only two outcomes: a success or failure. Then we build our mathematical framework using the
numerical labels 1 and 0 for successes and failures, respectively.

66See Exercises 3.47 and 3.48
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3.5.2 Geometric distribution

The geometric distribution is used to describe how many trials it takes to observe a success.
Let’s first look at an example.

EXAMPLE 3.83

Suppose we are working at the insurance company and need to find a case where the person did
not exceed her deductible as a case study. If the probability a person will not exceed her deductible
is 0.7 and we are drawing people at random, what are the chances that the first person will not
have exceeded her deductible, i.e. be a success? The second person? The third? What about the
probability that we pull x − 1 cases before we find the first success, i.e. the first success is the xth

person? (If the first success is the fifth person, then we say x = 5.)

The probability of stopping after the first person is just the chance the first person will not exceed
her deductible: 0.7. The probability the second person is the first to exceed her deductible is

P (second person is the first to exceed deductible)

= P (the first won’t, the second will) = (0.3)(0.7) = 0.21

Likewise, the probability it will be the third case is (0.3)(0.3)(0.7) = 0.063.

If the first success is on the xth person, then there are x − 1 failures and finally 1 success, which
corresponds to the probability (0.3)x−1(0.7). This is the same as (1− 0.7)x−1(0.7).

Example 3.83 illustrates what the geometric distribution, which describes the waiting time
until a success for independent and identically distributed (iid) Bernoulli random variables.
In this case, the independence aspect just means the individuals in the example don’t affect each
other, and identical means they each have the same probability of success.

The geometric distribution from Example 3.83 is shown in Figure 3.28. In general, the proba-
bilities for a geometric distribution decrease exponentially fast.
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Figure 3.28: The geometric distribution when the probability of success is p = 0.7.

While this text will not derive the formulas for the mean (expected) number of trials needed
to find the first success or the standard deviation of this distribution, we present general formulas
for each.



196 CHAPTER 3. PROBABILITY AND PROBABILITY DISTRIBUTIONS

GEOMETRIC DISTRIBUTION

Let X have a geometric distribution with one parameter p, where p is the probability of a success
in one trial. Then the probability of finding the first success in the xth trial is given by

P (X = x) = (1− p)x−1p

where x = 1, 2, 3, . . .

The mean (i.e. expected value) and standard deviation of this wait time are given by

µX =
1

p
σX =

√
1− p
p

It is no accident that we use the symbol µ for both the mean and expected value. The mean
and the expected value are one and the same.

It takes, on average, 1/p trials to get a success under the geometric distribution. This mathe-
matical result is consistent with what we would expect intuitively. If the probability of a success is
high (e.g. 0.8), then we don’t usually wait very long for a success: 1/0.8 = 1.25 trials on average.
If the probability of a success is low (e.g. 0.1), then we would expect to view many trials before we
see a success: 1/0.1 = 10 trials.

GUIDED PRACTICE 3.84

The probability that a particular case would not exceed their deductible is said to be 0.7. If we were
to examine cases until we found one that where the person did not exceed her deductible, how many
cases should we expect to check?67

EXAMPLE 3.85

What is the chance that we would find the first success within the first 3 cases?

This is the chance the first (X = 1), second (X = 2), or third (X = 3) case is the first success,
which are three disjoint outcomes. Because the individuals in the sample are randomly sampled
from a large population, they are independent. We compute the probability of each case and add
the separate results:

P (X = 1, 2, or 3)

= P (X = 1) + P (X = 2) + P (X = 3)

= (0.3)1−1(0.7) + (0.3)2−1(0.7) + (0.3)3−1(0.7)

= 0.973

There is a probability of 0.973 that we would find a successful case within 3 cases.

GUIDED PRACTICE 3.86

Determine a more clever way to solve Example 3.85. Show that you get the same result.68

67We would expect to see about 1/0.7 ≈ 1.43 individuals to find the first success.
68First find the probability of the complement: P (no success in first 3 trials) = 0.33 = 0.027. Next, compute one

minus this probability: 1− P (no success in 3 trials) = 1− 0.027 = 0.973.
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EXAMPLE 3.87

Suppose a car insurer has determined that 88% of its drivers will not exceed their deductible in a
given year. If someone at the company were to randomly draw driver files until they found one that
had not exceeded their deductible, what is the expected number of drivers the insurance employee
must check? What is the standard deviation of the number of driver files that must be drawn?

In this example, a success is again when someone will not exceed the insurance deductible, which
has probability p = 0.88. The expected number of people to be checked is 1/p = 1/0.88 = 1.14 and

the standard deviation is
√

1−p
p =

√
1−0.88
0.88 = 0.39.

GUIDED PRACTICE 3.88

Using the results from Example 3.87, where µX = 1.14 and σX = 0.39, would it be appropriate to
use the empirical rule to find what proportion of experiments would end in 1.14 ± 0.39 trials?69

The independence assumption is crucial to the geometric distribution’s accurate description of
a scenario. Mathematically, we can see that to construct the probability of the success on the xth

trial, we had to use the General Multiplication Rule for independent processes. It is no simple task
to generalize the geometric model for dependent trials.

3.5.3 Technology: geometric probablities

Get started quickly with this Desmos Geometric Calculator (available at openintro.org/ahss/desmos).

69No. The geometric distribution is always right skewed and can never be well-approximated by a normal model.

http://www.openintro.org/redirect.php?go=desmos-geometric&referrer=ahss3_pdf
http://www.openintro.org/redirect.php?go=openintro-ahss-desmos&referrer=ahss3_pdf
http://www.openintro.org/redirect.php?go=desmos-geometric&referrer=ahss3_pdf
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Section summary

• It is useful to model yes/no, success/failure with the values 1 and 0, respectively. We call the prob-
ability of success p and the probability of failure 1− p.

• When the trials are independent and the value of p is constant, the probability of finding the first
success on the xth trial is given by (1 − p)x−1p. We can see the reasoning behind this formula as
follows: for the first success to happen on the xth trial, it has to not happen the first x−1 trials (with
probability 1− p), and then happen on the xth trial (with probability p).

• When we consider the entire distribution of possible values for the how long until the first success,
we get a discrete probability distribution known as the geometric distribution. The geometric dis-
tribution describes the waiting time until the first success, when the trials are independent and
the probability of success, p, is constant. If X has a geometric distribution with parameter p, then
P (X = x) = (1− p)x−1p, where x = 1, 2, 3 . . . .

• The geometric distribution is always right skewed and, in fact, has no maximum value. The probabil-
ities, though, decrease exponentially fast.

• Even though the geometric distribution has an infinite number of values, it has a well-defined mean:
µX = 1

p
and standard deviation: σX =

√
1−p
p

. If the probability of success is 1
10

, then on average
it takes 10 trials until we see the first success.

• Note that when the trials are not independent, we can modify the geometric formula to find the
probability that the first success happens on the xth trial. Instead of simply raising (1 − p) to the
x− 1, multiply the appropriate conditional probabilities.
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Exercises

3.43 Is it Bernoulli? Determine if each trial can be considered an independent Bernoulli trial for the
following situations.

(a) Cards dealt in a hand of poker.

(b) Outcome of each roll of a die.

3.44 With and without replacement. In the following situations assume that half of the specified popula-
tion is male and the other half is female.

(a) Suppose you’re sampling from a room with 10 people. What is the probability of sampling two females in
a row when sampling with replacement? What is the probability when sampling without replacement?

(b) Now suppose you’re sampling from a stadium with 10,000 people. What is the probability of sampling
two females in a row when sampling with replacement? What is the probability when sampling without
replacement?

(c) We often treat individuals who are sampled from a large population as independent. Using your findings
from parts (a) and (b), explain whether or not this assumption is reasonable.

3.45 Eye color, Part I. A husband and wife both have brown eyes but carry genes that make it possible for
their children to have brown eyes (probability 0.75), blue eyes (0.125), or green eyes (0.125).

(a) What is the probability the first blue-eyed child they have is their third child? Assume that the eye
colors of the children are independent of each other.

(b) On average, how many children would such a pair of parents have before having a blue-eyed child? What
is the standard deviation of the number of children they would expect to have until the first blue-eyed
child?

3.46 Defective rate. A machine that produces a special type of transistor (a component of computers) has
a 2% defective rate. The production is considered a random process where each transistor is independent of
the others.

(a) What is the probability that the 10th transistor produced is the first with a defect?

(b) What is the probability that the machine produces no defective transistors in a batch of 100?

(c) On average, how many transistors would you expect to be produced until the first with a defect? What
is the standard deviation?

(d) Another machine that also produces transistors has a 5% defective rate where each transistor is produced
independent of the others. On average how many transistors would you expect to be produced with this
machine before the first with a defect? What is the standard deviation?

(e) Based on your answers to parts (c) and (d), how does increasing the probability of an event affect the
mean and standard deviation of the wait time until success?

3.47 Bernoulli, the mean. Use the probability rules from Section 3.4 to derive the mean of a Bernoulli
random variable, i.e. a random variable X that takes value 1 with probability p and value 0 with probability
1− p. That is, compute the expected value of a generic Bernoulli random variable.

3.48 Bernoulli, the standard deviation. Use the probability rules from Section 3.4 to derive the standard
deviation of a Bernoulli random variable, i.e. a random variable X that takes value 1 with probability p
and value 0 with probability 1− p. That is, compute the square root of the variance of a generic Bernoulli
random variable.



200 CHAPTER 3. PROBABILITY AND PROBABILITY DISTRIBUTIONS

3.6 Binomial distribution

What is the probability of exactly 50 heads in 100 coin tosses? Or the probability of randomly sampling 12

people and having more than 9 of them identify as male? If the probability of a defective part is 1%, how

many defective items would we expect in a random shipment of 200 of those parts? We can model these

scenarios and answer these questions using the binomial distribution.

Learning objectives

1. Calculate the number of possible scenarios for obtaining x successes in n trials.

2. Determine whether a scenario is binomial or not.

3. Calculate the probabilities of the possible values of a binomial random variable using the binomial

formula.

4. Recognize that the binomial formula uses the special Addition Rule for mutually exclusive events.

5. Find probabilities of the form “at least” or “at most” by applying the binomial formula multiple times.

6. Calculate and interpret the mean (expected value) and standard deviation of the number of successes

in n binomial trials.

7. Determine whether a binomial distribution can be modeled as approximately normal. If so, use normal

approximation to estimate cumulative binomial probabilities.

3.6.1 Introducing the binomial formula

Let’s again imagine ourselves back at the insurance agency where 70% of individuals do not exceed
their deductible. Each people is thought of as a trial. We label a trial a success if the individual healthcare
costs do not exceed the deductible. We label a trial a failure if the individual healthcare costs do exceed
the deductible. Because 70% of the individuals will not exceed their deductible, we denote the probability
of a success as p = 0.7.

EXAMPLE 3.89
Suppose the insurance agency is considering a random sample of four individuals they insure. What is the
chance exactly one of them will exceed the deductible and the other three will not? Let’s call the four people
Ariana (A), Brittany (B), Carlton (C), and Damian (D) for convenience.

Let’s consider a scenario where one person exceeds the deductible:

P (A = exceed, B = not, C = not, D = not)

= P (A = exceed) P (B = not) P (C = not) P (D = not)

= (0.3)(0.7)(0.7)(0.7)

= (0.7)3(0.3)1

= 0.103

But there are three other scenarios: Brittany, Carlton, or Damian could have been the one to exceed the
deductible. In each of these cases, the probability is again (0.7)3(0.3)1. These four scenarios exhaust all
the possible ways that exactly one of these four people could have exceeded the deductible, so the total
probability is 4× (0.7)3(0.3)1 = 0.412.

GUIDED PRACTICE 3.90
Verify that the scenario where Brittany is the only one to exceed the deductible has probability
(0.7)3(0.3)1. 70

70 P (A = not, B = exceed, C = not, D = not) = (0.7)(0.3)(0.7)(0.7) = (0.7)3(0.3)1.
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The binomial distribution describes the probability of having exactly x successes in n independent
trials with probability of a success p (in Example 3.89, n = 4, x = 3, p = 0.7). We would like to determine
the probabilities associated with the binomial distribution more generally, i.e. we want a formula where we
can use n, x, and p to obtain the probability. To do this, we reexamine each part of Example 3.89.

There were four individuals who could have been the one to exceed the deductible, and each of these
four scenarios had the same probability. Thus, we could identify the final probability as

[# of scenarios]× P (single scenario)

The first component of this equation is the number of ways to arrange the x = 3 successes among the n = 4
trials. The second component is the probability of any of the four (equally probable) scenarios.

Consider P (single scenario) under the general case of x successes and n− x failures in the n trials. In
any such scenario, we apply the Multiplication Rule for independent events:

px(1− p)n−x

This is our general formula for P (single scenario).
Secondly, we introduce the binomial coefficient, which gives the number of ways to choose x successes

in n trials, i.e. arrange x successes and n− x failures:(
n

x

)
=

n!

x!(n− x)!

The quantity
(
n
x

)
is read n choose x.71 The exclamation point notation (e.g. n!) denotes a factorial

expression.

0! = 1

1! = 1

2! = 2× 1 = 2

3! = 3× 2× 1 = 6

4! = 4× 3× 2× 1 = 24

...

n! = n× (n− 1)× ...× 3× 2× 1

Using the formula, we can compute the number of ways to choose x = 3 successes in n = 4 trials:(
4

3

)
=

4!

3!(4− 3)!
=

4!

3!1!
=

4× 3× 2× 1

(3× 2× 1)(1)
= 4

This result is exactly what we found by carefully thinking of each possible scenario in Example 3.89.
Substituting n choose x for the number of scenarios and px(1−p)n−x for the single scenario probability

yields the binomial formula.

BINOMIAL FORMULA
Suppose the probability of a single trial being a success is p. Then the probability of observing exactly
x successes in n independent trials is given by

P (X = x) =

(
n

x

)
px(1− p)n−x =

n!

x!(n− x)!
px(1− p)n−x

71Other notations for n choose x includes nCx, Cxn, and C(n, x).
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3.6.2 When and how to apply the formula

IS IT BINOMIAL? FOUR CONDITIONS TO CHECK.
(1) The trials are independent.
(2) The number of trials, n, is fixed.
(3) Each trial outcome can be classified as a success or failure.
(4) The probability of a success, p, is the same for each trial.

EXAMPLE 3.91
What is the probability that 3 of 8 randomly selected individuals will have exceeded the insurance deductible,
i.e. that 5 of 8 will not exceed the deductible? Recall that 70% of individuals will not exceed the deductible.

We would like to apply the binomial model, so we check the conditions. The number of trials is fixed (n = 8)
(condition 2) and each trial outcome can be classified as a success or failure (condition 3). Because the
sample is random, the trials are independent (condition 1) and the probability of a success is the same for
each trial (condition 4).

In the outcome of interest, there are x = 5 successes in n = 8 trials (recall that a success is an individual
who does not exceed the deductible, and the probability of a success is p = 0.7. So the probability that 5 of
8 will not exceed the deductible and 3 will exceed the deductible is given by(

8

5

)
(0.7)5(1− 0.7)8−5 =

8!

5!(5− 3)!
(0.7)5(1− 0.7)8−5

=
8!

5!3!
(0.7)5(0.3)3

Dealing with the factorial part:

8!

5!3!
=

8× 7× 6× 5× 4× 3× 2× 1

(5× 4× 3× 2× 1)(3× 2× 1)
=

8× 7× 6

3× 2× 1
= 56

Using (0.7)5(0.3)3 ≈ 0.00454, the final probability is about 56× 0.00454 ≈ 0.254.

If you must calculate the binomial coefficient by hand, it’s often useful to cancel out as many terms
as possible in the top and bottom. See Section 3.6.3 for how to evaluate the binomial coefficient and the
binomial formula using a calculator.

COMPUTING BINOMIAL PROBABILITIES
The first step in using the binomial model is to check that the model is appropriate. The second step is
to identify n, p, and x. Finally, apply the binomial formula to determine the probability and interpret
the results.
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EXAMPLE 3.92
Approximately 35% of a population has blood type O+. Suppose four people show up at a hospital and
we want to find the probability that exactly one of them has blood type O+. Can we use the binomial
formula?

To check if the binomial model is appropriate, we must verify the conditions.

1. We will suppose that these 4 people comprise a random sample. This seems reasonable, since one
person with a particular blood type showing up at a hospital seems unlikely to affect the chance that
other people with that blood type would show up at the hospital. This sample is without replacement,
though, not with replacement, so the observations are not entirely independent. However, when the
sample size is very small compared to the population size, we can treat the observations as if they
were with replacement, since the composition of the population changes very little with each additional
person sampled. Since we have a random sample of a very small percent of the population, we will
consider the independence condition met.

2. We have a fixed number of trials (n = 4).

3. Each outcome is a success or failure (blood type O+ or not blood type O+).

4. The probability of a success is the same for each trial since the individuals are like a random sample
(p = 0.35 if we say a “success” is someone having blood type O+).

SAMPLING WITHOUT REPLACEMENT
When randomly sampling without replacement, if the sample size is small relative to the population
size (rule of thumb: sample size less than 1/10 of the population size), we will consider the observations
to be independent.

EXAMPLE 3.93
Given that 35% of a population has blood type O+, what is the probabilty that in a random sample of 4
people:

(a) none of them have blood type O+?

(b) one will have blood type O+?

(c) no more than one will have blood type O+?

(a) P (X = 0) =
(

4
0

)
(0.35)0(0.65)4 = 1× 1× 0.654 = 0.654 = 0.179

Note that we could have answered this question without the binomial formula, using methods from the
previous section.

(b) P (X = 1) =
(

4
1

)
(0.35)1(0.65)3 = 0.384.

(c) This can be computed as the sum of parts (a) and (b): P (X = 0) + P (X = 1) = 0.179 + 0.384 = 0.563.
That is, there is about a 56.3% chance that no more than one of them will have blood type O+.

GUIDED PRACTICE 3.94
What is the probability that at least 3 of 4 people in a random sample will have blood type O+ if 35% of
the population has blood type O+?72

GUIDED PRACTICE 3.95
The probability that a random smoker will develop a severe lung condition in her lifetime is about 0.3. If
you have 4 friends who smoke and you want to find the probability that 1 of them will develop a severe lung
condition in her lifetime, can you apply the binomial formula?73

72P (at least 3 of 4 have blood type O+) = P (X = 3) +P (X = 4) =
(4
3

)
(0.35)3(0.65)1 + (0.35)4 = 0.111 + 0.015 =

0.126
73While conditions (2) and (3) are met, most likely the friends know each other, so the independence assumption

(1) is probably not satisfied. For example, acquaintances may have similar smoking habits, or those friends might
make a pact to quit together. Condition (4) is also not satisfied since this is not a random sample of people.
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EXAMPLE 3.96
There are 13 marbles in a bag. 4 are blue and 9 are red. Randomly draw 5 marbles without replacement. Find
the probability you get exactly 3 blue marbles. Because we are drawing without replacement the probability
of success p is not the same for each trial. Also, the sample size is large compared to the population size
(much greater than 1/10 of the population size), so we cannot treat these observations as independent and
we cannot use the binomial formula. However, we can use the same logic to arrive at the following answer.

P (X = 3) = (# of combinations with 3 blue)× P (3 blue and 2 red in a specific order)

=

(
5

3

)
× P (BBBRR)

=

(
5

3

)(
4

13
× 3

12
× 2

11
× 9

10
× 8

9

)
= 0.1119

GUIDED PRACTICE 3.97
Draw 4 cards without replacement from a deck of 52 cards. What is the probability that you get at least
two hearts?74

Lastly, we consider the binomial coefficient,, n choose x, under some special scenarios.

GUIDED PRACTICE 3.98
Why is it true that

(
n
0

)
= 1 and

(
n
n

)
= 1 for any number n?75

GUIDED PRACTICE 3.99
How many ways can you arrange one success and n−1 failures in n trials? How many ways can you arrange
n− 1 successes and one failure in n trials?76

74P (at least 2 hearts in 4 draws from a deck) = 1 − [P (X = 0) + P (X = 1)] = 1 − [( 39
52

)( 38
51

)( 37
50

)( 36
49

) +(4
1

)
( 13

52
)( 39

51
)( 38

50
)( 37

49
)] = 1− [.0.3038 + 0.4388] = 0.2574.

75Frame these expressions into words. How many different ways are there to arrange 0 successes and n failures in
n trials? (1 way.) How many different ways are there to arrange n successes and 0 failures in n trials? (1 way.)

76One success and n− 1 failures: there are exactly n unique places we can put the success, so there are n ways to
arrange one success and n− 1 failures. A similar argument is used for the second question. Mathematically, we show
these results by verifying the following two equations:(n

1

)
= n,

( n

n− 1

)
= n
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3.6.3 Technology: binomial probabilities

Get started quickly with this Desmos Binomial Calculator (available at openintro.org/ahss/desmos).

Calculator instructions

TI-83/84: COMPUTING THE BINOMIAL COEFFICIENT
(
n
x

)(n
x

)(
n
x

)
Use MATH, PRB, nCr to evaluate n choose r. Here r and x are different letters for the same quantity.

1. Type the value of n.

2. Select MATH.

3. Right arrow to PRB.

4. Choose 3:nCr.

5. Type the value of x.

6. Hit ENTER.

Example: 5 nCr 3 means 5 choose 3.

CASIO FX-9750GII: COMPUTING THE BINOMIAL COEFFICIENT
(
n
x

)(n
x

)(
n
x

)
1. Navigate to the RUN-MAT section (hit MENU, then hit 1).

2. Enter a value for n.

3. Go to CATALOG (hit buttons SHIFT and then 7).

4. Type C (hit the ln button), then navigate down to the bolded C and hit EXE.

5. Enter the value of x. Example of what it should look like: 7C3.

6. Hit EXE.

http://www.openintro.org/redirect.php?go=desmos-binomial&referrer=ahss3_pdf
http://www.openintro.org/redirect.php?go=openintro-ahss-desmos&referrer=ahss3_pdf
http://www.openintro.org/redirect.php?go=desmos-binomial&referrer=ahss3_pdf
http://www.openintro.org/redirect.php?go=TI84_BINOMIAL_COEFFICIENT&referrer=ahss3_pdf
http://www.openintro.org/redirect.php?go=CASIO_BINOMIAL_COEFFICIENT&referrer=ahss3_pdf
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TI-84: COMPUTING THE BINOMIAL FORMULA, P (X = x) =
(
n
x

)
px(1− p)n−xP (X = x) =

(
n
x

)
px(1− p)n−xP (X = x) =

(
n
x

)
px(1− p)n−x

Use 2ND VARS, binompdf to evaluate the probability of exactly x occurrences out of n independent trials
of an event with probability p.

1. Select 2ND VARS (i.e. DISTR)

2. Choose A:binompdf (use the down arrow to scroll down).

3. Let trials be n.

4. Let p be p

5. Let x value be x.

6. Select Paste and hit ENTER.
TI-83: Do step 1, choose 0:binompdf, then enter n, p, and x separated by commas:
binompdf(n, p, x). Then hit ENTER.

TI-84: COMPUTING P (X ≤ x) =
(
n
0

)
p0(1− p)n−0 + ...+

(
n
x

)
px(1− p)n−xP (X ≤ x) =

(
n
0

)
p0(1− p)n−0 + ...+

(
n
x

)
px(1− p)n−xP (X ≤ x) =

(
n
0

)
p0(1− p)n−0 + ...+

(
n
x

)
px(1− p)n−x

Use 2ND VARS, binomcdf to evaluate the cumulative probability of at most x occurrences out of n
independent trials of an event with probability p.

1. Select 2ND VARS (i.e. DISTR)

2. Choose B:binomcdf (use the down arrow).

3. Let trials be n.

4. Let p be p

5. Let x value be x.

6. Select Paste and hit ENTER.
TI-83: Do steps 1-2, then enter the values for n, p, and x separated by commas as follows:
binomcdf(n, p, x). Then hit ENTER.

CASIO FX-9750GII: BINOMIAL CALCULATIONS

1. Navigate to STAT (MENU, then hit 2).

2. Select DIST (F5), and then BINM (F5).

3. Choose whether to calculate the binomial distribution for a specific number of successes, P (X =
k), or for a range P (X ≤ k) of values (0 successes, 1 success, ..., x successes).

• For a specific number of successes, choose Bpd (F1).

• To consider the range 0, 1, ..., x successes, choose Bcd(F1).

4. If needed, set Data to Variable (Var option, which is F2).

5. Enter the value for x (x), Numtrial (n), and p (probability of a success).

6. Hit EXE.

GUIDED PRACTICE 3.100
Find the number of ways of arranging 3 blue marbles and 2 red marbles.77

GUIDED PRACTICE 3.101
There are 13 marbles in a bag. 4 are blue and 9 are red. Randomly draw 5 marbles with replacement. Find
the probability you get exactly 3 blue marbles.78

GUIDED PRACTICE 3.102
There are 13 marbles in a bag. 4 are blue and 9 are red. Randomly draw 5 marbles with replacement. Find
the probability you get at most 3 blue marbles (i.e. less than or equal to 3 blue marbles).79

77Here n = 5 and x = 3. Doing 5 nCr 3 gives the number of combinations as 10.
78Here, n = 5, p = 4/13, and x = 3, so set trials = 5, p = 4/13 and x value = 3. The probability is 0.1396.
79Similarly, set trials = 5, p = 4/13 and x value = 3. The cumulative probability is 0.9662.

http://www.openintro.org/redirect.php?go=TI84_BINOMIAL_FORMULA&referrer=ahss3_pdf
http://www.openintro.org/redirect.php?go=TI84_BINOMIAL_CDF&referrer=ahss3_pdf
http://www.openintro.org/redirect.php?go=CASIO_BINOMIAL_CALCULATIONS&referrer=ahss3_pdf
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3.6.4 An example of a binomial distribution

In Guided Practice 3.93, we asked various probability questions regarding the number of people out of
4 with blood type O+. We verified that the scenario was binomial and that each problem could be solved
using the binomial formula. Instead of looking at it piecewise, we could describe the entire distribution of
possible values and their corresponding probabilities. Since there are 4 people, there are several possible
outcomes for the number who might have blood type O+: 0, 1, 2, 3, 4. We can make a distribution table
with these outcomes. Recall that the probability of a randomly sampled person being blood type O+ is
about 0.35.

The binomial distribution is used to describe the number of successes in a fixed number of trials.
This is different from the geometric distribution, which described the number of trials we must wait before
we observe a success.

xi P (xi)

0
(

4
0

)
(0.35)0(0.65)4 = 0.179

1
(

4
1

)
(0.35)1(0.65)3 = 0.384

2
(

4
2

)
(0.35)2(0.65)2 = 0.311

3
(

4
3

)
(0.35)3(0.65)1 = 0.111

4
(

4
4

)
(0.35)4(0.65)0 = 0.015 0 1 2 3 4
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Number With Blood Type O+ in a Random Sample of Size 4

Figure 3.29: Probability distribution for the number with blood type O+ in a
random sample of 4 people. This is a binomial distribution. Correcting for rounding
error, the probabilities add up to 1, as they must for any probability distribution.

3.6.5 The mean and standard deviation of a binomial distribution

Since this is a probability distribution we could find its mean and standard deviation using the formulas
from Chapter 3. Those formulas require a lot of calculations, so it is fortunate there’s an easier way to
compute the mean and standard deviation for a binomial random variable.

MEAN AND STANDARD DEVIATION OF THE BINOMIAL DISTRIBUTION
For a binomial distribution with parameters n and p, where n is the number of trials and p is the
probability of a success, the mean and standard deviation of the number of observed successes are

µX = np σX =
√
np(1− p)

EXAMPLE 3.103
If the probability that a person has blood type O+ is 0.35 and you have 40 randomly selected people, about
how many would you expect to have blood type O+? What is the standard deviation of the number of
people who would have blood type O+ among the 40 people?

We are asked to determine the expected number (the mean) and the standard deviation, both of which can
be directly computed from the formulas above.

µX = np = 40(0.35) = 14

σX =
√
np(1− p) =

√
40(0.35)(0.65) = 3.0

The exact distribution is shown in Figure 3.30.
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Number With Blood Type O+ in a Random Sample of Size 40
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Figure 3.30: Distribution for the number of people with blood type O+ in a random
sample of size 40, where p = 0.35. The distribution is binomial and is centered
on 14 with a standard deviation of 3.

3.6.6 Normal approximation to the binomial distribution

The binomial formula is cumbersome when the sample size (n) is large, particularly when we consider
a range of observations.

EXAMPLE 3.104
Find the probability that fewer than 12 out of 40 randomly selected people would have blood type O+,
where probability of blood type O+ is 0.35.

This is equivalent to asking, what is the probability of observing X = 0, 1, 2, ..., or 11 with blood type O+
in a sample of size 40 when p = 0.35? We previously verified that this scenario is binomial. We can compute
each of the 12 probabilities using the binomial formula and add them together to find the answer:

P (X = 0 or X = 1 or · · · or X = 11)

= P (X = 0) + P (X = 1) + · · ·+ P (X = 11)

=

(
40

0

)
(0.35)0(0.65)40 +

(
40

1

)
(0.35)1(0.65)39 + · · ·+

(
40

11

)
(0.35)11(0.65)29

= 0.21

If the true proportion with blood type O+ in the population is p = 0.35, then the probability of observing
fewer than 12 in a sample of n = 40 is 0.21.

The computations in Example 3.6.6 are tedious and long. In general, we should avoid such work if an
alternative method exists that is faster, easier, and still accurate. Recall that calculating probabilities of a
range of values is much easier in the normal model. In some cases we may use the normal distribution to
estimate binomial probabilities. While a normal approximation for the distribution in Figure 3.29 when the
sample size was n = 4 would not be appropriate, it might not be too bad for the distribution in Figure 3.30
where n = 40. We might wonder, when is it reasonable to use the normal model to approximate a binomial
distribution?

GUIDED PRACTICE 3.105
Here we consider the binomial model when the probability of a success is p = 0.10. Figure 3.31 shows four
hollow histograms for simulated samples from the binomial distribution using four different sample sizes:
n = 10, 30, 100, 300. What happens to the shape of the distributions as the sample size increases? How
does the binomial distribution change as n gets larger?80

The shape of the binomial distribution depends upon both n and p. Here we introduce a rule of thumb
for when normal approximation of a binomial distribution is reasonable. We will use this rule of thumb in
many applications going forward.

80The distribution is transformed from a blocky and skewed distribution into one that rather resembles the normal
distribution in the last hollow histogram.
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Figure 3.31: Hollow histograms of samples from the binomial model when p = 0.10.
The sample sizes for the four plots are n = 10, 30, 100, and 300, respectively.

NORMAL APPROXIMATION OF THE BINOMIAL DISTRIBUTION
The binomial distribution with probability of success p is nearly normal when the sample size n is
sufficiently large that np ≥ 10 and n(1−p) ≥ 10. The approximate normal distribution has parameters
corresponding to the mean and standard deviation of the binomial distribution:

µ = np σ =
√
np(1− p)

The normal approximation may be used when computing the range of many possible successes. For
instance, we may apply the normal distribution to the setting described in Figure 3.30.

EXAMPLE 3.106
Use the normal approximation to estimate the probability of observing fewer than 12 with blood type O+
in a random sample of 40, if the true proportion with blood type O+ in the population is p = 0.35.

First we verify that np and n(1− p) are at least 10 so that we can apply the normal approximation to the
binomial model:

np = 40(0.35) = 14 ≥ 10 n(1− p) = 40(0.65) = 26 ≥ 10

With these conditions checked, we may use the normal distribution to approximate the binomial distribution
with the following mean and standard deviation:

µ = np = 40(0.35) = 14

σ =
√
np(1− p) =

√
40(0.35)(0.65) = 3.0

We want to find the probability of observing fewer than 12 with blood type O+ using this model. We note
that 12 is less than 1 standard deviation below the mean:

5 8 11 14 17 20 23

Next, we compute the Z-score as Z = 12−14
3

= −0.67 to find the shaded area in the picture: P (Z < −0.67) =
0.25. This probability of 0.25 using the normal approximation is reasonably close to the true probability of
0.21 computed using the binomial distribution.
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EXAMPLE 3.107
Use the normal approximation to estimate the probability of observing fewer than 120 people with blood
type O+ in a random sample of 400, if the true proportion with blood type O+ in the population is p = 0.35.

We have previously verified that the binomial model is reasonable for this context. Now we will verify that
both np and n(1− p) are at least 10 so we can apply the normal approximation to the binomial model:

np = 400(0.35) = 140 ≥ 10 n(1− p) = 400(0.35) = 260 ≥ 10

With these conditions checked, we may use the normal approximation in place of the binomial distribution
with the following mean and standard deviation:

µ = np = 400(0.35) = 140

σ =
√
np(1− p) =

√
400(0.35)(0.65) = 9.5

We want to find the probability of observing fewer than 120 with blood type O+ using this model. We note
that 120 is just over 2 standard deviations below the mean:

111.5 121 130.5 140 149.5 159 168.5

Next, we compute the Z-score as Z = 120−140
9.5

= −2.1 to find the shaded area in the picture: P (Z < −2.1) =
0.0179. This probability of 0.0179 using the normal approximation is very close to the true probability of
0.0196 from the binomial distribution.

GUIDED PRACTICE 3.108
Use normal approximation, if applicable, to estimate the probability of getting greater than 15 sixes in 100
rolls of a fair die.81

3.6.7 Normal approximation breaks down on small intervals (special topic)

THE NORMAL APPROXIMATION MAY FAIL ON SMALL INTERVALS
The normal approximation to the binomial distribution tends to perform poorly when estimating the
probability of a small range of counts, even when the conditions are met.

We consider again our example where 35% of people are blood type O+. Suppose we want to find
the probability that between 129 and 131 people, inclusive, have blood type O+ in a random sample of
400 people. We want to compute the probability of observing 129, 130, or 131 people with blood type
O+ when p = 0.20 and n = 400. With such a large sample, we might be tempted to apply the normal
approximation and use the range 129 to 131. However, we would find that the binomial solution and the
normal approximation notably differ:

Binomial: 0.0732 Normal: 0.0483

81np = 100(1/6) = 16.7 ≥ 10 and n(1− p) = 100(5/6) = 83.3 ≥ 10

µ = np = 100(1/6) = 16.7;σ =
√
np(1− p) =

√
100(1/6)(5/6) = 3.7

Z = 15−16.7
3.7

= −0.46.
P (Z > −0.46) = 0.677
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We can identify the cause of this discrepancy using Figure 3.32, which shows the areas representing
the binomial probability (outlined) and normal approximation (shaded). Notice that the width of the area
under the normal distribution is 0.5 units too slim on both sides of the interval. The binomial distribution
is a discrete distribution, and the each bar is centered over an integer value. Looking closely at Figure 3.32,
we can see that the bar corresponding to 129 begins at 128.5 and ends at 129.5, the bar corresponding to
131 begins at 130.5 and ends at 131.5, etc.

120 130 140 150 160

Figure 3.32: A normal curve with the area between 129 and 131 shaded. The
outlined area from 128.5 to 131.5 represents the exact binomial probability.

IMPROVING ACCURACY OF THE NORMAL APPROXIMATION TO THE BINOMIAL DISTRIBUTION
The normal approximation to the binomial distribution for intervals of values is usually improved if
cutoff values for the lower end of a shaded region are reduced by 0.5 and the cutoff value for the upper
end are increased by 0.5. This correction is called the continuity correction and accounts for the fact
that the binomial distribution is discrete.

EXAMPLE 3.109
Use the method described to find a more accurate estimate for the probability of observing 129, 130, or 131
people with blood type O+ in 400 randomly selected people when p = 0.35.

Instead of standardizing 129 and 131, we will standardize 128.5 and 131.5:

Zleft =
128.5− 140

9.5
= −1.263

Zright =
131.5− 140

9.5
= −0.895

P (−1.263 < Z < −0.895) = 0.0772

The probability 0.0772 is much closer to the true value of 0.0732 than the previous estimate of 0.0483 we
calculated using normal approximation without the continuity correction.

It is always possible to apply the continuity correction when finding a normal approximation to the
binomial distribution. However, when n is very large or when the interval is wide, the benefit of the
modification is limited since the added area becomes negligible compared to the overall area being calculated.
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Section summary

•
(
n
x

)
, the binomial coefficient, describes the number of combinations for arranging x successes among

n trials.
(
n
x

)
= n!

x!(n−x)!
, where n! = 1× 2× 3× ...n, and 0!=0.

• The binomial formula can be used to find the probability that something happens exactly x times
in n trials. Suppose the probability of a single trial being a success is p. Then the probability of
observing exactly x successes in n independent trials is given by(

n

x

)
px(1− p)n−x =

n!

x!(n− x)!
px(1− p)n−x

• To apply the binomial formula, the events must be independent from trial to trial. Additionally, n,
the number of trials must be fixed in advance, and p, the probability of the event occurring in a given
trial, must be the same for each trial.

• To use the binomial formula, first confirm that the binomial conditions are met. Next, identify the
number of trials n, the number of times the event is to be a “success” x, and the probability that a
single trial is a success p. Finally, plug these three numbers into the formula to get the probability of
exactly x successes in n trials.

• To find a probability involving at least or at most, first determine if the scenario is binomial. If so,
apply the binomial formula as many times as needed and add up the results, e.g.

P (at least 3 Heads in 5 tosses of a fair coin)

= P (exactly 3 Heads) + P (exactly 4 Heads) + P (exactly 5 Heads),

where each probability can be found using the binomial formula.

• The distribution of the number of successes in n independent trials gives rise to a binomial distri-
bution. If X has a binomial distribution with parameters n and p, then
P (X = x) =

(
n
x

)
px(1− p)n−x, where x = 0, 1, 2, 3 . . . , n.

• To write out a binomial probability distribution table, list all possible values for x, the number of
successes, then use the binomial formula to find the probability of each of those values.

• If X follows a binomial distribution with parameters n and p, then:

– The mean is given by µX = np. (center)

– The standard deviation is given by σX =
√
np(1− p). (spread)

– When np ≥ 10 and n(1− p) ≥ 10, the binomial distribution is approximately normal. (shape)
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Exercises

3.49 Exploring combinations. A coin is tossed 5 times. How many sequences / combinations of Heads/Tails
are there that have:

(a) Exactly 1 Tail?

(b) Exactly 4 Tails?

(c) Exactly 3 Tails?

(d) At least 3 Tails?

3.50 Political affiliation. Suppose that in a large population, 51% identify as Democrat. A researcher
takes a random sample of 3 people.

(a) Use the binomial model to calculate the probability that two of them identify as Democrat.

(b) Write out all possible orderings of 3 people, 2 of whom identify as Democrat. Use these scenarios to
calculate the same probability from part (a) but using the Addition Rule for disjoint events. Confirm
that your answers from parts (a) and (b) match.

(c) If we wanted to calculate the probability that a random sample of 8 people will have 3 that identify as
Democrat, briefly describe why the approach from part (b) would be more tedious than the approach
from part (a).

3.51 Underage drinking, Part I. Data collected by the Substance Abuse and Mental Health Services
Administration (SAMSHA) suggests that 69.7% of 18-20 year olds consumed alcoholic beverages in any
given year.82

(a) Suppose a random sample of ten 18-20 year olds is taken. Is the use of the binomial distribution
appropriate for calculating the probability that exactly six consumed alcoholic beverages? Explain.

(b) Calculate the probability that exactly 6 out of 10 randomly sampled 18- 20 year olds consumed an
alcoholic drink.

(c) What is the probability that exactly four out of ten 18-20 year olds have not consumed an alcoholic
beverage?

(d) What is the probability that at most 2 out of 5 randomly sampled 18-20 year olds have consumed
alcoholic beverages?

(e) What is the probability that at least 1 out of 5 randomly sampled 18-20 year olds have consumed
alcoholic beverages?

3.52 Chickenpox, Part I. Boston Children’s Hospital estimates that 90% of Americans have had chickenpox
by the time they reach adulthood.83

(a) Suppose we take a random sample of 100 American adults. Is the use of the binomial distribution
appropriate for calculating the probability that exactly 97 out of 100 randomly sampled American
adults had chickenpox during childhood? Explain.

(b) Calculate the probability that exactly 97 out of 100 randomly sampled American adults had chickenpox
during childhood.

(c) What is the probability that exactly 3 out of a new sample of 100 American adults have not had
chickenpox in their childhood?

(d) What is the probability that at least 1 out of 10 randomly sampled American adults have had chickenpox?

(e) What is the probability that at most 3 out of 10 randomly sampled American adults have not had
chickenpox?

82SAMHSA, Office of Applied Studies, National Survey on Drug Use and Health, 2007 and 2008.
83Boston Children’s Hospital, Chickenpox summary page, referenced April 29, 2021.

http://www.openintro.org/redirect.php?go=textbook-SAMHSA_2007_8&referrer=ahss3_pdf
http://www.openintro.org/redirect.php?go=textbook-bostonchildrenshospital_chickenpox_vaccine&referrer=ahss3_pdf


214 CHAPTER 3. PROBABILITY AND PROBABILITY DISTRIBUTIONS

3.53 Game of dreidel. A dreidel is a four-sided spinning top with the Hebrew letters nun, gimel, hei, and
shin, one on each side. Each side is equally likely to come up in a single spin of the dreidel. Suppose you
spin a dreidel three times. Calculate the probability of getting

(a) at least one nun?

(b) exactly 2 nuns?

(c) exactly 1 hei?

(d) at most 2 gimels?

Photo by Staccabees, cropped

(http://flic.kr/p/7gLZTf)

CC BY 2.0 license

3.54 Sickle cell anemia. Sickle cell anemia is a genetic blood disorder where red blood cells lose their
flexibility and assume an abnormal, rigid, “sickle” shape, which results in a risk of various complications. If
both parents are carriers of the disease, then a child has a 25% chance of having the disease, 50% chance of
being a carrier, and 25% chance of neither having the disease nor being a carrier. If two parents who are
carriers of the disease have 3 children, what is the probability that

(a) two will have the disease?

(b) none will have the disease?

(c) at least one will neither have the disease nor be a carrier?

(d) the first child with the disease will the be 3rd child?

3.55 Underage drinking, Part II. We learned in Exercise 3.51 that about 70% of 18-20 year olds
consumed alcoholic beverages in any given year. We now consider a random sample of fifty 18-20 year olds.

(a) How many people would you expect to have consumed alcoholic beverages? And with what standard
deviation?

(b) Would you be surprised if there were 45 or more people who have consumed alcoholic beverages?

(c) What is the probability that 45 or more people in this sample have consumed alcoholic beverages? How
does this probability relate to your answer to part (b)?

3.56 Chickenpox, Part II. We learned in Exercise 3.52 that about 90% of American adults had chickenpox
before adulthood. We now consider a random sample of 120 American adults.

(a) How many people in this sample would you expect to have had chickenpox in their childhood? And
with what standard deviation?

(b) Would you be surprised if there were 105 people who have had chickenpox in their childhood?

(c) What is the probability that 105 or fewer people in this sample have had chickenpox in their childhood?
How does this probability relate to your answer to part (b)?

http://www.openintro.org/redirect.php?go=textbook-flickr_staccabees_dreidels&referrer=ahss3_pdf
http://www.openintro.org/redirect.php?go=textbook-CC_BY_2&referrer=ahss3_pdf
http://www.openintro.org/redirect.php?go=underage_drinking_normal_approx&referrer=ahss3_pdf
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Chapter highlights

This chapter focused on understanding likelihood and chance variation, first by solving individual probability
questions and then by investigating probability distributions.

The main probability techniques covered in this chapter are as follows:

• The General Multiplication Rule for and probabilities (intersection), along with the special case
when events are independent.

• The General Addition Rule for or probabilities (union), along with the special case when events
are mutually exclusive.

• The Conditional Probability Rule.

• Tree diagrams and Bayes’ Theorem to solve more complex conditional problems.

• Simulations and the use of random digits to estimate probabilities.

Fundamental to all of these problems is understanding when events are independent and when they are
mutually exclusive. Two events are independent when the outcome of one does not affect the outcome
of the other, i.e. P (A|B) = P (A). Two events are mutually exclusive when they cannot both happen
together, i.e. P (A and B) = 0.

Moving from solving individual probability questions to studying probability distributions helps us better
understand chance processes and quantify expected chance variation.

• For a discrete probability distribution, the sum of the probabilities must equal 1.

• As with any distribution, one can calculate the mean and standard deviation of a probability distri-
bution. In the context of a probability distribution, the mean and standard deviation describe the
average and the typical deviation from the average, respectively, after many, many repetitions of the
chance process.

• A probability distribution can be summarized by its center (mean, median), spread (SD, IQR), and
shape (right skewed, left skewed, approximately symmetric).

• Adding a constant to every value in a probability distribution adds that value to the mean, but it does
not affect the standard deviation. When multiplying every value by a constant, this multiplies the
mean by the constant and it multiplies the standard deviation by the absolute value of the constant.

• The mean of the sum of two random variables equals the sum of the means. However, this is not
true for standard deviations. Instead, when finding the standard deviation of a sum or difference of
random variables, take the square root of the sum of each of the standard deviations squared.

• The geometric distribution provides a model for the number of trials until the first success, when
the trials are independent.

• The binomial distribution provides a model for the number of successes in n independent trials.

• The geometric distribution is always right skewed. However, when the success-failure rule is met (at
least 10 success and 10 failures), the binomial distribution can be modeled using a normal distribution
with mean = np and standard deviation

√
np(1− p).

The study of probability is useful for measuring uncertainty and assessing risk. In addition, probability
serves as the foundation for inference, providing a framework for evaluating when an outcome falls outside
of the range of what would be expected by chance alone.
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Chapter exercises

3.57 Grade distributions. Each row in the table below is a proposed grade distribution for a class. Identify
each as a valid or invalid probability distribution, and explain your reasoning.

Grades
A B C D F

(a) 0.3 0.3 0.3 0.2 0.1
(b) 0 0 1 0 0
(c) 0.3 0.3 0.3 0 0
(d) 0.3 0.5 0.2 0.1 -0.1
(e) 0.2 0.4 0.2 0.1 0.1
(f) 0 -0.1 1.1 0 0

3.58 Health coverage, frequencies. The Behavioral Risk Factor Surveillance System (BRFSS) is an
annual telephone survey designed to identify risk factors in the adult population and report emerging health
trends. The following table summarizes two variables for the respondents: health status and health coverage,
which describes whether each respondent had health insurance.84

Health Status
Excellent Very good Good Fair Poor Total

Health No 459 727 854 385 99 2,524
Coverage Yes 4,198 6,245 4,821 1,634 578 17,476

Total 4,657 6,972 5,675 2,019 677 20,000

(a) If we draw one individual at random, what is the probability that the respondent has excellent health
and doesn’t have health coverage?

(b) If we draw one individual at random, what is the probability that the respondent has excellent health
or doesn’t have health coverage?

3.59 HIV in Eswatini. Eswatini (formerly named in English as Swaziland) has the highest HIV prevalence
in the world: 25.9% of this country’s population is infected with HIV.85 The ELISA test is one of the first
and most accurate tests for HIV. For those who carry HIV, the ELISA test is 99.7% accurate. For those
who do not carry HIV, the test is 92.6% accurate. If an individual from Eswatini has tested positive, what
is the probability that he carries HIV?

3.60 Twins. About 30% of human twins are identical, and the rest are fraternal. Identical twins are
necessarily the same sex – half are males and the other half are females. One-quarter of fraternal twins are
both male, one-quarter both female, and one-half are mixes: one male, one female. You have just become a
parent of twins and are told they are both girls. Given this information, what is the probability that they
are identical?

3.61 Cost of breakfast. Sally gets a cup of coffee and a muffin every day for breakfast from one of the
many coffee shops in her neighborhood. She picks a coffee shop each morning at random and independently
of previous days. The average price of a cup of coffee is $1.40 with a standard deviation of 30¢ ($0.30), the
average price of a muffin is $2.50 with a standard deviation of 15¢, and the two prices are independent of
each other.

(a) What is the mean and standard deviation of the amount she spends on breakfast daily?

(b) What is the mean and standard deviation of the amount she spends on breakfast weekly (7 days)?

84Office of Surveillance, Epidemiology, and Laboratory Services Behavioral Risk Factor Surveillance System, BRFSS
2010 Survey Data.

85Source: CIA Factbook, Country Comparison: HIV/AIDS - Adult Prevalence Rate.

http://www.openintro.org/redirect.php?go=textbook-BRFSS_2010&referrer=ahss3_pdf
http://www.openintro.org/redirect.php?go=textbook-BRFSS_2010&referrer=ahss3_pdf
http://www.openintro.org/redirect.php?go=textbook-cia_hiv_2012&referrer=ahss3_pdf
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3.62 Scooping ice cream. Ice cream usually comes in 1.5 quart boxes (48 fluid ounces), and ice cream
scoops hold about 2 ounces. However, there is some variability in the amount of ice cream in a box as well
as the amount of ice cream scooped out. We represent the amount of ice cream in the box as X and the
amount scooped out as Y . Suppose these random variables have the following means, standard deviations,
and variances:

mean SD variance

X 48 1 1
Y 2 0.25 0.0625

(a) An entire box of ice cream, plus 3 scoops from a second box is served at a party. How much ice cream
do you expect to have been served at this party? What is the standard deviation of the amount of ice
cream served?

(b) How much ice cream would you expect to be left in the box after scooping out one scoop of ice cream?
That is, find the expected value of X − Y . What is the standard deviation of the amount left in the
box?

(c) Using the context of this exercise, explain why we add variances when we subtract one random variable
from another.

3.63 College smokers. At a university, 13% of students smoke.

(a) Calculate the expected number of smokers in a random sample of 100 students from this university.

(b) The university gym opens at 9 am on Saturday mornings. One Saturday morning at 8:55 am there are
27 students outside the gym waiting for it to open. Should you use the same approach from part (a) to
calculate the expected number of smokers among these 27 students?

3.64 Speeding on the I-5, Part II. Exercise 2.53 states that the distribution of speeds of cars traveling on
the Interstate 5 Freeway (I-5) in California is nearly normal with a mean of 72.6 miles/hour and a standard
deviation of 4.78 miles/hour. The speed limit on this stretch of the I-5 is 70 miles/hour.

(a) A highway patrol officer is hidden on the side of the freeway. What is the probability that 5 cars pass
and none are speeding? Assume that the speeds of the cars are independent of each other.

(b) On average, how many cars would the highway patrol officer expect to watch until the first car that is
speeding? What is the standard deviation of the number of cars he would expect to watch?

3.65 Roulette winnings. In the game of roulette, a wheel is spun and you place bets on where it will stop.
One popular bet is that it will stop on a red slot; such a bet has an 18/38 chance of winning. If it stops on
red, you double the money you bet. If not, you lose the money you bet. Suppose you play 3 times, each
time with a $1 bet. Let Y represent the total amount won or lost. Write a probability model for Y.

3.66 Multiple choice quiz. In a multiple choice quiz there are 5 questions and 4 choices for each question
(a, b, c, d). Robin has not studied for the quiz at all, and decides to randomly guess the answers. What is
the probability that

(a) the first question she gets right is the 3rd question?

(b) she gets exactly 3 or exactly 4 questions right?

(c) she gets the majority of the questions right?
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Chapter 4
Sampling distributions

4.1 Sampling distribution for a sample proportion

4.2 Sampling distribution for a sample mean

4.3 Sampling distribution for a difference of proportions or
means
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At the end of the previous chapter, we explored the Geometric Distribution and

the Binomial Distribution. In this chapter, we consider what is called the sampling

distribution, which is a term for describing the distribution of a statistic. For example,

if we take a survey of a random sample of a population and compute the proportion of

“yes” responses to a particular question, then it’s helpful to consider the distribution

of all possible sample proportions.

We explore sampling distributions for two common statistics: the sample pro-

portion and the sample mean. We then consider the distributions of a difference

of sample proportions and a difference of sample means. In each case, the goal is

the same – to describe the center, spread, and shape of the sampling distribution and

determine when the normal approximation to the sampling distribution is reasonable.

For videos, slides, and other resources, please visit

www.openintro.org/ahss

http://www.openintro.org/redirect.php?go=stat&referrer=ahss3_pdf
http://www.openintro.org/redirect.php?go=ahss&referrer=ahss3_pdf
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4.1 Sampling distribution for a sample proportion

Often, instead of the number of successes in n trials, we are interested in the proportion of successes

in n trials. We can use the sampling distribution for a sample proportion to answer questions such

as the following:

• Given a fair coin, what is the probability that in 200 tosses you would get greater than 52%

Tails just by random variation?

• In a particular state, 48% support a controversial measure. When estimating the percent

through polling, what is the probability that a random sample of size 200 will mistakenly

estimate the percent support to be greater than 50%?

Learning objectives

1. Understand the concept of a sampling distribution.

2. Describe the center, spread, and shape of the sampling distribution for a sample proportion.

3. Recognize the relationship between the distribution of a sample proportion and the corre-

sponding binomial distribution.

4. Explain the Central Limit Theorem and what it says about the shape of the sampling distri-

bution for a sample proportion.

5. Verify appropriate conditions and, if met, carry out normal approximation for a sample pro-

portion or sample count.

4.1.1 The mean and standard deviation of p̂̂p̂p

To answer the two questions posed at the beginning of this section, we investigate the dis-
tribution of the sample proportion p̂. In the previous section, we saw that the number of people
with blood type O+ in a random sample of size 40 follows a binomial distribution with n = 40 and
p = 0.35 that is centered on 14 and has standard deviation 3.0. What does the distribution of the
proportion of people with blood type O+ in a sample of size 40 look like? To convert from a count
to a proportion, we divide the count (i.e. number of yeses) by the sample size, n = 40. For example,
8 becomes 8/40 = 0.20 as a proportion and 11 becomes 11/40 = 0.275.

We can find the general formula for the mean (expected value) and standard deviation of a
sample proportion p̂ using our tools that we’ve learned so far. To get the sample mean for p̂, we
divide the binomial mean µbinomial = np by n:

µp̂ =
µbinomial

n
=
np

n
= p

As one might expect, the sample proportion p̂ is centered on the true proportion p. Likewise, the
standard deviation of p̂ is equal to the standard deviation of the binomial distribution divided by n:

σp̂ =
σbinomial

n
=

√
np(1− p)
n

=

√
p(1− p)

n
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MEAN AND STANDARD DEVIATION OF A SAMPLE PROPORTION

The mean and standard deviation of the sample proportion describe the center and spread of
the distribution of all possible sample proportions p̂ from a random sample of size n with true
population proportion p.

µp̂ = p σp̂ =

√
p(1− p)

n

The standard deviation of a sample proportion, σp̂, tells us about the “typical” deviation in
the sample proportions from the true population proportion. In analyses, we think of the standard
deviation of a sample proportion as describing the uncertainty associated with the estimate p̂. That
is, σp̂ can be thought of as a way to quantify the typical error in our sample estimate p̂ of the true
proportion p. Understanding the variability of statistics such as p̂ is a central component in the
study of statistics.

In our blood type O+ example, we have n = 40 and p = 0.35. If we look at the distribution of
all possible values of a sample proportion for random samples of size 40 from this population, it is

centered on µp̂ = 0.35 and has standard deviation σp̂ =
√

0.35(1−0.35)
40 = 0.075. We see in Figure 4.1

that the distribution of proportion of people in a sample of size 40 with blood type O+ is equivalent
to the distribution of number of people in a sample with blood type O+ out of 40, but with a change
of scale. Instead of counts along the horizontal axis, we have proportions.

Number With Blood Type O+ in a Random Sample of Size 40

P
ro

ba
bi

lit
y

8 11 14 17 20
0.00

0.05

0.10

(a)

Proportion With Blood Type O+ in a Random Sample of Size 40
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Figure 4.1: Two distributions where p = 0.35 and n = 40: the binomial distribution
for the number with blood type O+ and the sampling distribution for the proportion
with blood type O+.

EXAMPLE 4.1

If the proportion of people in the county with blood type O+ is really 35%, find and interpret the
mean and standard deviation of the sample proportion for a random sample of size 400.

The mean of the distribution of the sample proportion is the population proportion: 0.35. That is,
the distribution of all possible values for the sample proportion is centered on 0.35. In other words,
if we took many, many samples and calculated p̂, these values would average out to 0.35.

The standard deviation of p̂ is described by the standard deviation for the proportion:

σp̂ =

√
p(1− p)

n
=

√
0.35(0.65)

400
= 0.024

The sample proportion will typically be about 0.024 or 2.4% away from the true proportion of
p = 0.35. We’ll become more rigorous about quantifying how close p̂ will tend to be to p in
Chapter 5.
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4.1.2 Central Limit Theorem

The distribution in Figure 4.1 looks an awful lot like a normal distribution. That is no anomaly;
it is the result of a general principle called the Central Limit Theorem.

CENTRAL LIMIT THEOREM AND THE SUCCESS-FAILURE CONDITION

When observations are independent and the sample size is sufficiently large, the sample propor-
tion p̂ will tend to follow a normal distribution with the following mean and standard deviation:

µp̂ = p σp̂ =

√
p(1− p)

n

In order for the Central Limit Theorem to hold, the sample size is typically considered sufficiently
large when np ≥ 10 and n(1− p) ≥ 10, which is called the success-failure condition.

The Central Limit Theorem is incredibly important, and it provides a foundation for much
of statistics. As we begin applying the Central Limit Theorem, be mindful of the two technical
conditions: the observations must be independent, and the sample size must be sufficiently large
such that np ≥ 10 and n(1− p) ≥ 10.

HOW TO VERIFY SAMPLE OBSERVATIONS ARE INDEPENDENT

If the observations are from a random process such as tossing a coin, then they are independent.

If the observations are from a random sample with replacement, then they are independent.

If the observations are from a simple random sample (without replacement), we can treat them
as independent if the sample size is less than 10% of the population size.

If a sample is from a seemingly random process, e.g. an occasional error on an assembly line,
checking independence is more difficult. In this case, use your best judgement.

When the sample exceeds 10% of the population size, the methods we discuss tend to overes-
timate the sampling error slightly versus what we would get using more advanced methods.1

An interesting question to answer is, what happens when np < 10 or n(1 − p) < 10? We can
simulate drawing samples of different sizes where, say, the true proportion is p = 0.25. Here’s a
sample of size 10:

no, no, yes, yes, no, no, no, no, no, no

In this sample, we observe a sample proportion of yeses of p̂ = 2
10 = 0.2. We can simulate many such

proportions to understand the sampling distribution for p̂ when n = 10 and p = 0.25, which we’ve
plotted in Figure 4.2 alongside a normal distribution with the same mean and variability. These
distributions have a number of imprrtant differences.

Unimodal? Smooth? Symmetric?
Normal: N(0.25, 0.14) Yes Yes Yes
n = 10, p = 0.25 Yes No No

Notice that the success-failure condition was not satisfied when n = 10 and p = 0.25:

np = 10× 0.25 = 2.5 n(1− p) = 10× 0.75 = 7.5

This single sampling distribution does not show that the success-failure condition is the perfect
guideline, but we have found that the guideline did correctly identify that a normal distribution
might not be appropriate.

1For example, we could use what’s called the finite population correction factor: if the sample is of size n

and the population size is N , then we can multiple the typical standard deviation formula by
√
N−n
N−1

to obtain a

smaller, more precise estimate of the actual standard deviation. When n < 0.1×N , this correction factor is relatively
close to 1.
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Sample Proportions
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Figure 4.2: Left: simulations of p̂ when the sample size is n = 10 and the population
proportion is p = 0.25. Right: a normal distribution with the same mean (0.25)
and standard deviation (0.137).

We can complete several additional simulations, shown in Figures 4.3 and 4.4, and we can see
some trends:

1. When either np or n(1− p) is small, the distribution is more discrete, i.e. not continuous.

2. When np or n(1− p) is smaller than 10, the skew in the distribution is more noteworthy.

3. The larger both np and n(1−p), the more normal the distribution. This may be a little harder
to see for the larger sample size in these plots as the variability also becomes much smaller.

4. When np and n(1 − p) are both very large, the distribution’s discreteness is hardly evident,
and the distribution looks much more like a normal distribution.

So far we’ve only focused on the skew and discreteness of the distributions. We haven’t considered
how the mean and standard error of the distributions change. Take a moment to look back at the
graphs, and pay attention to three things:

1. The centers of the distribution are always at the population proportion, p, that was used to
generate the simulation. Because the sampling distribution for p̂ is always centered at the
population parameter p, it means the sample proportion p̂ is unbiased when the data are
independent and drawn from such a population.

2. For a particular population proportion p, the variability in the sampling distribution decreases
as the sample size n becomes larger. This will likely align with your intuition: an estimate
based on a larger sample size will tend to be more accurate.

3. For a particular sample size, the variability will be largest when p = 0.5. The differences may
be a little subtle, so take a close look. This reflects the role of the proportion p in the standard

error formula: SE =
√

p(1−p)
n . The standard error is largest when p = 0.5.

At no point will the distribution of p̂ look perfectly normal, since p̂ will always be take discrete
values (x/n). It is always a matter of degree, and we will use the standard success-failure condition
with minimums of 10 for np and n(1− p) as our guideline within this book.

THREE IMPORTANT FACTS ABOUT THE DISTRIBUTION OF A SAMPLE PROPORTION p̂̂p̂p

When the observations can be considered independent, such as from a random sample of less
than 10% of the population, the distribution of the sample proportion can be described as
follows.

1. CENTER: The mean of a sample proportion is p.

2. SPREAD: The SD of a sample proportion is
√

p(1−p)
n .

3. SHAPE: When np ≥ 10 and n(1−p) ≥ 10, the sample proportion closely follows a normal
distribution.

Using these facts, we can now answer the question posed at the beginning of this section.
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n = 10 n = 25

p = 0.1
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p = 0.2

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

p = 0.5
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p = 0.8
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p = 0.9
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Figure 4.3: Sampling distributions for several scenarios of p and n.
Rows: p = 0.10, p = 0.20, p = 0.50, p = 0.80, and p = 0.90.
Columns: n = 10 and n = 25.
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n = 50 n = 100 n = 250
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0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

Figure 4.4: Sampling distributions for several scenarios of p and n.
Rows: p = 0.10, p = 0.20, p = 0.50, p = 0.80, and p = 0.90.
Columns: n = 50, n = 100, and n = 250.
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4.1.3 Normal approximation for the sampling distribution for p̂̂p̂p

EXAMPLE 4.2

Find the probability that less than 30% of a random sample of 400 people will be blood type O+ if
the population proportion is 35%.

In the previous section we verified that the observations can be treated as independent and that np
and n(1− p) are at least 10. The mean of the sample proportion is 0.35 and the standard deviation

for the sample proportion is given by
√

0.35(1−0.35)
400 = 0.024. We can find a Z-score and use normal

approximation to estimate the probability:

Z =
p̂− µp̂
σp̂

=
0.30− 0.35

0.024
= −2.1

P (Z < −2.1) = 0.0179

We leave it to the reader to construct a figure for this example.

EXAMPLE 4.3

The probability 0.0179 is the same probability we calculated when we found the probability of getting
fewer than 120 with blood type O+ out of 400! Why is this?

Notice that 120/400 = 0.30. Using the binomial distribution to find the probability of fewer than 120
with blood type O+ in the sample is equivalent to using the distribution of p̂ to find the probability
of a sample proportion less than 0.30.

GUIDED PRACTICE 4.4

Given a population that is 50% male, what is the probability that a random sample of size 200
would have greater than 55% males? Remember to verify that conditions for normal approximation
are met.2

2First, verify the conditions: There is a random sample, and the sample size is much smaller than the population
size, so observations can be considered independent. Also, np = 200(0.5) = 100 ≥ 10 and n(1−p) = 200(0.5) = 100 ≥
10, so the normal approximation is reasonable. Next we find the mean and standard deviation of p̂:

µp̂ = p = 0.50 σp̂ =

√
p(1− p)

n
=

√
0.5(0.5)

200
= 0.0354

Then we find a Z-score and find the upper tail of the normal distribution:

Z =
p̂− µp̂
σp̂

=
0.55− 0.5

0.0354
= 1.412 → P (Z > 1.412) = 0.07

The probability of getting a sample proportion greater than 55% is about 0.07.
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Section summary

• A Z-score represents the number of standard deviations a value in a data set is above or below
the mean. To calculate a Z-score use: Z = x−mean

SD .

• The standard deviation of p̂ describes the typical error or distance of the sample proportion
from the population proportion. It also tells us how much the sample proportion is likely to
vary from one random sample to another.

• The sampling distribution for the sample proportion p̂ for a random sample of size n is identical
to the binomial distribution with parameters n and p, but with a change of scale, i.e. different
mean and different SD, but same shape.

• The same success-failure condition for the binomial distribution holds for a sample propor-
tion p̂.

• Three important facts about the sampling distribution for the sample proportion p̂, where the
observations can be considered independent:

– The mean of a sample proportion is denoted by µp̂, and it is equal to p. (center)

– The SD of a sample proportion is denoted by σp̂, and it is equal to
√

p(1−p)
n . (spread)

– When np ≥ 10 and n(1 − p) ≥ 10, the distribution of the sample proportion will be
approximately normal. (shape)

• We use these properties when solving the following type of normal approximation problems
involving a sample proportion. Find the probability of getting more / less than % yeses in a
sample of size n.

1. Identify n and p. Verify than observations can be treated as independent and that np ≥ 10
and n(1− p) ≥ 10, which implies that normal approximation is reasonable.

2. Calculate the Z-score. Use µp̂ = p and σp̂ =
√

p(1−p)
n to standardize the sample propor-

tion.

3. Find the appropriate area under the normal curve.
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Exercises

4.1 Distribution of p̂̂p̂p. Suppose the true population proportion were p = 0.95. The figure below shows what
the distribution of a sample proportion looks like when the sample size is n = 20, n = 100, and n = 500.
(a) What does each point (observation) in each of the samples represent? (b) Describe the distribution of
the sample proportion, p̂. How does the distribution of the sample proportion change as n becomes larger?

0.70 0.75 0.80 0.85 0.90 0.95 1.00

0.70 0.75 0.80 0.85 0.90 0.95 1.00

0.70 0.75 0.80 0.85 0.90 0.95 1.00

4.2 Distribution of p̂̂p̂p. Suppose the true population proportion were p = 0.5. The figure below shows what
the distribution of a sample proportion looks like when the sample size is n = 20, n = 100, and n = 500.
What does each point (observation) in each of the samples represent? Describe how the distribution of the
sample proportion, p̂, changes as n becomes larger.

0.2 0.4 0.6 0.8

0.2 0.4 0.6 0.8

0.2 0.4 0.6 0.8



4.1. SAMPLING DISTRIBUTION FOR A SAMPLE PROPORTION 229

4.3 Vegetarian college students. Suppose that 8% of college students are vegetarians. Determine if the
following statements are true or false, and explain your reasoning.

(a) The distribution of the sample proportions of vegetarians in random samples of size 60 is approximately
normal since n ≥ 30.

(b) The distribution of the sample proportions of vegetarian college students in random samples of size 50
is right skewed.

(c) A random sample of 125 college students where 12% are vegetarians would be considered unusual.

(d) A random sample of 250 college students where 12% are vegetarians would be considered unusual.

(e) The standard error would be reduced by one-half if we increased the sample size from 125 to 250.

4.4 Young Americans, Part I. About 77% of young adults think they can achieve the American dream.
Determine if the following statements are true or false, and explain your reasoning.3

(a) The distribution of sample proportions of young Americans who think they can achieve the American
dream in random samples of size 20 is left skewed.

(b) The distribution of sample proportions of young Americans who think they can achieve the American
dream in random samples of size 40 is approximately normal since n ≥ 30.

(c) A random sample of 60 young Americans where 85% think they can achieve the American dream would
be considered unusual.

(d) A random sample of 120 young Americans where 85% think they can achieve the American dream would
be considered unusual.

4.5 Distribution of p̂̂p̂p. Suppose the true population proportion were p = 0.5 and a researcher takes a
simple random sample of size n = 50.

(a) Find and interpret the standard deviation of the sample proportion p̂.

(b) Calculate the probability that the sample proportion will be larger than 0.55 for a random sample of
size 50.

4.6 Distribution of p̂̂p̂p. Suppose the true population proportion were p = 0.6 and a researcher takes a simple
random sample of size n = 50.

(a) Find and interpret the standard deviation of the sample proportion p̂.

(b) Calculate the probability that the sample proportion will be larger than 0.65 for a random sample of
size 50.

4.7 Nearsighted children. It is believed that nearsightedness affects about 8% of all children. We
are interested in finding the probability that fewer than 12 out of 200 randomly sampled children will be
nearsighted.

(a) Estimate this probability using the normal approximation to the binomial distribution.

(b) Estimate this probability using the distribution of the sample proportion.

(c) How do your answers from parts (a) and (b) compare?

4.8 Social network use. The Pew Research Center estimates that as of January 2014, 89% of 18-29 year
olds in the United States use social networking sites.4 Calculate the probability that at least 95% of 500
randomly sampled 18-29 year olds use social networking sites.

4.9 CLT for proportions, Part 1. Define the term “sampling distribution” of the sample proportion, and
describe how the shape, center, and spread of the sampling distribution change as the sample size increases
when p = 0.1.

4.10 CLT for proportions, Part 2. Define the term “sampling distribution” of the sample proportion, and
describe how the shape, center, and spread of the sampling distribution change as the sample size increases
when p = 0.8.

3A. Vaughn. “Poll finds young adults optimistic, but not about money”. In: Los Angeles Times (2011).
4Pew Research Center, Washington, D.C. Social Networking Fact Sheet, accessed on May 9, 2015.

http://www.openintro.org/redirect.php?go=ahss_eoce_sol-distribution_of_phat&referrer=ahss3_pdf
http://www.openintro.org/redirect.php?go=ahss_eoce_sol-nearsighted_children&referrer=ahss3_pdf
http://www.openintro.org/redirect.php?go=textbook-young_americans_2011&referrer=ahss3_pdf
http://www.openintro.org/redirect.php?go=textbook-pew_socialnetwork&referrer=ahss3_pdf
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4.2 Sampling distribution for a sample mean

If bags of chips are produced with an average weight of 15 oz and a standard deviation of 0.1 oz,

what is the probability that the average weight of 30 bags will be within 0.1 oz of the mean? The

answer is not 68%! To answer this question we must visualize and understand what is called the

sampling distribution for a sample mean.

Learning objectives

1. Describe the center, spread, and shape of the sampling distribution for a sample mean.

2. Distinguish between the standard deviation of a population and the standard deviation of a

sampling distribution.

3. Explain the content and importance of the Central Limit Theorem.

4. Identify and explain the conditions for using normal approximation involving a sample mean.

5. Check the appropriate conditions and, when met, carry out normal approximation involving a

sample mean or sample sum.

4.2.1 The mean and standard deviation of x̄̄x̄x

In this section we consider a data set called run17, which represents all 19,961 runners who
finished the 2017 Cherry Blossom 10 mile run in Washington, DC. Part of this data set is shown in
Figure 4.5, and the variables are described in Figure 4.6.

ID time age gender state
1 92.25 38.00 M MD
2 106.35 33.00 M DC
...

...
...

...
...

16923 122.87 37.00 F VA
16924 93.30 27.00 F DC

Figure 4.5: Four observations from the run17 data set.

variable description

time Ten mile run time, in minutes
age Age, in years
gender Gender (M for male, F for female)
state Home state (or country if not from the US)

Figure 4.6: Variables and their descriptions for the run17 data set.
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These data are special because they include the results for the entire population of runners who
finished the 2017 Cherry Blossom Run. We took a simple random sample of this population, which
is represented in Figure 4.7. A histogram summarizing the time variable in the run17samp data set
is shown in Figure 4.8.

ID time age gender state
1983 88.31 59 M MD
8192 100.67 32 M VA

...
...

...
...

...
1287 89.49 26 M DC

Figure 4.7: Three observations for the run17samp data set, which represents a
simple random sample of 100 runners from the 2017 Cherry Blossom Run.
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Figure 4.8: Histogram of time for a single sample of size 100. The average of the
sample is in the mid-90s and the standard deviation of the sample s ≈ 17 minutes.

From the random sample represented in run17samp, we guessed the average time it takes to run
10 miles is 95.61 minutes. Suppose we take another random sample of 100 individuals and take its
mean: 95.30 minutes. Suppose we took another (93.43 minutes) and another (94.16 minutes), and
so on. If we do this many many times – which we can do only because we have the entire population
data set – we can build up a sampling distribution for the sample mean when the sample size is
100, shown in Figure 4.9.

SAMPLING DISTRIBUTION

The sampling distribution represents the distribution of the point estimates based on samples
of a fixed size from a certain population. It is useful to think of a point estimate as being drawn
from such a distribution. Understanding the concept of a sampling distribution is central to
understanding statistical inference.

The sampling distribution shown in Figure 4.9 is unimodal and approximately symmetric. It
is also centered exactly at the true population mean: µ = 94.52. Intuitively, this makes sense. The
sample mean should be an unbiased estimator of the population mean. Because we are considering
the distribution of the sample mean, we will use µx̄ = 94.52 to describe the true mean of this
distribution.
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The distribution of sample means,

shown here, is much narrower than
the distribution of raw observations.

Figure 4.9: A histogram of 1000 sample means for run time, where the samples are
of size n = 100. This histogram approximates the true sampling distribution for
the sample mean, with mean µx̄ and standard deviation σx̄.

We can see that the sample mean has some variability around the population mean, which
can be quantified using the standard deviation of this distribution of sample means. The standard
deviation of the sample mean tells us how far the typical estimate is away from the actual population
mean, 94.52 minutes. It also describes the typical error of a single estimate, and is denoted by the
symbol σx̄.

STANDARD DEVIATION OF AN ESTIMATE

The standard deviation associated with an estimate describes the typical error or uncertainty
associated with the estimate.

EXAMPLE 4.5

Looking at Figures 4.8 and 4.9, we see that the standard deviation of the sample mean with n = 100
is much smaller than the standard deviation of a single sample. Interpret this statement and explain
why it is true.

The variation from one sample mean to another sample mean is much smaller than the variation from
one individual to another individual. This makes sense because when we average over 100 values,
the large and small values tend to cancel each other out. While many individuals have a time under
90 minutes, it would be unlikely for the average of 100 runners to be less than 90 minutes.
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GUIDED PRACTICE 4.6

(a) Would you rather use a small sample or a large sample when estimating a parameter? Why?
(b) Using your reasoning from (a), would you expect a point estimate based on a small sample to
have smaller or larger standard deviation than a point estimate based on a larger sample?5

When considering how to calculate the standard deviation of a sample mean, there is one
problem: there is no obvious way to estimate this from a single sample. However, statistical theory
provides a helpful tool to address this issue.

In the sample of 100 runners, the standard deviation of the sample mean is equal to one-tenth
of the population standard deviation: 15.93/10 = 1.59. In other words, the standard deviation of
the sample mean based on 100 observations is equal to

SDx̄ = σx̄ =
σx√
n

=
15.93√

100
= 1.59

where σx is the standard deviation of the individual observations. This is no coincidence. We can
show mathematically that this equation is correct when the observations are independent using the
probability tools of Section 3.4.

COMPUTING SD FOR THE SAMPLE MEAN

Given n independent observations from a population with standard deviation σ, the standard
deviation of the sample mean is equal to

SDx̄ = σx̄ =
σ√
n

(4.7)

A reliable method to ensure sample observations are independent is to conduct a simple random
sample consisting of less than 10% of the population.

GUIDED PRACTICE 4.8

The average of the runners’ ages is 35.05 years with a standard deviation of σ = 8.97. A simple
random sample of 100 runners is taken. (a) What is the standard deviation of the sample mean?
(b) Would you be surprised to get a sample of size 100 with an average of 36 years?6

GUIDED PRACTICE 4.9

(a) Would you be more trusting of a sample that has 100 observations or 400 observations? (b) We
want to show mathematically that our estimate tends to be better when the sample size is larger.
If the standard deviation of the individual observations is 10, what is our estimate of the standard
deviation of the mean when the sample size is 100? What about when it is 400? (c) Explain how
your answer to (b) mathematically justifies your intuition in part (a).7

5(a) Consider two random samples: one of size 10 and one of size 1000. Individual observations in the small sample
are highly influential on the estimate while in larger samples these individual observations would more often average
each other out. The larger sample would tend to provide a more accurate estimate. (b) If we think an estimate is
better, we probably mean it typically has less error. Based on (a), our intuition suggests that a larger sample size
corresponds to a smaller standard deviation.

6(a) Use Equation (4.7) with the population standard deviation to compute the standard deviation of the sample
mean: SDȳ = 8.97/

√
100 = 0.90 years. (b) It would not be surprising. 36 years is about 1 standard deviation from

the true mean of 35.05. Based on the 68, 95 rule, we would get a sample mean at least this far away from the true
mean approximately 100%− 68% = 32% of the time.

7(a) Extra observations are usually helpful in understanding the population, so a point estimate with 400 obser-
vations seems more trustworthy. (b) The standard deviation of the mean when the sample size is 100 is given by
SD100 = 10/

√
100 = 1. For 400: SD400 = 10/

√
400 = 0.5. The larger sample has a smaller standard deviation of

the mean. (c) The standard deviation of the mean of the sample with 400 observations is lower than that of the
sample with 100 observations. The standard deviation of x̄ describes the typical error, and since it is lower for the
larger sample, this mathematically shows the estimate from the larger sample tends to be better – though it does not
guarantee that every large sample will provide a better estimate than a particular small sample.
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4.2.2 The Central Limit Theorem revisited

In Figure 4.9, the sampling distribution for the sample mean looks approximately normally
distributed. Will the sampling distribution for a mean always be nearly normal? To address this
question, we will investigate three cases to see roughly when the approximation is reasonable.

We consider three data sets: one from a uniform distribution, one from an exponential distri-
bution, and the other from a normal distribution. These distributions are shown in the top panels
of Figure 4.10. The uniform distribution is symmetric, and the exponential distribution may be
considered as having moderate skew since its right tail is relatively short (few outliers).

The left panel in the n = 2 row represents the sampling distribution for x̄ if it is the sample
mean of two observations from the uniform distribution shown. The dashed line represents the closest
approximation of the normal distribution. Similarly, the center and right panels of the n = 2 row
represent the respective distributions of x̄ for data from exponential and log-normal distributions.

GUIDED PRACTICE 4.10

Examine the distributions in each row of Figure 4.10. What do you notice about the sampling
distribution for the mean as the sample size, n, becomes larger?8

EXAMPLE 4.11

In general, would normal approximation for a sample mean be appropriate when the sample size is
at least 30?

Yes, the sampling distributions when n = 30 all look very much like the normal distribution.

However, the more non-normal a population distribution, the larger a sample size is necessary for
the sampling distribution to look nearly normal.

DETERMINING IF THE SAMPLE MEAN IS NORMALLY DISTRIBUTED

If the population is normal, the sampling distribution for x̄ will be normal for any sample size.

The less normal the population, the larger n needs to be for the sampling distribution for x̄
to be nearly normal. However, a good rule of thumb is that for almost all populations, the
sampling distribution for x̄ will be approximately normal if n ≥ 30.

This brings us to the Central Limit Theorem, the most fundamental theorem in Statistics.

CENTRAL LIMIT THEOREM

When taking a random sample of independent observations from a population with a fixed mean
and standard deviation, the distribution of x̄ approaches the normal distribution as n increases.

8The normal approximation becomes better as larger samples are used. However, in the case when the population
is normally distributed, the normal distribution of the sample mean is normal for all sample sizes.
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Figure 4.10: Sampling distributions for the mean at different sample sizes and for
three different distributions. The dashed red lines show normal distributions.
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EXAMPLE 4.12

Sometimes we do not know what the population distribution looks like. We have to infer it based
on the distribution of a single sample. Figure 4.11 shows a histogram of 20 observations. These
represent winnings and losses from 20 consecutive days of a professional poker player. Based on this
sample data, can the normal approximation be applied to the distribution of the sample mean?

We should consider each of the required conditions.

(1) These are referred to as time series data, because the data arrived in a particular sequence.
If the player wins on one day, it may influence how she plays the next. To make the assumption
of independence we should perform careful checks on such data.

(2) The sample size is 20, which is smaller than 30.

(3) There are two outliers in the data, both quite extreme, which suggests the population may
not be normal and instead may be very strongly skewed or have distant outliers. Outliers can
play an important role and affect the distribution of the sample mean and the estimate of the
standard deviation of the sample mean.

Since we should be skeptical of the independence of observations and the extreme upper outliers
pose a challenge, we should not use the normal model for the sample mean of these 20 observations.
If we can obtain a much larger sample, then the concerns about skew and outliers would no longer
apply.

Poker Winnings and Losses (US$)
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Figure 4.11: Sample distribution of poker winnings. These data include two very
clear outliers. These are problematic when considering the normality of the sample
mean. For example, outliers are often an indicator of very strong skew.

EXAMINE DATA STRUCTURE WHEN CONSIDERING INDEPENDENCE

Some data sets are collected in such a way that they have a natural underlying structure
between observations, e.g. when observations occur consecutively. Be especially cautious about
independence assumptions regarding such data sets.

WATCH OUT FOR STRONG SKEW AND OUTLIERS

Strong skew in the population is often identified by the presence of clear outliers in the data.
If a data set has prominent outliers, then a larger sample size will be needed for the sampling
distribution for x̄ to be normal. There are no simple guidelines for what sample size is big
enough for each situation. However, we can use the rule of thumb that, in general, an n of at
least 30 is sufficient for most cases.
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4.2.3 Normal approximation for the sampling distribution for x̄̄x̄x

At the beginning of this chapter, we used normal approximation for populations or for data that
had an approximately normal distribution. When appropriate conditions are met, we can also use
the normal approximation to estimate probabilities about a sample average. We must remember to
verify that the conditions are met and use the mean µx̄ and standard deviation σx̄ for the sampling
distribution for the sample average.

THREE IMPORTANT FACTS ABOUT THE DISTRIBUTION OF A SAMPLE MEAN x̄̄x̄x

When the observations can be considered independent, such as from a random sample of less
than 10% of the population, the distribution of the sample mean can be described as follows.

1. The mean of a sample mean is denoted by µx̄, and it is equal to µ.

2. The SD of a sample mean is denoted by σx̄, and it is equal to σ√
n

.

3. When the population is normal or when n ≥ 30, the sample mean closely follows a normal
distribution.

EXAMPLE 4.13

In the 2017 Cherry Blossom 10 mile run, the average time for all of the runners is 94.52 minutes
with a standard deviation of 8.97 minutes. The distribution of run times is approximately normal.
Find the probabiliy that a randomly selected runner completes the run in less than 90 minutes.

Because the distribution of run times is approximately normal, we can use normal approximation.

Z =
x− µ
σ

=
90− 94.52

8.97
= −0.504

P (Z < −0.504) = 0.3072

There is a 30.72% probability that a randomly selected runner will complete the run in less than
90 minutes.

EXAMPLE 4.14

Find the probabiliy that the average of 20 runners is less than 90 minutes.

Here, n = 20 < 30, but the distribution of the population, that is, the distribution of run times is
stated to be approximately normal. Because of this, the sampling distribution will be normal for
any sample size.

σx̄ =
σ√
n

=
8.97√

20
= 2.01

Z =
x̄− µx̄
σx̄

=
90− 94.52

2.01
= −2.25

P (Z < −2.25) = 0.0123

There is a 1.23% probability that the average run time of 20 randomly selected runners will be less
than 90 minutes.
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EXAMPLE 4.15

The average of all the runners’ ages is 35.05 years with a standard deviation of σ = 8.97. The
distribution of age is somewhat skewed. What is the probability that a randomly selected runner is
older than 37 years?

Because the distribution of age is skewed and is not normal, we cannot use normal approximation
for this problem. In order to answer this question, we would need to look at all of the data.

GUIDED PRACTICE 4.16

What is the probability that the average of 50 randomly selected runners is greater than 37 years?9

REMEMBER TO DIVIDE BY
√
n
√
n
√
n

When finding the probability that an average or mean is greater or less than a particular value,
remember to divide the standard deviation of the population by

√
n to calculate the correct SD.

9Because n = 50 ≥ 30, the sampling distribution for the mean is approximately normal, so we can use normal
approximation for this problem. The mean is given as 35.05 years.

σx̄ =
σ
√
n

=
8.97
√

50
= 1.27 z =

x̄− µx̄
σx̄

=
37− 35.05

1.27
= 1.535 P (Z > 1.535) = 0.062

There is a 6.2% chance that the average age of 50 runners will be greater than 37.
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Section summary

• The symbol x̄ denotes the sample average. x̄ for any particular sample is a number. However,
x̄ can vary from sample to sample. The distribution of all possible values of x̄ for repeated
samples of a fixed size from a certain population is called the sampling distribution for x̄.

• The standard deviation of x̄ describes the typical error or distance of the sample mean from
the population mean. It also tells us how much the sample mean is likely to vary from one
random sample to another.

• The standard deviation of x̄ will be smaller than the standard deviation of the population by
a factor of

√
n. The larger the sample, the better the estimate tends to be.

• Consider taking a simple random sample from a population with a fixed mean and standard
deviation. The Central Limit Theorem ensures that regardless of the shape of the original
population, as the sample size increases, the distribution of the sample average x̄ becomes
more normal.

• Three important facts about the sampling distribution for the sample average x̄ where the
observations can be treated as independent:

– The mean of a sample mean is denoted by µx̄, and it is equal to µ. (center)

– The SD of a sample mean is denoted by σx̄, and it is equal to σ√
n

. (spread)

– When the population is normal or when n ≥ 30, the sample mean closely follows a normal
distribution. (shape)

• These facts are used when solving the following two types of normal approximation prob-
lems involving a sample mean or a sample sum.

A: Find the probability that a sample average will be greater/less than a certain value.

1. Verify that the observations can be treated as independent and that either the pop-
ulation is approximately normal or n ≥ 30.

2. Calculate the Z-score. Use µx̄ = µ and σx̄ = σ√
n

to standardize the sample average.

3. Find the appropriate area under the normal curve.

B: Find the probability that a sample sum/total will be greater/less than a certain value.

1. Convert the sample sum into a sample average, using x̄ = sum
n .

2. Do steps 1-3 from Part A above.
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Exercises

4.11 Ages of pennies, Part I . The histogram below shows the distribution of ages of pennies at a bank.

(a) Describe the distribution.

(b) Sampling distributions for means from simple random
samples of 5, 30, and 100 pennies is shown in the his-
tograms below. Describe the shapes of these distri-
butions and comment on whether they look like what
you would expect to see based on the Central Limit
Theorem.

Penny ages

0 10 20 30 40 50

x n = 5

0 5 10 15 20 25 30

x n = 30

6 8 10 12 14 16 18

x n = 100

8 9 10 11 12 13 14

4.12 Ages of pennies, Part II. The mean age of the pennies from Exercise 4.11 is 10.44 years with a standard
deviation of 9.2 years. Using the Central Limit Theorem, calculate the means and standard deviations of
the distribution of the mean from random samples of size 5, 30, and 100. Comment on whether the sampling
distributions shown in Exercise 4.11 agree with the values you compute.

4.13 Housing prices. A housing survey was conducted to determine the price of a typical home in
Topanga, CA. The mean price of a house was roughly $1.3 million with a standard deviation of $300,000.
There were no houses listed below $600,000 but a few houses above $3 million.

(a) Is the distribution of housing prices in Topanga symmetric, right skewed, or left skewed? Hint: Sketch
the distribution.

(b) Would you expect most houses in Topanga to cost more or less than $1.3 million?

(c) Can we estimate the probability that a randomly chosen house in Topanga costs more than $1.4 million
using the normal distribution?

(d) What is the probability that the mean of 60 randomly chosen houses in Topanga is more than $1.4
million?

(e) How would doubling the sample size affect the standard deviation of the mean?

4.14 Stats final scores. Each year about 1500 students take the introductory statistics course at a large
university. This year scores on the final exam are distributed with a median of 74 points, a mean of 70
points, and a standard deviation of 10 points. There are no students who scored above 100 (the maximum
score attainable on the final) but a few students scored below 20 points.

(a) Is the distribution of scores on this final exam symmetric, right skewed, or left skewed?

(b) Would you expect most students to have scored above or below 70 points?

(c) Can we calculate the probability that a randomly chosen student scored above 75 using the normal
distribution?

(d) What is the probability that the average score for a random sample of 40 students is above 75?

(e) How would cutting the sample size in half affect the standard deviation of the mean?

http://www.openintro.org/redirect.php?go=ahss_eoce_sol-housing_prices&referrer=ahss3_pdf
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4.15 Identify distributions, Part I. Four plots are presented below. The plot at the top is a distribution
for a population. The mean is 10 and the standard deviation is 3. Also shown below is a distribution of
(1) a single random sample of 100 values from this population, (2) a distribution of 100 sample means from
random samples with size 5, and (3) a distribution of 100 sample means from random samples with size 25.
Determine which plot (A, B, or C) is which and explain your reasoning.
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σ = 3

Plot A
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4.16 Identify distributions, Part II. Four plots are presented below. The plot at the top is a distribution
for a population. The mean is 60 and the standard deviation is 18. Also shown below is a distribution of
(1) a single random sample of 500 values from this population, (2) a distribution of 500 sample means from
random samples of each size 18, and (3) a distribution of 500 sample means from random samples of each
size 81. Determine which plot (A, B, or C) is which and explain your reasoning.
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4.17 Weights of pennies. The distribution of weights of United States pennies is approximately normal
with a mean of 2.5 grams and a standard deviation of 0.03 grams.

(a) What is the probability that a randomly chosen penny weighs less than 2.4 grams?

(b) Describe the sampling distribution for the mean weight of 10 randomly chosen pennies.

(c) What is the probability that the mean weight of 10 pennies is less than 2.4 grams?

(d) Sketch the two distributions (population and sampling) on the same scale.

(e) Could you estimate the probabilities from (a) and (c) if the weights of pennies had a skewed distribution?
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4.18 CFLBs. A manufacturer of compact fluorescent light bulbs advertises that the distribution of the
lifespans of these light bulbs is nearly normal with a mean of 9,000 hours and a standard deviation of 1,000
hours.

(a) What is the probability that a randomly chosen light bulb lasts more than 10,500 hours?

(b) Describe the distribution of the mean lifespan of 15 light bulbs.

(c) What is the probability that the mean lifespan of 15 randomly chosen light bulbs is more than 10,500
hours?

(d) Sketch the two distributions (population and sampling) on the same scale.

(e) Could you estimate the probabilities from parts (a) and (c) if the lifespans of light bulbs had a skewed
distribution?

4.19 Songs on an iPod. Suppose an iPod has 3,000 songs. The histogram below shows the distribution
of the lengths of these songs. We also know that, for this iPod, the mean length is 3.45 minutes and the
standard deviation is 1.63 minutes.

Length of song
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200
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(a) Calculate the probability that a randomly selected song lasts more than 5 minutes.

(b) You are about to go for an hour run and you make a random playlist of 15 songs. What is the probability
that your playlist lasts for the entire duration of your run? Hint: If you want the playlist to last 60
minutes, what should be the minimum average length of a song?

(c) You are about to take a trip to visit your parents and the drive is 6 hours. You make a random playlist
of 100 songs. What is the probability that your playlist lasts the entire drive?

4.20 Spray paint, Part II. Suppose the area that can be painted using a single can of spray paint is slightly
variable and follows a nearly normal distribution with a mean of 25 square feet and a standard deviation of
3 square feet.

(a) What is the probability that the area covered by a can of spray paint is more than 27 square feet?

(b) Suppose you want to spray paint an area of 540 square feet using 20 cans of spray paint. On average,
how many square feet must each can be able to cover to spray paint all 540 square feet?

(c) What is the probability that you can cover a 540 square feet area using 20 cans of spray paint?

(d) If the area covered by a can of spray paint had a slightly skewed distribution, could you still calculate
the probabilities in parts (a) and (c) using the normal distribution?

4.21 Wireless routers. John is shopping for wireless routers and is overwhelmed by the number of available
options. In order to get a feel for the average price, he takes a random sample of 75 routers and finds that
the average price for this sample is $75 and the standard deviation is $25.

(a) Based on this information, how much variability should he expect to see in the mean prices of repeated
samples, each containing 75 randomly selected wireless routers?

(b) A consumer website claims that the average price of routers is $80. Is a true average of $80 consistent
with John’s sample?

4.22 Betting on dinner, Part II. Exercise 3.42 introduces a promotion at a restaurant where prices of menu
items are determined randomly following some underlying distribution. We are told that the price of basket
of fries is drawn from a normal distribution with mean 6 and standard deviation of 2. You want to get 5
baskets of fries but you only have $28 in your pocket. What is the probability that you would have enough
money to pay for all five baskets of fries?
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4.3 Sampling distribution for a difference

In this section, we consider the case where instead of having one random sample from a population

of interest, we have two independent random samples and we are interested in how far the sample

values might be from one another. We describe the sampling distribution for the difference of sample

proportions and the difference of sample means, and we find the probability that the difference would

be greater than or less than a certain amount.

Learning objectives

1. Describe the center, spread, and shape of the sampling distribution for a difference of sample

proportions.

2. Describe the center, spread, and shape of the sampling distribution for a difference of sample

means.

3. Verify appropriate conditions and, if met, carry out the normal approximation using a differ-

ence of sample proportions or a difference of sample means.

4.3.1 The mean and SD for a difference of two random variables (review)

In Section 3.4, we saw how to find the mean and standard deviation of a difference of two
random variables X and Y . We found that:

E(X − Y ) = E(X)− E(Y )

That is, if we have the mean of each random variable, µX and µY , then the mean of the difference
of the random variables is simply the differences of the individual means. This should seem very
straightforward.

The situation is a little more complex when looking at the variability of the difference of X
and Y . Here we’re going to require a condition be met, specifically that X and Y are independent
random variables. When that independence condition is met, then the following formula for the
standard deviation of the difference, X − Y , holds:

SD(X − Y ) =
√

(SD(X))2 + (SD(Y ))2

These two formulas from probability play an important role in applications where we look at
the difference of two sample proportions (p̂1 − p̂2) or the difference of sample means (x̄1 − x̄2).
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4.3.2 Difference of sample proportions

In Section 4.1 we considered a county where the proportion of people with blood type O+ is
known to be 35%, and we described the distribution of the sample statistic p̂ from a random sample
of size n from this population.

Let us now consider two counties. In County 1, it is known that 35% of people have blood type
O+. In County 2, it is known that 30% of people have blood type O+. If we take a random sample
of size 50 from County 1 and a random sample of size 50 from County 2, what is the probability
that we will get a higher proportion with blood type O+ in the County 2 sample?

We know that the expected proportion with blood type O+ is lower in County 2. However, due
to random variability, there is still some chance that the sample from County 2 will have a higher
proportion with blood type O+. First, we need to find the mean (expected value) and the standard
deviation for the difference of sample proportions p̂1 − p̂2. For this, we use the two formulas from
Section 4.3.1 in the context of the difference of sample proportions by substituting X = p̂1 and
Y = p̂2:

E(p̂1 − p̂2) = E(p̂1)− E(p̂2) = p1 − p2

SD(p̂1 − p̂2) =
√

(SD(p̂1))2 + (SD(p̂2))2 =

√
p1(1− p1)

n1
+
p2(1− p2)

n2
.

That is, given two independent random samples, the distribution of all possible values of p̂1 − p̂2 is
centered on the true difference p1 − p2 and the typical distance or error of p̂1 − p̂2 from p1 − p2 is

given by
√

p1(1−p1)
n1

+ p2(1−p2)
n2

. Using µ for mean and σ for SD, we summarize this as follows.

MEAN AND STANDARD DEVIATION OF A DIFFERENCE OF SAMPLE PROPORTIONS

The mean and standard deviation of the difference of sample proportions describe the center
and spread of the distribution of all possible differences p̂1 − p̂2. Given population proportions
p1 and p2 and random samples of size n1 and n2 where the independence condition is satisfied,
we have the following.

µp̂1−p̂2 = p1 − p2 σp̂1−p̂2 =

√
p1(1− p1)

n1
+
p2(1− p2)

n2

As we saw previously, the independence condition is satisfied if the data is collected from an
experiment with two randomly assigned treatments or collected from 2 independent random samples,
where each sample size is less than 10% of the population size if done without replacement.

Having described the center and spread of the distribution of the difference of sample propor-
tions, we need to understand the shape of the distribution. When looking at the sum or difference
of random variables, if each variable is nearly normal, then the sum and difference are also nearly
normal. This property will be very useful, as it says that when each sample proportion has a nearly
normal distribution, then the difference of sample proportions will also be nearly normal, and we
can use normal approximation to estimate probabilities that the difference will be greater or less
than some value.
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EXAMPLE 4.17

Let’s return to the blood type example. In County 1, it is known that 35% of people have blood type
O+. In County 2, it is known that 30% of people have blood type O+. If we take a random sample
of size 50 from County 1 and a random sample of size 50 from County 2, what is the probability
that we will get a higher proportion with blood type O+ in the County 2 sample?

We want to find P (p̂1 < p̂2). This is equivalent to P (p̂1 − p̂2 < 0).

Let us first determine whether the independence condition is satisfied and whether normal approxi-
mation will be appropriate. We have two random samples, and the samples are independent of each
other as they are from distinct populations. It is reasonable to assume that each sample size is less
than 10% of the county population size. We now check the success-failure condition for each group.

n1p1 = 50× 0.35 = 17.5 ≥ 10 n1(1− p1) = 50× (1− 0.35) = 32.5 ≥ 10

n2p2 = 50× 0.30 = 15.0 ≥ 10 n2(1− p2) = 50× (1− 0.30) = 35.0 ≥ 10

The independence condition is satisfied and the success-failure condition is met for both groups, so
the distribution of p̂1 − p̂2 can be said to be nearly normal.

We now find the mean and the standard deviation of p̂1 − p̂2.

µp̂1−p̂2 = p1 − p2 = 0.35− 0.30 = 0.05

σp̂1−p̂2 =

√
p1(1− p1)

n1
+
p2(1− p2)

n2
=

√
0.35(1− 0.35)

50
+

0.30(1− 0.30)

50
= 0.0935

Recall, we want to find P (p̂1 − p̂2 < 0). We use the calculated mean and standard deviation of
p̂1 − p̂2 to find a Z-score for the value of interest, which is 0.

Z =
x− µ
σ

=
0− 0.05

0.0935
= −0.535

−0.14 0.05 0.24

x = 0

Using technology to find the area to the left of -0.535 under the standard normal curve, we obtain
P (p̂1− p̂2) ≈ P (Z < −0.535) = 0.296. Even though County 2 has a lower proportion of people with
blood type O+, with these small sample sizes, there is still a 29.6% chance that the sample from
County 2 ends up with a higher proportion with blood type O+ than the sample from County 1.
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4.3.3 Difference of sample means

In Section 4.2 we started with all of the data from the 2017 Cherry Blossom Run, and we
considered what the sampling distribution for a mean would look like for random samples of size n.

The population mean for all the runners is 94.52 minutes and the population standard deviation
is 8.97 minutes. Imagine taking two independent random samples of size 50 from this population.
We know that the sampling distribution for the mean would have the same center and spread in each
sample, but what about the sampling distribution for the difference of the sample means? What is
the likelihood that the sample means from these two independent random samples would differ by
more than 3 minutes?

To answer this, we consider two scenarios. First, consider the possibility that the mean of
sample 1 is more than 3 minutes greater than the mean of sample 2. That is, we want to find
P(x̄1− x̄2 > 3). Second, it is also possible that the mean of sample 2 is more than 3 minutes greater
than the mean of sample 1, so we also need to find P(x̄2 − x̄1 > 3), which we could also write as
P(x̄1 − x̄2 < −3). We now see that we are interested in the upper and lower tail of the distribution
of x̄1 − x̄2. As we will soon see, the distribution of x̄1 − x̄2 follows a normal distribution when
certain conditions are met, and in those cases we can find one tail and then double it thanks to the
symmetry of the normal distribution.

Let’s find the mean (expected value) and the standard deviation for the difference of sample
means, x̄1 − x̄2. We again use the formulas discussed in Section 4.3.1 for the difference in two
independent random normal variables, X − Y , but this time we substitute in X = x̄1 and Y = x̄2:

E(x̄1 − x̄2) = E(x̄1)− E(x̄2) = µ1 − µ2

SD(x̄1 − x̄2) =
√

(SD(x̄1))2 + (SD(x̄2))2 =

√
σ2

1

n1
+
σ2

2

n2
.

That is, given two independent random samples, the distribution of all possible values of x̄1 − x̄2 is
centered on the true difference µ1 − µ2 and the typical distance or error of x̄1 − x̄2 from µ1 − µ2 is

given by
√

σ2
1

n1
+

σ2
2

n2
.

MEAN AND STANDARD DEVIATION OF A DIFFERENCE OF SAMPLE MEANS

The mean and standard deviation of the difference of sample means describe the center and
spread of the distribution of all possible differences x̄1 − x̄2. Given population means µ1 and
µ2, individual population standard deviations σ1 and σ2, and two random samples of size n1

and n2, then if the independence condition is satisfied, we have the following:

µx̄1−x̄2
= µ1 − µ2 σx̄1−x̄2

=

√
σ2

1

n1
+
σ2

2

n2

Recall that in Section 4.3.2, we also noted that the sum or difference of random variables will
also nearly normal, if each variable is itself nearly normal and the two random variables are also
independent of each other. We will frequently use this principle to determine when the difference of
sample means can be modeled using a normal distribution.
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EXAMPLE 4.18

Let’s return to the Cherry Blossom Run application. We have that the population mean for all the
runners in the 2017 Cherry Blossom Run is 94.52 minutes and the population standard deviation
is 8.97 minutes. If we take two independent random samples of 50 runners, what is the probability
that the sample means from these two samples will differ by more than 3 minutes?

We want to find P (x̄1 − x̄2 > 3) + P (x̄1 − x̄2 < −3).

Let us first determine whether the independence condition is satisfied and whether normal ap-
proximation will be appropriate. We have two random samples, and the samples are distinct and
independent of each other. The sample sizes are each less than 10% of total population of runners.
Also, because the sample sizes n1 and n2 are both 50, and 50 ≥ 30, we don’t need the distribution of
all run times to be nearly normal. With these conditions met, we have shown that the distribution
of x̄1 − x̄2 is nearly normal.

Next, we find the mean and the standard deviation of x̄1 − x̄2:

µx̄1−x̄2 = µ1 − µ2 = 94.52− 94.52 = 0

σx̄1−x̄2
=

√
σ2

1

n1
+
σ2

2

n2
=

√
8.972

50
+

8.972

50
= 1.79

To find P (x̄1 − x̄2 > 3), we use the calculated mean and standard deviation of x̄1 − x̄2 to first find
a Z-score for the difference of interest, which is 3.

Z =
x− µ
σ

=
3− 0

1.79
= 1.676

−5.37 −3.58 −1.79 0 1.79 3.58 5.37

x = −3 x = 3

Using technology, to find the area to the right of 1.676 under the standard normal curve, we have:

P (x̄1 − x̄2 > 3) ≈ P (Z > 1.676) = 0.047. Because the normal distribution of interest is centered at
zero, the P (x̄1− x̄2 < −3) tail area will have the same size. So to get the total of the two tail areas,
we double 0.047. Even though the samples are from the same population of runners, there is still
a 2 × 0.047 = 0.094 probability, or a 9.4% chance, that the sample means will differ by more than
3 minutes.
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Section summary

• When two random variables each follow a nearly normal distribution, the distribution of their
difference also follows a nearly normal distribution.

• Both p̂1 − p̂2 and x̄1 − x̄2 are statistics that can take on different values from one random
sample to the next. As such, they have sampling distributions that can be described by their
center, spread, and shape.

• Three important facts about the sampling distribution for the difference of sample proportions
p̂1 − p̂2 where the observations can be treated as independent:

– The mean of the difference of sample proportions, denoted by µp̂1−p̂2 , is equal to p1− p2.
(center)

– The SD of the difference of sample proportions, denoted by σp̂1−p̂2 , is equal to√
p1(1−p1)

n1
+ p2(1−p2)

n2
. (spread)

– When both groups meet the success-failure condition, the difference of sample proportions
can be modeled using a normal distribution. (shape)

• Three important facts about the sampling distribution for the difference of sample means
x̄1 − x̄2 where the observations can be treated as independent:

– The mean of the difference of sample means, denoted by µx̄1−x̄2
, is equal to µ1 − µ2.

(center)

– The SD of the difference of sample means, denoted by σx̄1−x̄2
, is equal to

√
σ2
1

n1
+

σ2
2

n2
.

(spread)

– When both populations are nearly normal or when n1 ≥ 30 and n2 ≥ 30, the difference
of sample means can be modeled using a normal distribution. (shape)

• When the difference of sample proportions p̂1 − p̂2 or the difference of sample means x̄1 − x̄2

follow a nearly normal distribution, we can find the probability that the difference is greater
than or less than a certain amount by finding a Z-score and using the normal approximation.



4.3. SAMPLING DISTRIBUTION FOR A DIFFERENCE OF PROPORTIONS OR MEANS 249

Exercises

4.23 Difference of proportions, Part 1. The fraction of workers who are considered “supercommuters”,
because they commute more than 90 minutes to get to work, varies by state. Suppose the following were
the exact values for Nebraska and New York:

State Proportion Supercommuters

Nebraska 0.01
New York 0.06

Now suppose that we plan a study to survey 1000 people from each state, and we will compute the sample
proportions p̂NE for Nebraska and p̂NY for New York.

(a) What is the associated mean and standard deviation of p̂NE?

(b) What is the associated mean and standard deviation of p̂NY ?

(c) Calculate and interpret the mean and standard deviation associated with the difference in sample pro-
portions for the two groups, p̂NY − p̂NE .

(d) How are the standard deviations from parts (a), (b), and (c) related?

4.24 Difference of proportions, Part 2. The fraction of workers who are considered “supercommuters”,
because they commute more than 90 minutes to get to work, varies by state. Suppose the following were
the exact values for Nebraska and New York:

State Proportion Supercommuters

Nebraska 0.01
New York 0.06

Now suppose that we plan a study to survey 1000 people from each state, and we will compute the sample
proportions p̂NE for Nebraska and p̂NY for New York.

(a) What distribution is associated with the difference p̂NY − p̂NE? Justify your answer.

(b) Determine the probability that p̂NY − p̂NE will be larger than 0.055.

(c) Determine the probability that p̂NY − p̂NE will be smaller than 0.4.

4.25 Difference of means, Part 1. Suppose we will collect two random samples from the following distri-
butions:

Mean Standard Deviation Sample Size

Sample 1 15 20 50
Sample 2 20 10 30

In each of the parts below, consider the sample means x̄1 and x̄2 that we might observe from these two
samples.

(a) What is the associated mean and standard deviation of x̄1?

(b) What is the associated mean and standard deviation of x̄2?

(c) Calculate and interpret the mean and standard deviation associated with the difference in sample means
for the two groups, x̄2 − x̄1.

(d) How are the standard deviations from parts (a), (b), and (c) related?

4.26 Difference of means, Part 2. Suppose we will collect two random samples from the following distri-
butions:

Mean Standard Deviation Sample Size

Sample 1 15 20 50
Sample 2 20 10 30

In each of the parts below, consider the sample means x̄1 and x̄2 that we might observe from these two
samples.

(a) What distribution is associated with the difference x̄2 − x̄1? Justify your answer.

(b) Determine the probability that x̄2 − x̄1 will be larger than 7.

(c) Determine the probability that x̄2 − x̄1 will be smaller than 3.

(d) Determine the probability that x̄2 − x̄1 will be smaller than 0.
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Chapter highlights

This chapter began by introducing the idea of a sampling distribution. As with any distribution,
we can summarize a sampling distribution with regard to its center, spread, and shape. A common
thread that ran through this chapter is the application of normal approximation (introduced in
Section 2.3) to different sampling distributions.

The key steps are included for each of the normal approximation scenarios below. To verify that
observations can be considered independent, verify that you have one of the following: a random
process, a random sample with replacement, or a random sample without replacement of less than
10% of the population. To satisfy the independence condition when working with two groups, we
require 2 independent random samples with replacement, 2 independent samples without replace-
ment of less than 10% of their populations, or an experiment with 2 randomly assigned treatments.
For completion and comparison purposes, we include cases introduced in earlier chapters as well in
the overview below.

1. Normal approximation for numerical data: (introduced in Section 2.3)

• Verify that observations can be treated as independent and that population is approxi-
mately normal.

• Use a normal model with mean µ and SD σ.

2. Normal approximation for a sample proportion (with categorical data):

• Verify that observations can be treated as independent and that np ≥ 10 and n(1−p) ≥ 10.

• Use a normal model with mean µp̂ = p and SD σp̂ =
√

p(1−p)
n .

3. Normal approximation for a sample mean (with numerical data):

• Verify that observations can be treated as independent and that population is approxi-
mately normal or that n ≥ 30.

• Use a normal model with mean µx̄ = µ and SD σx̄ = σ√
n

.

4. Normal approximation for a difference of sample proportions:

• Verify that observations can be treated as independent and that
n1p1 ≥ 10, n1(1− p1) ≥ 10, n2(1− p2) ≥ 10, and n2(1− p2) ≥ 10.

• Use a normal model with mean µp̂1−p̂2 = p1− p2 and SD σp̂1−p̂2 =
√

p1(1−p1)
n1

+ p2(1−p2)
n2

.

5. Normal approximation for a difference of sample means:

• Verify that observations can be treated as independent and that both populations are
nearly normal or both n1 and n2 are ≥ 30.

• Use a normal model with mean: µx̄1−x̄2 = µ1 − µ2 and SD: σx̄1−x̄2 =
√

σ2
1

n1
+

σ2
2

n2
.

Cases 1, 3 and 5 are for numerical variables, while cases 2 and 4 are for categorical yes/no
variables.

In the case of proportions and counts, we never look to see if the population is normal. That would
not make sense because a yes/no variable cannot have a normal distribution.

The Central Limit Theorem is the mathematical rule that ensures that when the sample size is
sufficiently large, the sample mean/sum and sample proportion/count will be approximately normal.
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Chapter exercises

4.27 University admissions. Suppose a university announced that it admitted 2,500 students for the
following year’s freshman class. However, the university has dorm room spots for only 1,786 freshman
students. If there is a 70% chance that an admitted student will decide to accept the offer and attend this
university, what is the approximate probability that the university will not have enough dormitory room
spots for the freshman class?

4.28 SAT scores. SAT scores (out of 1600) are distributed normally with a mean of 1100 and a standard
deviation of 200. Suppose a school council awards a certificate of excellence to all students who score at least
1350 on the SAT, and suppose we pick one of the recognized students at random. What is the probability
this student’s score will be at least 1500? (The material covered in Section 3.2 would be useful for this
question.)

4.29 Overweight baggage. Suppose weights of the checked baggage of airline passengers follow a nearly
normal distribution with mean 45 pounds and standard deviation 3.2 pounds. Most airlines charge a fee for
baggage that weigh in excess of 50 pounds. Determine what percent of airline passengers incur this fee.

4.30 Survey response rate. Pew Research reported that the typical response rate to their surveys is only
9%. If for a particular survey 15,000 households are contacted, what is the probability that at least 1,500
will agree to respond?10

4.31 Overweight baggage, Part II. Suppose weights of the checked baggage of airline passengers
follow a nearly normal distribution with mean 45 pounds and standard deviation 3.2 pounds. What is the
probability that the total weight of 10 bags is greater than 460 lbs?

4.32 Chocolate chip cookies. Students are asked to count the number of chocolate chips in 22 cookies
for a class activity. The packaging for these cookies claims that there are an average of 20 chocolate chips
per cookie with a standard deviation of 4.37 chocolate chips.

(a) Based on this information, about how much variability should they expect to see in the mean number
of chocolate chips in random samples of 22 chocolate chip cookies?

(b) What is the probability that a random sample of 22 cookies will have an average less than 14.77 chocolate
chips if the company’s claim on the packaging is true? Assume that the distribution of chocolate chips
in these cookies is approximately normal.

(c) Assume the students got 14.77 as the average in their sample of 22 cookies. Do you have confidence or
not in the company’s claim that the true average is 20? Explain your reasoning.

4.33 Young Hispanics in the US. The 2019 Current Population Survey (CPS) estimates that 36.0% of
the people of Hispanic origin in the Unites States are under 21 years old.11 Calculate the probability that
at least 35 people among a random sample of 100 Hispanic people living in the United States are under 21
years old.

4.34 Poverty in the US. The 2019 Current Population Survey (CPS) estimates that 19.2% of Mississippians
live in poverty, which makes Mississippi the state with the highest poverty rate in the United States.12 We
are interested in finding out the probability that at least 200 people among a random sample of 1,000
Mississippians live in poverty.

(a) Estimate this probability using the normal approximation to the binomial distribution.

(b) Estimate this probability using the distribution of the sample proportion.

(c) How do your answers from parts (a) and (b) compare?

10Pew Research Center, Assessing the Representativeness of Public Opinion Surveys, May 15, 2012.
11United States Census Bureau. https://www.census.gov/data/tables/2019/demo/hispanic-origin/2019-cps.html.

The Hispanic Population in the United States: 2019. Web.
12United States Census Bureau. https://www.census.gov/data/tables/time-series/demo/income-

poverty/historical-poverty-people.html. Historical Poverty Tables: People and Families - 1959 to 2020. Web.

http://www.openintro.org/redirect.php?go=ahss_eoce_sol-overweight_baggage_part_II&referrer=ahss3_pdf
http://www.openintro.org/redirect.php?go=textbook-pew_Representativeness_Surveys_2012&referrer=ahss3_pdf
http://www.openintro.org/redirect.php?go=textbook-CPS_2019_hispanic&referrer=ahss3_pdf
http://www.openintro.org/redirect.php?go=textbook-CPS_2019_poverty&referrer=ahss3_pdf
http://www.openintro.org/redirect.php?go=textbook-CPS_2019_poverty&referrer=ahss3_pdf


252

Chapter 5
Foundations for inference

5.1 Estimating unknown parameters

5.2 Confidence intervals

5.3 Introducing hypothesis testing
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Statistical inference is primarily concerned with understanding and quantifying

the uncertainty of parameter estimates. While the equations and details change de-

pending on the setting, the foundations for inference are the same throughout all of

statistics. We start with a familiar topic: the idea of using a sample proportion to

estimate a population proportion. Next, we create what’s called a confidence interval,

which is a range of values where the true population value is likely to lie. Finally, we

introduce a hypothesis testing framework, which allows us use data to formally eval-

uate claims about the population, such as whether a survey provides strong evidence

that a candidate has the support of a majority of the voting population.

For videos, slides, and other resources, please visit

www.openintro.org/ahss

http://www.openintro.org/redirect.php?go=stat&referrer=ahss3_pdf
http://www.openintro.org/redirect.php?go=ahss&referrer=ahss3_pdf
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5.1 Estimating unknown parameters

Companies such as the Gallup and Pew Research frequently conduct polls as a way to understand

the state of public opinion or knowledge on many topics, including politics, scientific understanding,

brand recognition, and more. How well do these polls estimate the opinion or knowledge of the

broader population? Why is a larger sample generally preferable to a smaller sample? And what

role does the concept of a sampling distribution, introduced in the previous chapter, play in answering

these questions?

Learning objectives

1. Explain the difference between probability and inference and identify when to use which one.

2. Understand the purpose and use of a point estimate.

3. Understand how to measure the variability/error in a point estimate.

4. Recognize the relationship between the standard error of a point estimate and the standard

deviation of a sample statistic.

5. Understand how changing the sample size affects the variability/error in a point estimate.

5.1.1 Point estimates

With this chapter, we move from the world of probability to the world of inference. Whereas
probability involves using a known population value (parameter) to make a prediction about the
likelihood of a particular sample value (statistic), inference involves using a calculated sample value
(statistic) to estimate or better understand an unknown population value (parameter). For both of
these, the concept of the sampling distribution is fundamental.

Suppose a poll suggested the US President’s approval rating is 45%. We would consider 45% to
be a point estimate of the approval rating we might see if we collected responses from the entire
population. This entire-population response proportion is generally referred to as the parameter
of interest, and when the parameter is a proportion, we denote it with the letter p. We typically
estimate the parameter by collecting information from a sample of the population; we compute the
observed proportion in the sample and we denote this sample proportion as p̂. Unless we collect
responses from every individual in the sample, p remains unknown, and we use p̂ as our point
estimate for p.



5.1. ESTIMATING UNKNOWN PARAMETERS 255

The difference we observe from the poll versus the parameter is called the error in the estimate.
Generally, the error consists of two aspects: sampling error and bias.

Bias describes a systematic tendency to over- or under-estimate the true population value.
For instance, if we took a political poll but our sample didn’t include a roughly representative
distribution of the political parties, the sample would likely skew in a particular direction and be
biased. Taking a truly random sample helps avoid bias. However, as we saw in Chapter 1, even
with a random sample, various types of response bias can still be present. For example, if we were
taking a student poll asking about support for a new college stadium, we’d probably get a biased
estimate of the stadium’s level of student support by wording the question as, Do you support your
school by supporting funding for the new stadium? We try to minimize bias through thoughtful data
collection procedures, but bias can creep into our estimates without us even be aware.

Sampling error is uncertainty in a point estimate that happens naturally from one sample
to the next. Much of statistics, including much of this book, is focused on understanding and
quantifying sampling error. Remember though, that sampling error does not account for the possible
effects of leading questions or other types of response bias. When we measure sampling error, we
are measuring the expected variability in a point estimate that arises from randomly sampling only
a subset of the population.

EXAMPLE 5.1

In Chapter 2, we found the summary statistics for the number of characters in a set of 50 email
data. These values are summarized below.
x̄ 11,160
median 6,890
sx 13,130

Estimate the population mean based on the sample.

The best estimate for the population mean is the sample mean. That is, x̄ = 11, 160 is our best
estimate for µ.

GUIDED PRACTICE 5.2

Using the email data, what quantity should we use as a point estimate for the population standard
deviation σ?1

1Again, intuitively we would use the sample standard deviation s = 13, 130 as our best estimate for σ.
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5.1.2 Understanding the variability of a point estimate

Suppose the proportion of American adults who support the expansion of solar energy is p =
0.88, which is our parameter of interest.2 If we were to take a poll of 1000 American adults on this
topic, the estimate would not be perfect, but how close might we expect the sample proportion in
the poll would be to 88%? We want to understand, how does the sample proportion p̂ behave when
the true population proportion is 0.88.3 Let’s find out! We can simulate responses we would get
from a simple random sample of 1000 American adults, which is only possible because we know the
actual support expanding solar energy to be 0.88. Here’s how we might go about constructing such
a simulation:

1. There were about 250 million American adults in 2018. On 250 million pieces of paper, write
“support” on 88% of them and “not” on the other 12%.

2. Mix up the pieces of paper and pull out 1000 pieces to represent our sample of 1000 American
adults.

3. Compute the fraction of the sample that say “support”.

Any volunteers to conduct this simulation? Probably not. While this physical simulation is totally
impractical, we can simulate it thousands, even millions, of times using computer code. We’ve
written a short computer simulation and run it 10,000 times. The results are show in Figure 5.1 in
case you are curious what the computer code looks like. In this simulation, the sample gave a point
estimate of p̂1 = 0.894. We know the population proportion for the simulation was p = 0.88, so we
know the estimate had an error of 0.894− 0.88 = +0.014.

# 1. Create a set of 250 million entries, where 88% of them are "support"

# and 12% are "not".

pop size <- 250000000

possible entries <- c(rep("support", 0.88 * pop size), rep("not", 0.12 * pop size))

# 2. Sample 1000 entries without replacement.

sampled entries <- sample(possible entries, size = 1000)

# 3. Compute p-hat: count the number that are "support", then divide by

# the sample size.

sum(sampled entries == "support") / 1000

Figure 5.1: For those curious, this is code for a single p̂ simulation using the statis-
tical software called R. Each line that starts with # is a code comment, which is
used to describe in regular language what the code is doing. We’ve provided soft-
ware labs in R at openintro.org/stat/labs for anyone interested in learning more.

One simulation isn’t enough to get a great sense of the distribution of estimates we might expect
in the simulation, so we should run more simulations. In a second simulation, we get p̂2 = 0.885,
which has an error of +0.005. In another, p̂3 = 0.878 for an error of -0.002. And in another, an
estimate of p̂4 = 0.859 with an error of -0.021. With the help of a computer, we’ve run the simulation
10,000 times and created a histogram of the results from all 10,000 simulations in Figure 5.2. This
distribution of sample proportions is called a sampling distribution. We can characterize this
sampling distribution as follows:

2We haven’t actually conducted a census to measure this value perfectly. However, a very large sample has
suggested the actual level of support is about 88%.

3Note: 88% written as a proportion would be 0.88. It is common to switch between proportion and percent.

http://www.openintro.org/redirect.php?go=openintroorg_labs&referrer=ahss3_pdf
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Center. The center of the distribution is µp̂ = 0.880, which is the same as the parameter. Notice
that the simulation mimicked a simple random sample of the population, which is a straight-
forward sampling strategy that helps avoid sampling bias.

Spread. The standard deviation of the distribution is σp̂ = 0.010.

Shape. The distribution is symmetric and bell-shaped, and it resembles a normal distribution.

These findings are encouraging! When the population proportion is p = 0.88 and the sample size is
n = 1000, the sample proportion p̂ tends to give a pretty good estimate of the population proportion.
We also have the interesting observation that the histogram resembles a normal distribution.

Sample Proportions

0.84 0.86 0.88 0.90 0.92
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Figure 5.2: A histogram of 10,000 sample proportions sampled from a population
where the population proportion is 0.88 and the sample size is n = 1000.

SAMPLING DISTRIBUTIONS ARE NEVER OBSERVED, BUT WE KEEP THEM IN MIND

In real-world applications, we never actually observe the sampling distribution, yet it is useful to
always think of a point estimate as coming from such a hypothetical distribution. Understanding
the sampling distribution will help us characterize and make sense of the point estimates that
we do observe.

EXAMPLE 5.3

If we used a much smaller sample size of n = 50, would you guess that the standard error for p̂
would be larger or smaller than when we used n = 1000?

Intuitively, it seems like more data is better than less data, and generally that is correct! The typical
error when p = 0.88 and n = 50 would be larger than the error we would expect when n = 1000.

Example 5.3 highlights an important property we will see again and again: a bigger sample
tends to provide a more precise point estimate than a smaller sample. Remember though, that this
is only true for random samples. Additionally, a bigger sample cannot correct for response bias or
other types of bias that may be present.
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5.1.3 Introducing the standard error

Point estimates only approximate the population parameter. How can we quantify the expected
variability in a point estimate p̂? The discussion in Section 4.1 tells us how. The variability in the
distribution of p̂ is given by its standard deviation. If we know the population proportion, we can
calculate the standard deviation of the point estimate p̂. In our simulation we knew p was 0.88.
Thus we can calculate the standard deviation as

SDp̂ =

√
p(1− p)

n
=

√
(.088)(1− 0.88)

n
= 0.01

If we now look at the sampling distribution, we see that the typical distance sample proportions are
from the true value of 0.88 is about 0.01.

EXAMPLE 5.4

Consider a random sample of size 80 from a county population. We find that 15% of the sample
support a controversial new ballot measure at the state level. How far is our estimate likely to be
from the true percent that support the measure?

We would like to calculate the standard deviation of p̂, but we run into a serious problem: p is
unknown. In fact, when doing inference, p must be unknown, otherwise it is illogical to try to
estimate it. We cannot calculate the SD, but we can estimate it using, you might have guessed, the
sample proportion p̂.

This estimate of the standard deviation is known as the standard error, or SESESE for short.

SEp̂ =

√
p̂(1− p̂)

n

EXAMPLE 5.5

Calculate and interpret the SE of p̂ for the previous example.

SEp̂ =

√
p̂(1− p̂)

n
=

√
0.15(1− 0.15)

80
= 0.04

The typical or expected error in our estimate is 4%.

EXAMPLE 5.6

If we quadruple the sample size from 80 to 320, what will happen to the SE?

SEp̂ =

√
p̂(1− p̂)

n
=

√
0.15(1− 0.15)

320
= 0.02

The larger the sample size, the smaller our standard error. This is consistent with intuition: the
more data we have, the more reliable an estimate will tend to be. However, quadrupling the sample
size does not reduce the error by a factor of 4. Because of the square root, the effect is to reduce
the error by a factor

√
4, or 2.
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5.1.4 Basic properties of point estimates

We achieved three goals in this section. First, we determined that point estimates from a sample
may be used to estimate population parameters. We also determined that these point estimates are
not exact: they vary from one sample to another. Lastly, we quantified the uncertainty of the sample
proportion using what we call the standard error.

Remember that the standard error only measures sampling error. It does not account for bias
that results from leading questions or other types of response bias.

When our sampling method produces estimates in an unbiased way, the sampling distribution
will be centered on the true value and we call the method accurate. When the sampling method
produces estimates that have low variability, the sampling distribution will have a low standard
error, and we call the method precise.

EXAMPLE 5.7

Using Figure 5.3, which of the distributions were produced by methods that are biased? That are
accurate? Order the distributions from most precise to least precise (that is, from lowest variability
to highest variability).

Distributions (b) and (d) are centered on the parameter (the true value), so those methods are ac-
curate. The methods that produced distributions (a) and (c) are biased, because those distributions
are not centered on the parameter. From most precise to least precise, we have (a), (b), (c), (d).

Figure 5.3: Four sampling distributions shown, with parameter identified. Explore
these distributions through a Desmos activity at openintro.org/ahss/desmos.

EXAMPLE 5.8

Why do we want a point estimate to be both precise and accurate?

If the point estimate is precise, but highly biased, then we will consistently get a bad estimate. On
the other hand, if the point estimate is unbiased but not at all precise, then by random chance, we
may get an estimate far from the true value.

Remember, when taking a sample, we generally get only one chance. It is the properties of the
sampling distribution that tell us how much confidence we can have in the estimate.

The strategy of using a sample statistic to estimate a parameter is quite common, and it’s
a strategy that we can apply to other statistics besides a proportion. For instance, if we want to
estimate the average salary for graduates from a particular college, we could survey a random sample
of recent graduates; in that example, we’d be using a sample mean x̄ to estimate the population
mean µ for all graduates. As another example, if we want to estimate the difference in product
prices for two websites, we might take a random sample of products available on both sites, check
the prices on each, and use then compute the average difference; this strategy certainly wouldn’t
give us a perfect measurement of the actual difference, but it would give us a point estimate.

While this chapter emphases a single proportion context, we’ll encounter many different con-
texts throughout this book where these methods will be applied. The principles and general ideas
are the same, even if the details change a little.

http://www.openintro.org/redirect.php?go=desmos-foursamplingdistributions&referrer=ahss3_pdf
http://www.openintro.org/redirect.php?go=openintro-ahss-desmos&referrer=ahss3_pdf
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Section summary

• In this section we laid the groundwork for our study of inference. Inference involves using
known sample values to estimate or better understand unknown population values.

• A sample statistic can serve as a point estimate for an unknown parameter. For example, the
sample mean is a point estimate for an unknown population mean, and the sample proportion
is a point estimate for an unknown population proportion.

• It is helpful to imagine a point estimate as being drawn from a particular sampling distribution.

• The standard error (SE) of a point estimate tells us the typical error or uncertainty associ-
ated with the point estimate. It is also an estimate of the spread of the sampling distribution.

• A point estimate is unbiased (accurate) if the sampling distribution (i.e., the distribution of
all possible outcomes of the point estimate from repeated samples from the same population)
is centered on the true population parameter.

• A point estimate has lower variability (more precise) when the standard deviation of the
sampling distribution is smaller.

• In a random sample, increasing the sample size n will make the standard error smaller. This
is consistent with the intuition that larger samples tend to be more reliable, all other things
being equal.

• In general, we want a point estimate to be unbiased and to have low variability. Remember:
the terms unbiased (accurate) and low variability (precise) are properties of generic point
estimates, which are variables that have a sampling distribution. These terms do not apply to
individual values of a point estimate, which are numbers.
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Exercises

5.1 Identify the parameter, Part I. For each of the following situations, state whether the parameter of
interest is a mean or a proportion. It may be helpful to examine whether individual responses are numerical
or categorical.

(a) In a survey, one hundred college students are asked how many hours per week they spend on the Internet.

(b) In a survey, one hundred college students are asked: “What percentage of the time you spend on the
Internet is part of your course work?”

(c) In a survey, one hundred college students are asked whether or not they cited information from Wikipedia
in their papers.

(d) In a survey, one hundred college students are asked what percentage of their total weekly spending is
on alcoholic beverages.

(e) In a sample of one hundred recent college graduates, it is found that 85 percent expect to get a job
within one year of their graduation date.

5.2 Identify the parameter, Part II. For each of the following situations, state whether the parameter of
interest is a mean or a proportion.

(a) A poll shows that 64% of Americans personally worry a great deal about federal spending and the budget
deficit.

(b) A survey reports that local TV news has shown a 17% increase in revenue within a two year period
while newspaper revenues decreased by 6.4% during this time period.

(c) In a survey, high school and college students are asked whether or not they use geolocation services on
their smart phones.

(d) In a survey, smart phone users are asked whether or not they use a web-based taxi service.

(e) In a survey, smart phone users are asked how many times they used a web-based taxi service over the
last year.

5.3 Quality control. As part of a quality control process for computer chips, an engineer at a factory
randomly samples 212 chips during a week of production to test the current rate of chips with severe defects.
She finds that 27 of the chips are defective.

(a) What population is under consideration in the data set?

(b) What parameter is being estimated?

(c) What is the point estimate for the parameter?

(d) What is the name of the statistic that we use to measure the uncertainty of the point estimate?

(e) Compute the value from part (d) for this context.

(f) The historical rate of defects is 10%. Should the engineer be surprised by the observed rate of defects
during the current week?

(g) Suppose the true population value was found to be 10%. If we use this proportion to recompute the
value in part (e) using p = 0.1 instead of p̂, does the resulting value change much?
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5.4 Unexpected expense. In a random sample 765 adults in the United States, 322 say they could not
cover a $400 unexpected expense without borrowing money or going into debt.

(a) What population is under consideration in the data set?

(b) What parameter is being estimated?

(c) What is the point estimate for the parameter?

(d) What is the name of the statistic that we can use to measure the uncertainty of the point estimate?

(e) Compute the value from part (d) for this context.

(f) A cable news pundit thinks the value is actually 50%. Should she be surprised by the data?

(g) Suppose the true population value was found to be 40%. If we use this proportion to recompute the
value in part (e) using p = 0.4 instead of p̂, does the resulting value change much?

5.5 Repeated water samples. A nonprofit wants to understand the fraction of households that have
elevated levels of lead in their drinking water. They expect at least 5% of homes will have elevated levels of
lead, but not more than about 30%. They randomly sample 800 homes and work with the owners to retrieve
water samples, and they compute the fraction of these homes with elevated lead levels. They repeat this
1,000 times and build a distribution of sample proportions.

(a) What is this distribution called?

(b) Would you expect the shape of this distribution to be symmetric, right skewed, or left skewed? Explain
your reasoning.

(c) If the proportions are distributed around 8%, what is the variability of the distribution?

(d) What is the formal name of the value you computed in (c)?

(e) Suppose the researchers’ budget is reduced, and they are only able to collect 250 observations per sample,
but they can still collect 1,000 samples. They build a new distribution of sample proportions. How will
the variability of this new distribution compare to the variability of the distribution when each sample
contained 800 observations?

5.6 Repeated student samples. Of all freshman at a large college, 16% made the dean’s list in the current
year. As part of a class project, students randomly sample 40 students and check if those students made
the list. They repeat this 1,000 times and build a distribution of sample proportions.

(a) What is this distribution called?

(b) Would you expect the shape of this distribution to be symmetric, right skewed, or left skewed? Explain
your reasoning.

(c) Calculate the variability of this distribution.

(d) What is the formal name of the value you computed in (c)?

(e) Suppose the students decide to sample again, this time collecting 90 students per sample, and they again
collect 1,000 samples. They build a new distribution of sample proportions. How will the variability
of this new distribution compare to the variability of the distribution when each sample contained 40
observations?
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5.2 Confidence intervals

The site fivethirtyeight.com regularly forecasts support for each candidate in Congressional races,

i.e. races in the US House of Representatives and the US Senate. In addition to point estimates,

they report confidence intervals.4 What are confidence intervals, and how do we interpret them?

Learning objectives

1. Explain the purpose and use of confidence intervals.

2. Construct 95% confidence intervals assuming the point estimate follows a normal distribution.

3. Calculate the critical value for a C% confidence interval when the point estimate follows a

normal distribution.

4. Describe how sample size and confidence level affect the width of a confidence interval.

5. Interpret a confidence interval and the confidence level in context.

6. Draw conclusions with a specified confidence level about the values of unknown parameters.

7. Calculate and interpret the margin of error for a C% confidence interval. Distinguish between

margin of error and standard error.

5.2.1 Capturing the population parameter

A point estimate provides a single plausible value for a parameter. However, a point estimate
isn’t perfect and will have some standard error associated with it. When estimating a parameter, it
is better practice to provide a plausible range of values instead of supplying just the point estimate.

A plausible range of values for the population parameter is called a confidence interval.
Using only a point estimate is like fishing in a murky lake with a spear, and using a confidence
interval is like fishing with a net. We can throw a spear where we saw a fish, but we will probably
miss. On the other hand, if we toss a net in that area, we have a good chance of catching the fish.

If we report a point estimate, we probably will not hit the exact population parameter. On the
other hand, if we report a range of plausible values – a confidence interval – we have a good shot at
capturing the parameter.

4See: https://projects.fivethirtyeight.com/2018-midterm-election-forecast/senate

http://www.openintro.org/redirect.php?go=textbook-fivethirtyeight&referrer=ahss3_pdf
http://www.openintro.org/redirect.php?go=textbook-538-2018-midterm&referrer=ahss3_pdf
https://projects.fivethirtyeight.com/2018-midterm-election-forecast/senate
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5.2.2 Constructing a 95% confidence interval

A point estimate is our best guess for the value of the parameter, so it makes sense to build the
confidence interval around that value. The standard error is a measure of the uncertainty associated
with the point estimate.

EXAMPLE 5.9

How many standard errors should we extend above and below the point estimate if we want to be
95% confident of capturing the true value?

First, we observe that the area under the standard normal curve between -1.96 and 1.96 is 95%.
When conditions for a normal model are met, the point estimate we observe will be within 1.96
standard deviations of the true value about 95% of the time. Thus, if we want to be 95% confident
of capturing the true value, we should go 1.96 standard errors on either side of the point estimate.

CONSTRUCTING A 95% CONFIDENCE INTERVAL USING A NORMAL MODEL

When the sampling distribution for a point estimate can reasonably be modeled as normal, a
95% confidence interval for the unknown parameter can be constructed as:

point estimate ± 1.96× SE of estimate (5.10)

We can be 95% confident that this interval captures the true value.

In the next chapters we will determine when we can apply a normal model to a point estimate.
For now, we will assume that a normal model is reasonable.

EXAMPLE 5.11

The point estimate of the support for a ballot measure from Section 5.1 was 15% from a sample size
of 80. The standard error for this point estimate was calculated to be SE = 0.04. Assuming that
conditions for a normal model are met, construct and interpret a 95% confidence interval.

point estimate ± 1.96× SE of estimate

0.15 ± 1.96× 0.04

(0.0716, 0.2284)

We are 95% confident that the true percent of support in this population for the ballot measure is
between 7.16% and 22.84%.

EXAMPLE 5.12

Suppose the level of support at the state level for the ballot measure has been precisely estimated
at 0.20 (20%). Based on the confidence interval above, is there evidence that a smaller proportion
support the ballot measure in the specific county we’re looking at relative to the state as a whole?

While the point estimate of 0.15 is lower than 0.20, it appears this deviation may be due to random
chance. Because the confidence interval includes the value 0.20, the value of 0.20 is a reasonable
value for the proportion of the county population that support the ballot measure. Therefore, based
on this confidence interval, we do not have evidence that a smaller proportion support the ballot
measure in this county than in the state as a whole.
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We can be 95% confident that a 95% confidence interval captures the true population param-
eter. However, confidence intervals are imperfect. About 1-in-20 (5%) properly constructed 95%
confidence intervals will fail to capture the parameter of interest. Figure 5.4 shows 25 confidence
intervals for a proportion that were constructed from simulations where the true proportion was
p = 0.3. However, 1 of these 25 confidence intervals happened not to include the true value.
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Figure 5.4: Twenty-five samples of size n = 300 were simulated when p = 0.30. For
each sample, a confidence interval was created to try to capture the true proportion
p. However, 1 of these 25 intervals did not capture p = 0.30.

GUIDED PRACTICE 5.13

In Figure 5.4, one interval does not capture the true proportion, p = 0.3. Does this imply that there
was a problem with the simulations?5

5No. Just as some observations occur more than 1.96 standard deviations from the mean, some point estimates
will be more than 1.96 standard errors from the parameter. A confidence interval only provides a plausible range of
values for a parameter. While we might say other values are implausible based on the data, this does not mean they
are impossible.
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5.2.3 Changing the confidence level

Suppose we want to construct a confidence interval with a confidence level somewhat greater
than 95%: perhaps we would like a confidence level of 99%.

EXAMPLE 5.14

Other things being equal, would a 99% confidence interval be wider or narrower than a 95% confi-
dence interval?

Using a previous analogy: if we want to be more confident that we will catch a fish, we should use
a wider net, not a smaller one. To be 99% confidence of capturing the true value, we must use a
wider interval. On the other hand, if we want an interval with lower confidence, such as 90%, we
would use a narrower interval.

The 95% confidence interval structure provides guidance in how to make intervals with new
confidence levels. Below is a general 95% confidence interval for a point estimate that comes from
a nearly normal distribution:

point estimate ± 1.96× SE of estimate (5.15)

There are three components to this interval: the point estimate, “1.96”, and the standard error.
The choice of 1.96×SE was based on capturing 95% of the distribution since the estimate is within
1.96 standard deviations of the true value about 95% of the time. The choice of 1.96 corresponds to
a 95% confidence level.

GUIDED PRACTICE 5.16

If X is a normally distributed random variable, how often will X be within 2.58 standard deviations
of the mean?6

standard deviations from the mean

−3 −2 −1 0 1 2 3

95%, extends −1.96 to 1.96

99%, extends −2.58 to 2.58

Figure 5.5: The area between -z? and z? increases as |z?| becomes larger. If the
confidence level is 99%, we choose z? such that 99% of the normal curve is between
-z? and z?, which corresponds to 0.5% in the lower tail and 0.5% in the upper tail:
z? = 2.58.

6This is equivalent to asking how often the Z-score will be larger than -2.58 but less than 2.58. (For a picture,
see Figure 5.5.) There is ≈ 0.99 probability that the unobserved random variable X will be within 2.58 standard
deviations of the mean.



5.2. CONFIDENCE INTERVALS 267

To create a 99% confidence interval, change 1.96 in the 95% confidence interval formula to be
2.58. Guided Practice 5.16 highlights that 99% of the time a normal random variable will be within
2.58 standard deviations of its mean. Thus, the formula for a 99% confidence interval is

point estimate ± 2.58× SE of estimate (5.17)

Figure 5.5 provides a picture of how to identify z? based on a confidence level.
The number of standard errors we go above and below the point estimate is called the critical

value. When the critical value is determined based on a normal model, we call the critical value z?.

CONFIDENCE INTERVAL FOR ANY CONFIDENCE LEVEL

If the point estimate follows a normal model with standard error SE, then a confidence interval
for the population parameter is

point estimate ± z? × SE of estimate

where z? depends on the confidence level selected.

Finding the value of z? that corresponds to a particular confidence level is most easily accom-
plished by using a new table, called the t-table. For now, what is noteworthy about this table is
that the bottom row corresponds to confidence levels. The numbers inside the table are the critical
values, but which row should we use? Later in this book, we will see that a t-curve with infinite
degrees of freedom corresponds to the normal curve. For this reason, when finding z?, we use the
t-table at row ∞.

one tail 0.100 0.050 0.025 0.010 0.005
df 1 3.078 6.314 12.71 31.82 63.66

2 1.886 2.920 4.303 6.965 9.925
3 1.638 2.353 3.182 4.541 5.841
...

...
...

...
...

1000 1.282 1.646 1.962 2.330 2.581
∞ 1.282 1.645 1.960 2.326 2.576

Confidence level C 80% 90% 95% 98% 99%

Figure 5.6: An abbreviated look at the t-table. The columns correspond to confi-
dence levels. Row ∞ corresponds to the normal curve.

FINDING z?z?z? FOR A PARTICULAR CONFIDENCE LEVEL

We select z? so that the area between -z? and z? in the normal model corresponds to the
confidence level. Use a calculator or use the t-table at row ∞ to find the critical value z?.

GUIDED PRACTICE 5.18

Find the appropriate z? value for an 80% confidence interval.7

The normal approximation is crucial to the precision of these confidence intervals. The next
two chapters provide detailed discussions about when a normal model can safely be applied to a
variety of situations. When a normal model is not a good fit, we will use alternate distributions that
better characterize the sampling distribution.

7Using row∞ on the t-table, we see that the value that corresponds to an 80% confidence level is 1.282. Therefore,
we should use 1.282 as the z? value.
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5.2.4 Margin of error

The confidence intervals we have encountered thus far have taken the form

point estimate ± z∗ × SE of estimate

Confidence intervals are also often reported as

point estimate ± margin of error

For example, instead of reporting an interval as 0.09 ± 1.645× 0.028 or (0.044, 0.136), it could be
reported as 0.09 ± 0.046.

The margin of error equals the critical value times the standard error of the estimate. The
researcher chooses a confidence level, and then calculates the margin of error that corresponds to
that confidence level. The margin of error for a 95% confidence interval tells us that we are 95%
confident that the sample statistic is within that margin of error of the true value.

Numerically, the margin of error corresponds to the distance between the point estimate and
the lower or upper bound of a confidence interval, and thus is half of the total width of the interval.

MARGIN OF ERROR

When the point estimate follows a normal distribution,

margin of error = z? × SE of estimate.

EXAMPLE 5.19

All other things being equal, will the margin of error be bigger for a 68% confidence interval or a
95% confidence interval?

A 95% confidence interval is wider than a 68% confidence interval and has a larger z? value, so the
95% confidence interval will have a larger margin of error. In order to be more confident of capturing
the true value, we must create a wider interval.

GUIDED PRACTICE 5.20

What is the margin of error for the confidence interval: (0.035, 0.145)?8

8The margin of error is half of the total width of the interval. The margin of error for this interval is 0.145−0.035
2

=
0.055.
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5.2.5 Interpreting confidence intervals

A careful eye might have observed the somewhat awkward language used to describe confidence
intervals. Correct interpretation:

We are C% confident that the population parameter is between and .

Incorrect language might try to describe the confidence interval as capturing the population param-
eter with a certain probability.9 Applying the language of probability to a fixed interval or to a fixed
parameter is one of the most common errors.

As we saw in Figure 5.4, the 95% confidence interval method has a 95% probability of producing
an interval that will capture the population parameter. A correct interpretation of the confidence
level is that such intervals will capture the population parameter that percent of the time (assuming
conditions are met and the probability model is true). However, each individual interval either does
or does not capture the population parameter. A correct interpretation of an individual confidence
interval cannot involve the vocabulary of probability.

Another especially important consideration of confidence intervals is that they only try to
capture the population parameter. Our intervals say nothing about the confidence of capturing
individual observations, a proportion of the observations, or point estimates. Confidence intervals
only attempt to capture population parameters.

5.2.6 Confidence interval procedures: a five step process

Use a confidence interval to estimate a parameter with a particular confidence level, C.

(AP EXAM TIP) WHEN CARRYING OUT A CONFIDENCE INTERVAL PROCEDURE, FOLLOW
THESE FIVE STEPS:

• Identify: Identify the parameter and the confidence level.

• Choose: Choose the appropriate interval procedure and identify it by name.

• Check: Check that the conditions for the interval procedure are met.

• Calculate: Calculate the confidence interval and record it in interval form.

CI: point estimate ± critical value× SE of estimate

• Conclude: Interpret the interval and, if applicable, draw a conclusion based on whether
the interval is entirely above, is entirely below, or contains the value of interest.

9To see that this interpretation is incorrect, imagine taking two random samples and constructing two 95% confi-
dence intervals for an unknown proportion. If these intervals are disjoint, can we say that there is a 95%+95%=190%
chance that the first or the second interval captures the true value?
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Section summary

• A point estimate is not perfect; there is almost always some error in the estimate. It is often
useful to supply a plausible range of values for the parameter, which we call a confidence
interval.

• A confidence interval is centered on the point estimate and extends a certain number of stan-
dard errors on either side of the estimate, depending upon how confident one wants to be. For
a fixed sample size, to be more confident of capturing the true value requires a wider interval.

• When the sampling distribution for a point estimate can reasonably be modeled as normal,
such as with a sample proportion, then the following are true:

– A 95% confidence interval is given by: point estimate ± 1.96× SE of estimate.
We can be 95% confident this interval captures the true value.

– A C% confidence interval is given by: point estimate ± z? × SE of estimate.
We can be C% confident this interval captures the true value.

• For a C% confidence interval described above, we select z? such that the area between -z? and
z? under the standard normal curve is C%. Use a t-table at row ∞ to find the critical value
z?. 10

• After interpreting the interval, we can usually draw a conclusion, with C% confidence, about
whether a given value X is a reasonable value for the population parameter. When drawing a
conclusion based on a confidence interval, there are three possibilities.

– We have evidence that the true [parameter]:
...is greater than X, because the entire interval is above X.
...is less than X, because the entire interval is below X.

– We do not have evidence that the true [parameter] is not X, because X is in the interval.

Interpreting confidence intervals and confidence levels

• 68% and 95% are examples of confidence levels. The confidence level tells us the capture rate
with repeated sampling. For example, a correct interpretation of a 95% confidence level is that
if many samples of the same size were taken from the population, about 95% of the resulting
confidence intervals would capture the true population parameter (assuming the conditions are
met and the probability model is true). Note that this is a relative frequency interpretation.

• We cannot use the language of probability to interpret an individual confidence interval, once it
has been calculated. The confidence level tells us what percent of the intervals will capture the
population parameter, not the probability that a calculated interval captures the population
parameter. Each calculated interval either does or does not capture the population parameter.

Margin of error

• Confidence intervals are often reported as: point estimate ± margin of error. The margin of
error (ME) = critical value × SE of estimate, and it tells us, with a particular confidence,
how much we expect our point estimate to deviate from the true population value due to
chance.

• The margin of error depends on the confidence level ; the standard error does not. Other things
being constant, a higher confidence level leads to a larger margin of error.

• For a fixed confidence level, increasing the sample size decreases the margin of error. This
assumes a random sample.

• The margin of error formula only applies if a sample is random. Moreover, the margin of error
measures only sampling error ; it does not account for additional error introduced by response
bias and non-response bias. Even with a perfectly random sample, the actual error in a poll
is likely higher than the reported margin of error.11

10We explain the relationship between z and t in Chapter 7
11nytimes.com/2016/10/06/upshot/when-you-hear-the-margin-of-error-is-plus-or-minus-3-percent-think-7-

instead.html

http://www.openintro.org/redirect.php?go=textbook-nytimes_moe_think_7_instead&referrer=ahss3_pdf
http://www.openintro.org/redirect.php?go=textbook-nytimes_moe_think_7_instead&referrer=ahss3_pdf
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Exercises

5.7 Chronic illness, Part I. In 2013, the Pew Research Foundation reported that “45% of U.S. adults report
that they live with one or more chronic conditions”.12 However, this value was based on a sample, so it may
not be a perfect estimate for the population parameter of interest on its own. The study reported a standard
error of about 1.2%, and a normal model may reasonably be used in this setting. Create a 95% confidence
interval for the proportion of U.S. adults who live with one or more chronic conditions. Also interpret the
confidence interval in the context of the study.

5.8 Twitter users and news, Part I. A poll conducted in 2013 found that 52% of U.S. adult Twitter users get
at least some news on Twitter.13. The standard error for this estimate was 2.4%, and a normal distribution
may be used to model the sample proportion. Construct a 99% confidence interval for the fraction of U.S.
adult Twitter users who get some news on Twitter, and interpret the confidence interval in context.

5.9 Waiting at an ER, Part I. A hospital administrator hoping to improve wait times decides to estimate the
average emergency room waiting time at her hospital. She collects a simple random sample of 64 patients
and determines the time (in minutes) between when they checked in to the ER until they were first seen by
a doctor. A 95% confidence interval based on this sample is (128 minutes, 147 minutes), which is based on
the normal model for the mean. Determine whether the following statements are true or false, and explain
your reasoning.

(a) We are 95% confident that the average waiting time of these 64 emergency room patients is between
128 and 147 minutes.

(b) We are 95% confident that the average waiting time of all patients at this hospital’s emergency room is
between 128 and 147 minutes.

(c) 95% of random samples have a sample mean between 128 and 147 minutes.

(d) A 99% confidence interval would be narrower than the 95% confidence interval since we need to be more
sure of our estimate.

(e) The margin of error is 9.5 and the sample mean is 137.5.

(f) In order to decrease the margin of error of a 95% confidence interval to half of what it is now, we would
need to double the sample size.

5.10 Mental health. The General Social Survey asked the question: “For how many days during the past
30 days was your mental health, which includes stress, depression, and problems with emotions, not good?”
Based on responses from 1,151 US residents, the survey reported a 95% confidence interval of 3.40 to 4.24
days in 2010.

(a) Interpret this interval in context of the data.

(b) What does “95% confident” mean? Explain in the context of the application.

(c) Suppose the researchers think a 99% confidence level would be more appropriate for this interval. Will
this new interval be smaller or wider than the 95% confidence interval?

(d) If a new survey were to be done with 500 Americans, do you think the standard error of the estimate
be larger, smaller, or about the same.

12Pew Research Center, Washington, D.C. The Diagnosis Difference, November 26, 2013.
13Pew Research Center, Washington, D.C. Twitter News Consumers: Young, Mobile and Educated, November 4,

2013.

http://www.openintro.org/redirect.php?go=textbook-The_Diagnosis_Difference&referrer=ahss3_pdf
http://www.openintro.org/redirect.php?go=textbook-twitter_news_consumers_2013&referrer=ahss3_pdf
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5.11 Cyberbullying rates. Teens were surveyed about cyberbullying, and 54% to 64% reported experienc-
ing cyberbullying (95% confidence interval).14 Answer the following questions based on this interval.

(a) A newspaper claims that a majority of teens have experienced cyberbullying. Is this claim supported
by the confidence interval? Explain your reasoning.

(b) A researcher conjectured that 70% of teens have experienced cyberbullying. Is this claim supported by
the confidence interval? Explain your reasoning.

(c) Without actually calculating the interval, determine if the claim of the researcher from part (b) would
be supported based on a 90% confidence interval?

5.12 Waiting at an ER, Part II. Exercise 5.9 provides a 95% confidence interval for the mean waiting time
at an emergency room (ER) of (128 minutes, 147 minutes). Answer the following questions based on this
interval.

(a) A local newspaper claims that the average waiting time at this ER exceeds 3 hours. Is this claim
supported by the confidence interval? Explain your reasoning.

(b) The Dean of Medicine at this hospital claims the average wait time is 2.2 hours. Is this claim supported
by the confidence interval? Explain your reasoning.

(c) Without actually calculating the interval, determine if the claim of the Dean from part (b) would be
supported based on a 99% confidence interval?

14Pew Research Center, A Majority of Teens Have Experienced Some Form of Cyberbullying. September 27, 2018.

http://www.openintro.org/redirect.php?go=pew_cyber_bully_2018&referrer=ahss3_pdf
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5.3 Introducing hypothesis testing

In an experiment, one treatment reduces cholesterol by 10% while another treatment reduces it by

17%. Is this strong enough evidence that the second treatment is more effective? In this section, we

will set up a framework for answering questions such as this and will look at the different types of

decision errors that researcher can make when drawing conclusions based on data.

Learning objectives

1. Explain the logic of hypothesis testing, including setting up hypotheses and drawing a conclu-

sion based on the set significance level and the calculated p-value.

2. Set up the null and alternative hypothesis in words and in terms of population parameters.

3. Interpret a p-value in context and recognize how the calculation of the p-value depends upon

the direction of the alternative hypothesis.

4. Define and interpret the concept statistically significant.

5. Interpret Type I, Type II Error, and power in the context of hypothesis testing.

6. Distinguish between statistically significant and practically significant, and recognize the role

that sample size plays here.

7. Understand the two general conditions for when the confidence interval and hypothesis testing

procedures apply and explain why these conditions are necessary.

5.3.1 Case study: medical consultant

People providing an organ for donation sometimes seek the help of a special medical consultant.
These consultants assist the patient in all aspects of the surgery, with the goal of reducing the
possibility of complications during the medical procedure and recovery. Patients might choose a
consultant based in part on the historical complication rate of the consultant’s clients.

One consultant tried to attract patients by noting the overall complication rate for liver donor
surgeries in the US is about 10%, but her clients have had only 9 complications in the 142 liver
donor surgeries she has facilitated. She claims this is strong evidence that her work meaningfully
contributes to reducing complications (and therefore she should be hired!).

EXAMPLE 5.21

We will let p represent the true complication rate for liver donors working with this consultant.
Calculate the best estimate for p using the data. Label the point estimate as p̂.

The sample proportion for the complication rate is 9 complications divided by the 142 surgeries the
consultant has worked on: p̂ = 9/142 = 0.063.

EXAMPLE 5.22

Is it possible to prove that the consultant’s work reduces complications?

No. The claim implies that there is a causal connection, but the data are observational. For example,
maybe patients who can afford a medical consultant can afford better medical care, which can also
lead to a lower complication rate.
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EXAMPLE 5.23

While it is not possible to assess the causal claim, it is still possible to ask whether the low complica-
tion rate of p̂ = 0.063 provides evidence that the consultant’s true complication rate is different than
the US complication rate. Why might we be tempted to immediately conclude that the consultant’s
true complication rate is different than the US complication rate? Can we draw this conclusion?

Her sample complication rate is p̂ = 0.063, which is 0.037 lower than the US complication rate of
10%. However, we cannot yet be sure if the observed difference represents a real difference or is just
the result of random variation. We wouldn’t expect the sample proportion to be exactly 0.10, even
if the truth was that her real complication rate was 0.10.

5.3.2 Setting up the null and alternative hypothesis

We can set up two competing hypotheses about the consultant’s true complication rate. The
first is call the null hypothesis and represents either a skeptical perspective or a perspective of
no difference. The second is called the alternative hypothesis (or alternative hypothesis) and
represents a new perspective such as the possibility that there has been a change or that there is a
treatment effect in an experiment.

NULL AND ALTERNATIVE HYPOTHESES

The null hypothesis is abbreviated H0. It represents a skeptical perspective and is often a
claim of no change or no difference.

The alternative hypothesis is abbreviated HA. It is the claim researchers hope to prove or
find evidence for, and it often asserts that there has been a change or an effect.

Our job as data scientists is to play the skeptic: before we buy into the alternative hypothesis,
we need to see strong supporting evidence.

EXAMPLE 5.24

Identify the null and alternative claim regarding the consultant’s complication rate.

H0: The true complication rate for the consultant’s clients is the same as the US complication rate
of 10%.

HA: The true complication rate for the consultant’s clients is different than 10%.

Often it is convenient to write the null and alternative hypothesis in mathematical or numerical
terms. To do so, we must first identify the quantity of interest. This quantity of interest is known
as the parameter for a hypothesis test.

PARAMETERS AND POINT ESTIMATES

A parameter for a hypothesis test is the “true” value of the population of interest. When
the parameter is a proportion, we call it p.

A point estimate is calculated from a sample. When the point estimate is a proportion, we
call it p̂.

The observed or sample proportion of 0.063 is a point estimate for the true proportion. The
parameter in this problem is the true proportion of complications for this consultant’s clients. The
parameter is unknown, but the null hypothesis is that it equals the overall proportion of complica-
tions: p = 0.10. This hypothesized value is called the null value.



5.3. INTRODUCING HYPOTHESIS TESTING 275

NULL VALUE OF A HYPOTHESIS TEST

The null value is the value hypothesized for the parameter in H0, and it is sometimes repre-
sented with a subscript 0, e.g. p0 (just like H0).

In the medical consultant case study, the parameter is p and the null value is p0 = 0.10. We
can write the null and alternative hypothesis as numerical statements as follows.

• H0: p = 0.10 (The complication rate for the consultant’s clients is equal to the US complication
rate of 10%.)

• HA: p 6= 0.10 (The complication rate for the consultant’s clients is not equal to the US
complication rate of 10%.)

HYPOTHESIS TESTING

These hypotheses are part of what is called a hypothesis test. A hypothesis test is a statistical
technique used to evaluate competing claims using data. Often times, the null hypothesis takes
a stance of no difference or no effect. If the null hypothesis and the data notably disagree, then
we will reject the null hypothesis in favor of the alternative hypothesis.

Don’t worry if you aren’t a master of hypothesis testing at the end of this section. We’ll discuss
these ideas and details many times in this chapter and the two chapters that follow.

The null claim is always framed as an equality: it tells us what quantity we should use for the
parameter when carrying out calculations for the hypothesis test. There are three choices for the
alternative hypothesis, depending upon whether the researcher is trying to prove that the value of
the parameter is greater than, less than, or not equal to the null value.

ALWAYS WRITE THE NULL HYPOTHESIS AS AN EQUALITY

We will find it most useful if we always list the null hypothesis as an equality (e.g. p = 7) while
the alternative always uses an inequality (e.g. p 6= 0.7, p > 0.7, or p < 0.7).

GUIDED PRACTICE 5.25

According to the 2010 US Census, 7.6% of residents in the state of Alaska were under 5 years old.
A researcher plans to take a random sample of residents from Alaska to test whether or not this is
still the case. Write out the hypotheses that the researcher should test in both plain and statistical
language.15

When the alternative claim uses a 6=, we call the test a two-sided test, because either extreme
provides evidence against H0. When the alternative claim uses a < or a >, we call it a one-sided
test.

ONE-SIDED AND TWO-SIDED TESTS

If the researchers are only interested in showing an increase or a decrease, but not both, use a
one-sided test. If the researchers would be interested in any difference from the null value – an
increase or decrease – then the test should be two-sided.

15H0: p = 0.076; The proportion of residents under 5 years old in Alaska is unchanged from 2010.
HA: p 6= 0.076; The proportion of residents under 5 years old in Alaska has changed from 2010. Note that it could
have increased or decreased.
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EXAMPLE 5.26

For the example of the consultant’s complication rate, we knew that her sample complication rate
was 0.063, which was lower than the US complication rate of 0.10. Why did we conduct a two-sided
hypothesis test for this setting?

The setting was framed in the context of the consultant being helpful, but what if the consultant
actually performed worse than the US complication rate? Would we care? More than ever! Since
we care about a finding in either direction, we should run a two-sided test.

ONE-SIDED HYPOTHESES ARE ALLOWED ONLY BEFORE SEEING DATA

After observing data, it is tempting to turn a two-sided test into a one-sided test. Avoid this
temptation. Hypotheses must be set up before observing the data. If they are not, the test
must be two-sided.

5.3.3 Evaluating the hypotheses with a p-value

EXAMPLE 5.27

There were 142 patients in the consultant’s sample. If the null claim is true, how many would we
expect to have had a complication?

If the null claim is true, we would expect about 10% of the patients, or about 14.2 to have a
complication.

The consultant’s complication rate for her 142 clients was 0.063 (0.063×142 ≈ 9). What is the
probability that a sample would produce a number of complications this far from the expected value
of 14.2, if her true complication rate were 0.10, that is, if H0 were true? The probability, which is
estimated in Section 5.7 on page 276, is about 0.1754. We call this quantity the p-value.

Sample Proportions Under the Null Hypothesis

0.02 0.05 0.07 0.1 0.13 0.15 0.18

Figure 5.7: The shaded area represents the p-value. We observed p̂ = 0.063, so any
observations smaller than this are at least as extreme relative to the null value,
p0 = 0.1, and so the lower tail is shaded. However, since this is a two-sided test,
values above 0.137 are also at least as extreme as 0.063 (relative to 0.1), and so
they also contribute to the p-value. The tail areas together total of about 0.1754
when calculated using a simulation technique in Section 5.3.4.
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HA: p < null value HA: p > null value HA: p ≠ null value

Figure 5.8: When the alternative hypothesis takes the form p < null value, the
p-value is represented by the lower tail. When it takes the form p > null value,
the p-value is represented by the upper tail. When using p 6= null value, then the
p-value is represented by both tails.

FINDING AND INTERPRETING THE P-VALUE

We find and interpret the p-value according to the nature of the alternative hypothesis.

HA: parameter > null value. The p-value corresponds to the area in the upper tail and is
probability of getting a test statistic larger than the observed test statistic if the null
hypothesis is true and the probability model is accurate.

HA: parameter < null value. The p-value corresponds to the area in the lower tail and is
the probability of observing a test statistic smaller than the observed test statistic if the
null hypothesis is true and the probability model is accurate.

HA: parameter 6= null value. The p-value corresponds to the area in both tails and is the
probability of observing a test statistic larger in magnitude than the observed test statistic
if the null hypothesis is true and the probability model is accurate.

More generally, we can say that the p-value is the probability of getting a test statistic as
extreme or more extreme than the observed test statistic in the direction of HA if the null
hypothesis is true and the probability model is accurate.

When working with proportions, we can also say that the p-value is the probability of getting
a sample proportion as far from or farther from the null proportion in the direction of HA if the null
hypothesis is true and the normal model holds.

When the p-value is small, i.e. less than a previously set threshold, we say the results are
statistically significant. This means the data provide such strong evidence against H0 that
we reject the null hypothesis in favor of the alternative hypothesis. The threshold is called the
significance level and is represented by α (the Greek letter alpha). The significance level is
typically set to α = 0.05, but can vary depending on the field or the application.

STATISTICAL SIGNIFICANCE

If the p-value is less than the significance level α (usually 0.05), we say that the result is
statistically significant. We reject H0, and we have strong evidence favoring HA.

If the p-value is greater than the significance level α, we say that the result is not statistically
significant. We do not reject H0, and we do not have strong evidence for HA.

Recall that the null claim is the claim of no difference. If we reject H0, we are asserting that
there is a real difference. If we do not reject H0, we are saying that the null claim is reasonable, but
we are not saying that the null claim has been proven.

GUIDED PRACTICE 5.28

Because the p-value is 0.1754, which is larger than the significance level 0.05, we do not reject the
null hypothesis. Explain what this means in the context of the problem using plain language.16

16The data do not provide evidence that the consultant’s complication rate is significantly lower or higher than
the US complication rate of 10%.
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EXAMPLE 5.29

In the previous exercise, we did not reject H0. This means that we did not disprove the null claim.
Is this equivalent to proving the null claim is true?

No. We did not prove that the consultant’s complication rate is exactly equal to 10%. Recall that
the test of hypothesis starts by assuming the null claim is true. That is, the test proceeds as an
argument by contradiction. If the null claim is true, there is a 0.1754 chance of seeing sample data
as divergent from 10% as we saw in our sample. Because 0.1754 is large, it is within the realm of
chance error, and we cannot say the null hypothesis is unreasonable.17

DOUBLE NEGATIVES CAN SOMETIMES BE USED IN STATISTICS

In many statistical explanations, we use double negatives. For instance, we might say that the
null hypothesis is not implausible or we failed to reject the null hypothesis. Double negatives
are used to communicate that while we are not rejecting a position, we are also not saying that
we know it to be true.

EXAMPLE 5.30

Does the conclusion in Guided Practice 5.28 ensure that there is no real association between the
surgical consultant’s work and the risk of complications? Explain.

No. It is possible that the consultant’s work is associated with a lower or higher risk of complications.
If this was the case, the sample may have been too small to reliable detect this effect.

EXAMPLE 5.31

An experiment was conducted where study participants were randomly divided into two groups.
Both were given the opportunity to purchase a DVD, but one half was reminded that the money, if
not spent on the DVD, could be used for other purchases in the future, while the other half was not.
The half that was reminded that the money could be used on other purchases was 20% less likely to
continue with a DVD purchase. We determined that such a large difference would only occur about
1-in-150 times if the reminder actually had no influence on student decision-making. What is the
p-value in this study? Was the result statistically significant?

The p-value was 0.006 (about 1/150). Since the p-value is less than 0.05, the data provide statistically
significant evidence that US college students were actually influenced by the reminder.

WHAT’S SO SPECIAL ABOUT 0.05?

We often use a threshold of 0.05 to determine whether a result is statistically significant. But
why 0.05? Maybe we should use a bigger number, or maybe a smaller number. If you’re a little
puzzled, that probably means you’re reading with a critical eye – good job! We’ve made a video
to help clarify why 0.05 :

www.openintro.org/why05

Sometimes it’s a good idea to deviate from the standard. We’ll discuss when to choose a
threshold different than 0.05 in Section 5.3.7.

Statistical inference is the practice of making decisions and conclusions from data in the context
of uncertainty. Just as a confidence interval may occasionally fail to capture the true value of the
parameter, a test of hypothesis may occasionally lead us to an incorrect conclusion. While a given
data set may not always lead us to a correct conclusion, statistical inference gives us tools to control
and evaluate how often these errors occur.

17The p-value is a conditional probability. It is P(getting data at least as divergent from the null value as we
observed | H0 is true). It is NOT P( H0 is true | we got data this divergent from the null value).

http://www.openintro.org/redirect.php?go=textbook-why05&referrer=ahss3_pdf
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5.3.4 Calculating the p-value by simulation (special topic)

When conditions for the applying a normal model are met, we use a normal model to find the
p-value of a test of hypothesis. In the complication rate example, the distribution is not normal.
It is, however, binomial, because we are interested in how many out of 142 patients will have
complications.

We could calculate the p-value of this test using binomial probabilities. A more general ap-
proach, though, for calculating p-values when a normal model does not apply is to use what is known
as simulation. While performing this procedure is outside of the scope of the course, we provide
an example here in order to better understand the concept of a p-value.

We simulate 142 new patients to see what result might happen if the complication rate really
is 0.10. To do this, we could use a deck of cards. Take one red card, nine black cards, and mix
them up. If the cards are well-shuffled, drawing the top card is one way of simulating the chance
a patient has a complication if the true rate is 0.10: if the card is red, we say the patient had a
complication, and if it is black then we say they did not have a complication. If we repeat this
process 142 times and compute the proportion of simulated patients with complications, p̂sim, then
this simulated proportion is exactly a draw from the null distribution.

There were 12 simulated cases with a complication and 130 simulated cases without a compli-
cation: p̂sim = 12/142 = 0.085.

One simulation isn’t enough to get a sense of the null distribution, so we repeated the sim-
ulation 10,000 times using a computer. Figure 5.9 shows the null distribution from these 10,000
simulations. The simulated proportions that are less than or equal to p̂ = 0.063 are shaded. There
were 0.0877 simulated sample proportions with p̂sim ≤ 0.063, which represents a fraction 0.0877 of
our simulations:

left tail =
Number of observed simulations with p̂sim ≤ 0.063

10000
=

877

10000
= 0.0877

However, this is not our p-value! Remember that we are conducting a two-sided test, so we should
double the one-tail area to get the p-value:18

p-value = 2× left tail = 2× 0.0877 = 0.1754
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Figure 5.9: The null distribution for p̂, created from 10,000 simulated studies. The
left tail contains 8.77% of the simulations. For a two-sided test, we double the tail
area to get the p-value. This doubling accounts for the observations we might have
observed in the upper tail, which are also at least as extreme (relative to 0.10) as
what we observed, p̂ = 0.063.

18This doubling approach is preferred even when the distribution isn’t symmetric, as in this case.
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5.3.5 Hypothesis testing: a five step process

Use a hypothesis test to test H0 versus HA at a particular signficance level, α.

(AP EXAM TIP) WHEN CARRYING OUT A HYPOTHESIS TEST PROCEDURE, FOLLOW THESE
FIVE STEPS:

• Identify: Identify the hypotheses and the significance level.

• Choose: Choose the appropriate test procedure and identify it by name.

• Check: Check that the conditions for the test procedure are met.

• Calculate: Calculate the test statistic and the p-value.

test statistic =
point estimate − null value

SE of estimate

• Conclude: Compare the p-value to the significance level to determine whether to reject
H0 or not reject H0. Draw a conclusion in the context of HA.

5.3.6 Decision errors

The hypothesis testing framework is a very general tool, and we often use it without a second
thought. If a person makes a somewhat unbelievable claim, we are initially skeptical. However, if
there is sufficient evidence that supports the claim, we set aside our skepticism. The hallmarks of
hypothesis testing are also found in the US court system.

EXAMPLE 5.32

A US court considers two possible claims about a defendant: she is either innocent or guilty. If we
set these claims up in a hypothesis framework, which would be the null hypothesis and which the
alternative?

The jury considers whether the evidence is so convincing (strong) that there is evidence beyond a
reasonable doubt of the person’s guilt. That is, the starting assumption (null hypothesis) is that
the person is innocent until evidence is presented that convinces the jury that the person is guilty
(alternative hypothesis). In statistics, our evidence comes in the form of data, and we use the
significance level to decide what is beyond a reasonable doubt.

Jurors examine the evidence to see whether it convincingly shows a defendant is guilty. Notice
that a jury finds a defendant either guilty or not guilty. They either reject the null claim or they
do not reject the null claim. They never prove the null claim, that is, they never find the defendant
innocent. If a jury finds a defendant not guilty, this does not necessarily mean the jury is confident
in the person’s innocence. They are simply not convinced of the alternative that the person is guilty.

This is also the case with hypothesis testing: even if we fail to reject the null hypothesis, we
typically do not accept the null hypothesis as truth. Failing to find strong evidence for the alternative
hypothesis is not equivalent to providing evidence that the null hypothesis is true.

Hypothesis tests are not flawless. Just think of the court system: innocent people are sometimes
wrongly convicted and the guilty sometimes walk free. Similarly, data can point to the wrong
conclusion. However, what distinguishes statistical hypothesis tests from a court system is that our
framework allows us to quantify and control how often the data lead us to the incorrect conclusion.

There are two competing hypotheses: the null and the alternative. In a hypothesis test, we
make a statement about which one might be true, but we might choose incorrectly. There are four
possible scenarios in a hypothesis test, which are summarized in Figure 5.10.
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Test conclusion

do not reject H0 reject H0 in favor of HA

H0 true correct conclusion Type I Error
Truth

HA true Type II Error correct conclusion

Figure 5.10: Four different scenarios for hypothesis tests.

TYPE I AND TYPE II ERRORS

A Type I Error is rejecting H0 when H0 is actually true. When we reject the null hypothesis,
it is possible that we make a Type I Error.

A Type II Error is failing to reject H0 when HA is actually true. When we dod not reject
the null hypothesis, it is possible that we make a Type II Error.

EXAMPLE 5.33

In a US court, the defendant is either innocent (H0) or guilty (HA). What does a Type I Error
represent in this context? What does a Type II Error represent? Figure 5.10 may be useful.

If the court makes a Type I Error, this means the defendant is innocent (H0 true) but wrongly
convicted. A Type II Error means the court failed to reject H0 (i.e. failed to convict the person)
when they were in fact guilty (HA true).

EXAMPLE 5.34

How could we reduce the Type I Error rate in US courts? What influence would this have on the
Type II Error rate?

To lower the Type I Error rate, we might raise our standard for conviction from “beyond a reasonable
doubt” to “beyond a conceivable doubt” so fewer people would be wrongly convicted. However, this
would also make it more difficult to convict the people who are actually guilty, so we would make
more Type II Errors.

GUIDED PRACTICE 5.35

How could we reduce the Type II Error rate in US courts? What influence would this have on the
Type I Error rate?19

GUIDED PRACTICE 5.36

A group of women bring a class action lawsuit that claims discrimination in promotion rates. What
would a Type I Error represent in this context?20

These examples provide an important lesson: if we reduce how often we make one type of error,
we generally make more of the other type.

19To lower the Type II Error rate, we want to convict more guilty people. We could lower the standards for
conviction from “beyond a reasonable doubt” to “beyond a little doubt”. Lowering the bar for guilt will also result
in more wrongful convictions, raising the Type I Error rate.

20We must first identify which is the null hypothesis and which is the alternative. The alternative hypothesis is
the one that bears the burden of proof, so the null hypothesis is that there was no discrimination and the alternative
hypothesis is that there was discrimination. Making a Type I Error in this context would mean that in fact there
was no discrimination, even though we concluded that women were discriminated against. Notice that this does not
necessarily mean something was wrong with the data or that we made a computational mistake. Sometimes data
simply point us to the wrong conclusion, which is why scientific studies are often repeated to check initial findings.
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5.3.7 Choosing a significance level

If H0 is true, what is the probability that we will incorrectly reject it? In hypothesis testing,
we perform calculations under the premise that H0 is true, and we reject H0 if the p-value is smaller
than the significance level α. That is, α is the probability of making a Type I Error. The choice of
what to make α is not arbitrary. It depends on the gravity of the consequences of a Type I Error.

RELATIONSHIP BETWEEN TYPE I AND TYPE II ERRORS

The probability of a Type I Error is called α and corresponds to the significance level of a test.
The probability of a Type II Error is called β. As we make α smaller, β typically gets larger,
and vice versa.

EXAMPLE 5.37

If making a Type I Error is especially dangerous or especially costly, should we choose a smaller
significance level or a higher significance level?

Under this scenario, we want to be very cautious about rejecting the null hypothesis, so we demand
very strong evidence before we are willing to reject the null hypothesis. Therefore, we want a smaller
significance level, maybe α = 0.01.

EXAMPLE 5.38

If making a Type II Error is especially dangerous or especially costly, should we choose a smaller
significance level or a higher significance level?

We should choose a higher significance level (e.g. 0.10). Here we want to be cautious about failing
to reject H0 when the null is actually false.

SIGNIFICANCE LEVELS SHOULD REFLECT CONSEQUENCES OF ERRORS

The significance level selected for a test should reflect the real-world consequences associated
with making a Type I or Type II Error. If a Type I Error is very dangerous, make α smaller.

5.3.8 Statistical power of a hypothesis test

When the alternative hypothesis is true, the probability of not making a Type II Error is called
power. It is common for researchers to perform a power analysis to ensure their study collects
enough data to detect the effects they anticipate finding. As you might imagine, if the effect they
care about is small or subtle, then if the effect is real, the researchers will need to collect a large
sample size in order to have a good chance of detecting the effect. However, if they are interested
in large effect, they need not collect as much data.

The Type II Error rate β and the magnitude of the error for a point estimate are controlled
by the sample size. As the sample size n goes up, the Type II Error rate goes down, and power
goes up. Real differences from the null value, even large ones, may be difficult to detect with small
samples. However, if we take a very large sample, we might find a statistically significant difference
but the size of the difference might be so small that it is of no practical value.
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5.3.9 Statistical significance versus practical significance

When the sample size becomes larger, point estimates become more precise and any real differ-
ences in the mean and null value become easier to detect and recognize. Even a very small difference
would likely be detected if we took a large enough sample. Sometimes researchers will take such
large samples that even the slightest difference is detected. While we still say that difference is
statistically significant, it might not be practically significant.

Statistically significant differences are sometimes so minor that they are not practically relevant.
This is especially important to research: if we conduct a study, we want to focus on finding a
meaningful result. We don’t want to spend lots of money finding results that hold no practical
value.

The role of a data scientist in conducting a study often includes planning the size of the
study. The data scientist might first consult experts or scientific literature to learn what would
be the smallest meaningful difference from the null value. She also would obtain some reasonable
estimate for the standard deviation. With these important pieces of information, she would choose
a sufficiently large sample size so that the power for the meaningful difference is perhaps 80% or
90%. While larger sample sizes may still be used, she might advise against using them in some cases,
especially in sensitive areas of research.

5.3.10 Statistical significance versus a real difference

When a result is statistically significant at the α = 0.05 level, we have evidence that the result
is real. However, when there is no difference or effect, we can expect that 5% of the time the test
conclusion will lead to a Type I Error and incorrectly reject the null hypothesis. Therefore we must
beware of what is called p-hacking, in which researchers may test many, many hypotheses and then
publish the ones that come out statistically significant. As we noted, we can expect 5% of the results
to be significant when the null hypothesis is true and there really is no difference or effect.21

5.3.11 When to retreat

We must point out that statistical tools rely on conditions. When the conditions are not met,
these tools are unreliable and drawing conclusions from them is treacherous. The conditions for
these tools typically come in two forms.

• The individual observations must be independent. A random sample from less than
10% of the population ensures the observations are independent. In experiments, we gener-
ally require that subjects are randomized into groups. If independence fails, then advanced
techniques must be used, and in some such cases, inference may not be possible.

• Other conditions focus on sample size and skew. For example, in Chapter 4 we looked
at the success-failure condition and sample size condition for when p̂ and x̄ will follow a nearly
normal distribution.

Verification of conditions for statistical tools is always necessary. When conditions are not satisfied
for a given statistical technique, it is necessary to investigate new methods that are appropriate for
the data.

Finally, we caution that there may be no inference tools helpful when considering data that
include unknown biases, such as convenience samples. For this reason, there are books, courses, and
researchers devoted to the techniques of sampling and experimental design. See Sections 1.3-1.5 for
basic principles of data collection.

21 The problem is even greater than p-hacking. In what has been called the “reproducibility crisis”, researchers
have failed to reproduce a large proportion of results that were found significant and were published in scientific
journals. This problem highlights the importance of research that reproduces earlier work rather than taking the
word of a single study.

Also keep in mind that the probability that a difference will be found to be significant given that there is no
real difference is not the same as the probability that a difference is not real, given that it was found significant.
Depending upon the veracity of the hypotheses tested, the latter can be upwards of 80%, leading some to assert that
“most published research is false”. https://www.economist.com/briefing/2013/10/18/trouble-at-the-lab

http://www.openintro.org/redirect.php?go=textbook-trouble-at-the-lab&referrer=ahss3_pdf
https://www.economist.com/briefing/2013/10/18/trouble-at-the-lab
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Section summary

• A hypothesis test is a statistical technique used to evaluate competing claims based on data.

• The competing claims are called hypotheses and are often about population parameters (e.g.
µ and p); they are never about sample statistics.

– The null hypothesis is abbreviated H0. It represents a skeptical perspective or a per-
spective of no difference or no change.

– The alternative hypothesis is abbreviated HA. It represents a new perspective or
a perspective of a real difference or change. Because the alternative hypothesis is the
stronger claim, it bears the burden of proof.

• The logic of a hypothesis test: In a hypothesis test, we begin by assuming that the null
hypothesis is true. Then, we calculate how unlikely it would be to get a sample value as extreme
as we actually got in our sample, assuming that the null value is correct. If this likelihood
is too small, it casts doubt on the null hypothesis and provides evidence for the alternative
hypothesis.

• We set a significance level, denoted α, which represents the threshold below which we will
reject the null hypothesis. The most common significance level is α = 0.05. If we require more
evidence to reject the null hypothesis, we use a smaller α.

• After verifying that the relevant conditions are met, we can calculate the test statistic. The
test statistic tells us how many standard errors the point estimate (sample value) is from
the null value (i.e. the value hypothesized for the parameter in the null hypothesis). When
investigating a single mean or proportion or a difference of means or proportions, the test
statistic is calculated as: point estimate − null value

SE of estimate .

• After the test statistic, we calculate the p-value. We find and interpret the p-value according
to the nature of the alternative hypothesis. The three possibilities are:

HA: parameter> null value. The p-value corresponds to the area in the upper tail.

HA: parameter< null value. The p-value corresponds to the area in the lower tail.

HA: parameter 6= null value. The p-value corresponds to the area in both tails.

The p-value is the probability of getting a test statistic as extreme or more extreme than the
observed test statistic in the direction of HA if the null hypothesis is true and the probability
model is accurate.

• The conclusion or decision of a hypothesis test is based on whether the p-value is smaller or
larger than the preset significance level α.

– When the p-value < α, we say the results are statistically significant at the α level
and we have evidence of a real difference or change. The observed difference is beyond
what would have been expected from chance variation alone. This leads us to reject H0

and gives us evidence for HA.

– When the p-value > α, we say the results are not statistically significant at the α level
and we do not have evidence of a real difference or change. The observed difference was
within the realm of expected chance variation. This leads us to not reject H0 and does
not give us evidence for HA.

• Decision errors. In a hypothesis test, there are two types of decision errors that could be
made. These are called Type I and Type II Errors.

– A Type I Error is rejecting H0, when H0 is actually true. We commit a Type I Error
if we call a result significant when there is no real difference or effect. P(Type I Error)
= α.

– A Type II Error is not rejecting H0, when HA is actually true. We commit a Type II
Error if we call a result not significant when there is a real difference or effect. P(Type II
Error) = β.
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– The probability of a Type I Error (α) and a Type II Error (β) are inversely related.
Decreasing α makes β larger; increasing α makes β smaller.

– Once a decision is made, only one of the two types of errors is possible. If the test rejects
H0, for example, only a Type I Error is possible.

• The power of a test.

– When a particular HA is true, the probability of not making a Type II Error is called
power. Power = 1− β.

– The power of a test is the probability of detecting an effect of a particular size when it is
present.

– Increasing the significance level decreases the probability of a Type II Error and increases
power. α ↑, β ↓,power ↑.

– For a fixed α, increasing the sample size n makes it easier to detect an effect and therefore
decreases the probability of a Type II Error and increases power. n ↑, β ↓,power ↑.

• A small percent of the time (α), a significant result will not be a real result. If many tests are
run, a small percent of them will produce significant results due to chance alone.22

• With a very large sample, a significant result may point to a result that is real but not
practically significant. That is, the difference detected may be so small as to be unimportant
or meaningless.

• The inference procedures in this book all require two broad conditions to be met. The first
is that some type of random sampling or random assignment must be involved. The second
condition focuses on sample size and skew to determine whether the point estimate follows the
intended distribution.

22Similarly, if many confidence intervals are constructed, a small percent (100 - C%) of them will fail to capture a
true value due to chance alone. A value outside the confidence interval is not an impossible value.
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Exercises

5.13 Identify hypotheses, Part I. Write the null and alternative hypotheses in words and then symbols for
each of the following situations.

(a) A tutoring company would like to understand if most students tend to improve their grades (or not)
after they use their services. They sample 200 of the students who used their service in the past year
and ask them if their grades have improved or declined from the previous year.

(b) Employers at a firm are worried about the effect of March Madness, a basketball championship held each
spring in the US, on employee productivity. They estimate that on a regular business day employees
spend on average 15 minutes of company time checking personal email, making personal phone calls,
etc. They also collect data on how much company time employees spend on such non-business activities
during March Madness. They want to determine if these data provide convincing evidence that employee
productivity changed during March Madness.

5.14 Identify hypotheses, Part II. Write the null and alternative hypotheses in words and using symbols
for each of the following situations.

(a) Since 2008, chain restaurants in California have been required to display calorie counts of each menu
item. Prior to menus displaying calorie counts, the average calorie intake of diners at a restaurant was
1100 calories. After calorie counts started to be displayed on menus, a nutritionist collected data on the
number of calories consumed at this restaurant from a random sample of diners. Do these data provide
convincing evidence of a difference in the average calorie intake of a diners at this restaurant?

(b) The state of Wisconsin would like to understand the fraction of its adult residents that consumed alcohol
in the last year, specifically if the rate is different from the national rate of 70%. To help them answer this
question, they conduct a random sample of 852 residents and ask them about their alcohol consumption.

5.15 Online communication. A study suggests that 60% of college student spend 10 or more hours per
week communicating with others online. You believe that this is incorrect and decide to collect your own
sample for a hypothesis test. You randomly sample 160 students from your dorm and find that 70% spent
10 or more hours a week communicating with others online. A friend of yours, who offers to help you with
the hypothesis test, comes up with the following set of hypotheses. Indicate any errors you see.

H0 : p̂ < 0.6

HA : p̂ > 0.7

5.16 Married at 25. A study suggests that the 25% of 25 year olds have gotten married. You believe that
this is incorrect and decide to collect your own sample for a hypothesis test. From a random sample of 25
year olds in census data with size 776, you find that 24% of them are married. A friend of yours offers
to help you with setting up the hypothesis test and comes up with the following hypotheses. Indicate any
errors you see.

H0 : p̂ = 0.24

HA : p̂ 6= 0.24
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5.17 Unemployment and relationship problems. A USA Today/Gallup poll asked a group of unemployed
and underemployed Americans if they have had major problems in their relationships with their spouse or
another close family member as a result of not having a job (if unemployed) or not having a full-time job (if
underemployed). 27% of the 1,145 unemployed respondents and 25% of the 675 underemployed respondents
said they had major problems in relationships as a result of their employment status.

(a) What are the hypotheses for evaluating if the proportions of unemployed and underemployed people
who had relationship problems were different?

(b) The p-value for this hypothesis test is approximately 0.35. Explain what this means in context of the
hypothesis test and the data.

5.18 Which is higher? In each part below, there is a value of interest and two scenarios (I and II). For
each part, report if the value of interest is larger under scenario I, scenario II, or whether the value is equal
under the scenarios.

(a) The standard error of p̂ when (I) n = 125 or (II) n = 500.

(b) The margin of error of a confidence interval when the confidence level is (I) 90% or (II) 80%.

(c) The p-value for a Z-statistic of 2.5 calculated based on a (I) sample with n = 500 or based on a (II) sample
with n = 1000.

(d) The probability of making a Type 2 Error when the alternative hypothesis is true and the significance
level is (I) 0.05 or (II) 0.10.

5.19 Testing for Fibromyalgia. A patient named Diana was diagnosed with Fibromyalgia, a long-term
syndrome of body pain, and was prescribed anti-depressants. Being the skeptic that she is, Diana didn’t
initially believe that anti-depressants would help her symptoms. However after a couple months of being on
the medication she decides that the anti-depressants are working, because she feels like her symptoms are
in fact getting better.

(a) Write the hypotheses in words for Diana’s skeptical position when she started taking the anti-depressants.

(b) What is a Type 1 Error in this context?

(c) What is a Type 2 Error in this context?
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Chapter highlights

Statistical inference is the practice of making decisions from data in the context of uncertainty. In
this chapter, we introduced two frameworks for inference: confidence intervals and hypothesis
tests.

• Confidence intervals are used for estimating unknown population parameters by providing an
interval of reasonable values for the unknown parameter with a certain level of confidence.

• Hypothesis tests are used to assess how reasonable a particular value is for an unknown pop-
ulation parameter by providing degrees of evidence against that value.

• The results of confidence intervals and hypothesis tests are, generally speaking, consistent.23

That is:

– Values that fall inside a 95% confidence interval (implying they are reasonable) will not
be rejected by a test at the 5% significance level (implying they are reasonable), and
vice-versa.

– Values that fall outside a 95% confidence interval (implying they are not reasonable) will
be rejected by a test at the 5% significance level (implying they are not reasonable), and
vice-versa.

– When the confidence level and the significance level add up to 100%, the conclusions of
the two procedures are consistent.

• Many values fall inside of a confidence interval and will not be rejected by a hypothesis test.
“Not rejecting H0” is NOT equivalent to accepting H0. When we “do not reject H0”, we are
asserting that the null value is reasonable, not that the parameter is exactly equal to the null
value.

• For a 95% confidence interval, 95% is not the probability that the true value lies inside the
confidence interval (it either does or it doesn’t). Likewise, for a hypothesis test, α is not the
probability that H0 is true (it either is or it isn’t). In both frameworks, the probability is
about what would happen in a random sample, not about what is true of the population.

• The confidence interval procedures and hypothesis tests described in this book should not be
applied unless particular conditions (described in more detail in the following chapters) are
met. If these procedures are applied when the conditions are not met, the results may be
unreliable and misleading.

While a given data set may not always lead us to a correct conclusion, statistical inference gives us
tools to control and evaluate how often errors occur.

23In the context of proportions there will be a small range of cases where this is not true. This is because when
working with proportions, the SE used for confidence intervals and the SE used for tests are slightly different, as we
will see in the next chapter.
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Chapter exercises

5.20 Twitter users and news, Part II. A poll conducted in 2013 found that 52% of U.S. adult Twitter users
get at least some news on Twitter, and the standard error for this estimate was 2.4%. Identify each of the
following statements as true or false. Provide an explanation to justify each of your answers.

(a) The data provide statistically significant evidence that more than half of U.S. adult Twitter users get
some news through Twitter. Use a significance level of α = 0.01.

(b) Since the standard error is 2.4%, we can conclude that 97.6% of all U.S. adult Twitter users were
included in the study.

(c) If we want to reduce the standard error of the estimate, we should collect less data.

(d) If we construct a 90% confidence interval for the percentage of U.S. adults Twitter users who get
some news through Twitter, this confidence interval will be wider than a corresponding 99% confidence
interval.

5.21 Chronic illness, Part II. In 2013, the Pew Research Foundation reported that “45% of U.S. adults
report that they live with one or more chronic conditions”, and the standard error for this estimate is 1.2%.
Identify each of the following statements as true or false. Provide an explanation to justify each of your
answers.

(a) We can say with certainty that the confidence interval from Exercise 5.7 contains the true percentage
of U.S. adults who suffer from a chronic illness.

(b) If we repeated this study 1,000 times and constructed a 95% confidence interval for each study, then
approximately 950 of those confidence intervals would contain the true fraction of U.S. adults who suffer
from chronic illnesses.

(c) The poll provides statistically significant evidence (at the α = 0.05 level) that the percentage of U.S.
adults who suffer from chronic illnesses is below 50%.

(d) Since the standard error is 1.2%, only 1.2% of people in the study communicated uncertainty about
their answer.

5.22 Relaxing after work. The General Social Survey asked the question: “After an average work day,
about how many hours do you have to relax or pursue activities that you enjoy?” to a random sample of
1,155 Americans.24 A 95% confidence interval for the mean number of hours spent relaxing or pursuing
activities they enjoy was (1.38, 1.92).

(a) Interpret this interval in context of the data.

(b) Suppose another set of researchers reported a confidence interval with a larger margin of error based on
the same sample of 1,155 Americans. How does their confidence level compare to the confidence level
of the interval stated above?

(c) Suppose next year a new survey asking the same question is conducted, and this time the sample size
is 2,500. Assuming that the population characteristics, with respect to how much time people spend
relaxing after work, have not changed much within a year. How will the margin of error of the 95%
confidence interval constructed based on data from the new survey compare to the margin of error of
the interval stated above?

24National Opinion Research Center, General Social Survey, 2018.

http://www.openintro.org/redirect.php?go=textbook-gss-data&referrer=ahss3_pdf
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5.23 Testing for food safety. A food safety inspector is called upon to investigate a restaurant with a few
customer reports of poor sanitation practices. The food safety inspector uses a hypothesis testing framework
to evaluate whether regulations are not being met. If he decides the restaurant is in gross violation, its license
to serve food will be revoked.

(a) Write the hypotheses in words.

(b) What is a Type 1 Error in this context?

(c) What is a Type 2 Error in this context?

(d) Which error is more problematic for the restaurant owner? Why?

(e) Which error is more problematic for the diners? Why?

(f) As a diner, would you prefer that the food safety inspector requires strong evidence or very strong
evidence of health concerns before revoking a restaurant’s license? Explain your reasoning.

5.24 True or false. Determine if the following statements are true or false, and explain your reasoning. If
false, state how it could be corrected.

(a) If a given value (for example, the null hypothesized value of a parameter) is within a 95% confidence
interval, it will also be within a 99% confidence interval.

(b) Decreasing the significance level (α) will increase the probability of making a Type 1 Error.

(c) Suppose the null hypothesis is p = 0.5 and we fail to reject H0. Under this scenario, the true population
proportion is 0.5.

(d) With large sample sizes, even small differences between the null value and the observed point estimate,
a difference often called the effect size, will be identified as statistically significant.

5.25 Practical vs. statistical significance. Determine whether the following statement is true or false,
and explain your reasoning: “With large sample sizes, even small differences between the null value and the
observed point estimate can be statistically significant.”

5.26 Same observation, different sample size. Suppose you conduct a hypothesis test based on a sample
where the sample size is n = 50, and arrive at a p-value of 0.08. You then refer back to your notes and
discover that you made a careless mistake, the sample size should have been n = 500. Will your p-value
increase, decrease, or stay the same? Explain.
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Chapter 6
Inference for categorical data

6.1 Inference for a single proportion

6.2 Inference for the difference of two proportions

6.3 Testing for goodness of fit using chi-square

6.4 Homogeneity and independence in two-way tables



292

In this chapter, we apply the methods and ideas from Chapter 5 in several contexts

for categorical data. We’ll start by revisiting what we learned for a single proportion,

where a normal distribution can be used to model the uncertainty in the sample pro-

portion. Next, we apply these same ideas to analyze the difference of two proportions

using a normal model. Later in the chapter we will encounter contingency tables,

and we will use a different distribution, though the core ideas of hypothesis testing

remain the same.

For videos, slides, and other resources, please visit

www.openintro.org/ahss

http://www.openintro.org/redirect.php?go=stat&referrer=ahss3_pdf
http://www.openintro.org/redirect.php?go=ahss&referrer=ahss3_pdf
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6.1 Inference for a single proportion

In this section, we will apply the inferential procedures introduced in Chapter 5 to the context of a

single proportion, and we will explore how to do sample size calculations for data collection purposes.

We will answer questions such as the following:

• Do greater than half of adults in the U.S. oppose nuclear energy?

• What percent of adults in the U.S. approve of the way the Supreme Court is handling its job?

• What is the standard error is associated with this estimate?

• How do we construct a confidence interval for this value?

• What sample size is required to estimate this within a 3% margin of error using a 95% confi-

dence level?

Learning objectives

1. State and verify whether or not the conditions for inference on a proportion using a normal

distribution are met.

2. Recognize that the success-failure condition and the standard error calculation are different

for the test and for the confidence interval and explain why this is the case.

3. Carry out a complete hypothesis test and confidence interval procedure for a single proportion.

4. Find the minimum sample size needed to estimate a proportion with C% confidence and a

margin of error no greater than a certain value.

5. Recognize that margin of error calculations only measure sampling error, and that other types

of errors may be present.
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6.1.1 Distribution of a sample proportion (review)

The distribution of a sample proportion, such as the distribution of all possible values for the
proportion of people who share a particular opinion in a poll, was introduced in Section 4.1. When
the sampling distribution for a sample proportion, p̂, is approximately normal, we can use confidence
intervals and hypothesis tests based on a normal distribution. We call these Z-intervals and Z-tests
for short. Here, we review the conditions necessary for a sample proportion to be modeled using a
normal distribution.

CONDITIONS FOR THE SAMPLING DISTRIBUTION FOR P̂̂P̂P BEING NEARLY NORMAL

The sampling distribution for a sample proportion, p̂, based on a random sample of size n from
a population with a true proportion p, is nearly normal when

1. the sample observations are independent and

2. np ≥ 10 and n(1− p) ≥ 10. This is called the success-failure condition.

If these conditions are met, then the sampling distribution for p̂ is nearly normal with mean

µp̂ = p and standard deviation σp̂ =
√

p(1−p)
n .

6.1.2 Checking conditions for inference using a normal distribution

We can use a normal model for inference for a proportion when the sampling distribution
for the sample proportion is nearly normal. We check that this assumption is reasonable by
assessing the independence assumption and verifying that the success-failure condition is met.

Independence. Observations can be considered independent when the data are collected from a
random process, such as tossing a coin, or from a random sample. Without a random sample
or process, the standard error formula would not apply, and it is unclear to what population
the inference would apply. When sampling without replacement from a finite population, the
observations can be considered independent when sampling less than 10% of the population.1

Success-failure condition. We saw in Section 4.1 that, when that the observations are indepen-
dent, the sampling distribution for a sample proportion will be nearly normal if the success-
failure condition is met, i.e. when the expected number of successes and failures are both at
least 10.

1When sampling without replacement and sampling greater than 10% of the population, a modified standard error
formula should be used.
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6.1.3 Confidence intervals for a proportion

The Gallup organization began measuring the public’s view of the Supreme Court’s job perfor-
mance in 2000, and has measured it every year since then with the question: “Do you approve or
disapprove of the way the Supreme Court is handling its job?”. In 2018, the Gallup poll randomly
sampled 1,033 adults in the U.S. and found that 53% of them approved. We know that 53% is just
a point estimate. What range of values are reasonable estimates for the percent of the population
that approved of the job the Supreme Court is doing? We can use the confidence interval procedure
introduced in the previous chapter to answer this question, but first we must clearly identify the
parameter we’re trying to estimate and be sure that a Z-interval will be appropriate. The following
examples walk through the various steps for carrying out a confidence interval procedure using the
Gallup poll data.

EXAMPLE 6.1

Identify the population of interest and the parameter of interest for the Gallup poll about the U.S.
Supreme Court.

Gallup sampled from U.S. adults, therefore the population of interest, and the population to which
we can make an inference, is U.S. adults. We know the percent of the sample that said they approve
of the job the Supreme Court is doing. However, we do not know what percent of the population
would approve. The parameter of interest, which is unknown, is the percent of all U.S. adults that
approve of the job the Supreme Court is doing. This is the quantity that we seek to estimate with
the confidence interval.

EXAMPLE 6.2

Can the sample proportion p̂ be modeled using a normal distribution?

In order to construct a Z-interval, the sample statistic must be able to be modeled using a normal
distribution. Gallup took a random sample of adults in the U.S. The sample is random and the
sample size is much less than 10% of the population size, so the first condition (the independence
condition) is satisfied. We must also test the second condition (the success-failure condition) to
ensure that the sample size is large enough for the central limit theorem to apply. The success-
failure condition is met when np and n(1 − p) are at least 10. Since p is always unknown when
constructing a confidence interval for p, we use the sample proportion p̂ to check this condition.
Here we have:

np̂ = 1033(0.53) = 547 (“successes”)

n(1− p̂) = 1033(1− 0.53) = 486 (“failures”)

The second condition is satisfied since 547 and 486 are both at least 10. With the two conditions
satisfied, we can model the sample proportion p̂ using a normal model and we can construct a
Z-interval.
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EXAMPLE 6.3

Calculate the point estimate and the SE of the estimate.

The point estimate for the unknown parameter p (the proportion of all U.S. adults) who approve of
the job the Supreme Court is doing) is the sample proportion. The point estimate here is p̂ = 0.53.

Because the point estimate is the sample proportion, the SE of the estimate is the SE of p̂. In
Section 4.1, we learned that the formula for the standard deviation of p̂ is

σp̂ =

√
p(1− p)

n

The proportion p is unknown, so we use the sample proportion p̂ to find the SE of p̂.

SE =

√
p̂(1− p̂)

n

Here p̂ = 0.53 and n = 1, 033, so the SE of the sample proportion is:

SE =

√
0.53(1− 0.53)

1033
= 0.016

EXAMPLE 6.4

Construct a 90% confidence interval for p, the proportion of all U.S. adults that approve of the job
the Supreme Court is doing.

Recall that the general form of a confidence interval is:

point estimate ± critical value× SE of estimate

We have already found the point estimate and the SE of the estimate. Because we previously
verified that p̂ can be modeled using a normal distribution, the critical value is a z?. The z? value
can be found in the t-table on page 514, using the bottom row (∞), where the column corresponds
to the confidence level. Here the confidence level is 90%, so z?=1.65. We can now construct the
90% confidence interval as follows.

point estimate ± z? × SE of estimate

0.53 ± 1.65× 0.016

= (0.504, 0.556)

We are 90% confident that the true proportion of U.S. adults who approve of the job the Supreme
Court is doing is between 0.504 and .556.

EXAMPLE 6.5

Based on the interval, is there evidence that more than half of U.S. adults approve of the job the
Supreme Court is doing?

The 90% confidence interval (0.504, 0.556) provides an interval of reasonable values for the parameter.
The value 0.50 is not in the interval, therefore can be considered unreasonable. Because the entire
interval is above 0.50, we do have evidence, at the 90% confidence level, that more than half of U.S.
adults (at the time of this poll) approve of the job the Supreme Court is doing.
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EXAMPLE 6.6

Do we have evidence at the 95% confidence level that more than half of U.S. adults approve of the
job the Supreme Court is doing?

First, we observe that a 95% confidence interval will be wider than a 90% confidence interval. For
a 95% Z-interval, z? = 1.96. The 95% confidence interval is:

0.53 ± 1.96× 0.016

= (0.499, 0.561)

Now, we see that 0.50 is just barely inside the interval, making it within the range of reasonable
values. Therefore, we do not have evidence, at the 95% confidence level, that more than half of U.S.
adults (at the time of this poll) approve of the job the Supreme Court is doing.

Notice that we come to a different conclusion based on different confidence levels, which may feel a
little jarring. However, this will happen with real data, and it highlights why it is important to be
explicit in identifying the confidence level being used.

Having worked through this example, we now summarize the steps for constructing a confidence
interval for a proportion using the five step framework introduce in Chapter 5.

CONSTRUCTING A CONFIDENCE INTERVAL FOR A PROPORTION

To carry out a complete confidence interval procedure to estimate a single proportion p,

Identify: Identify the parameter and the confidence level, C%.

The parameter will be a population proportion, e.g. the proportion of all U.S. adults that
approve of the job the Supreme Court is doing.

Choose: Choose the correct interval procedure and identify it by name.

To estimate a single proportion we use a 1-proportion Z-interval.

Check: Check conditions for the sampling distribution for p̂ to be nearly normal.

1. Independence: Data come from a random sample or random process. When sampling

without replacement, check that sample size is less than 10% of the population size.

2. Success-failure: np̂ ≥ 10 and n(1− p̂) ≥ 10.

Calculate: Calculate the confidence interval and record it in interval form.

point estimate ± z? × SE of estimate

point estimate: the sample proportion p̂

SE of estimate:
√

p̂(1−p̂)
n

z?: use a t-table at row ∞ and confidence level C%

( , )

Conclude: Interpret the interval and, if applicable, draw a conclusion in context.

We are C% confident that the true proportion of [...] is between and . If applicable,
draw a conclusion based on whether the interval is entirely above, is entirely below, or
contains the value of interest.
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EXAMPLE 6.7

A February 2018 Marist Poll reports: “Many Americans (68%) think there is intelligent life on other
planets.” The results were based on a random sample of 1,033 adults in the U.S. Does this poll
provide evidence at the 95% confidence level that greater than half of all U.S. adults think there is
intelligent life on other planets? Carry out a confidence interval procedure to answer this question.
Use the five step framework to organize your work.

Identify: First we identify the parameter of interest. Here the parameter is the true proportion of
U.S. adults that think there is intelligent life on other planets. We will estimate this at the
95% confidence level.

Choose: Because the parameter to be estimated is a single proportion, we will use a 1-proportion
Z-interval.

Check: We must check that a Z-interval is appropriate. The problem states that the data come
from a random sample, and since the population is adults in the U.S., the population size is
much more than 10 times larger than the sample size. Next we must check the success-failure
condition. Here, we have that 1033(.68) ≥ 10 and 1033(1 − 0.68) ≥ 10. The nearly normal
sampling distribution conditions are met, so we can proceed with a 1-proportion Z-interval.

Calculate: We will calculate the interval:

point estimate ± z? × SE of estimate

The point estimate is the sample proportion: p̂ = 0.68

The SE of the sample proportion is:
√

p̂(1−p̂)
n =

√
0.68(1−0.68)

1033 = 0.015.

z? is found using the t-table at row ∞ and confidence level C%.
For a 95% confidence level, z? = 1.96.

The 95% confidence interval is given by:

0.68 ± 1.96×
√

0.68(1− 0.68)

1033

0.68 ± 1.96× 0.015

= (0.651, 0.709)

Conclude: We are 95% confident that the true proportion of U.S. adults that think there is intel-
ligent life on other planets is between 0.651 and 0.709. Because the entire interval is above
0.5 we have evidence that greater than half of all U.S. adults think there is intelligent life on
other planets.

GUIDED PRACTICE 6.8

True or False: There is a 95% probability that between 65.1% and 70.9% of U.S. adults think that
there is intelligent life on other planets.2

2False. The true percent of U.S. adults that think there is intelligent life on other planets either falls in that
interval or it doesn’t. A correct interpretation of the confidence level would be that if we were to repeat this process
over and over, about 95% of the 95% confidence intervals constructed would contain the true value.



6.1. INFERENCE FOR A SINGLE PROPORTION 299

6.1.4 Technology: the 1-proportion Z-interval

A calculator can be helpful for evaluating the final interval in the Calculate step. However, it
should not be used as a substitute for understanding.

TI-83/84: 1-PROPORTION Z-INTERVAL

Use STAT, TESTS, 1-PropZInt.

1. Choose STAT.

2. Right arrow to TESTS.

3. Down arrow and choose A:1-PropZInt.

4. Let x be the number of yeses (must be an integer).

5. Let n be the sample size.

6. Let C-Level be the desired confidence level.

7. Choose Calculate and hit ENTER, which returns

( , ) the confidence interval
p̂ the sample proportion
n the sample size

CASIO FX-9750GII: 1-PROPORTION Z-INTERVAL

1. Navigate to STAT (MENU button, then hit the 2 button or select STAT).

2. Choose the INTR option (F4 button).

3. Choose the Z option (F1 button).

4. Choose the 1-P option (F3 button).

5. Specify the interval details:

• Confidence level of interest for C-Level.

• Enter the number of successes, x.

• Enter the sample size, n.

6. Hit the EXE button, which returns

Left, Right ends of the confidence interval
p̂ sample proportion
n sample size

GUIDED PRACTICE 6.9

Using a calculator, evaluate the confidence interval from Example 6.7. Recall that we wanted to
find a 95% confidence interval for the proportion of U.S. adults who think there is intelligent life on
other planets. The sample percent was 68% and the sample size was 1,033.3

3Navigate to the 1-proportion Z-interval on the calculator. To find x, the number of yes responses in the sample,
we multiply the sample proportion by the sample size. Here 0.68× 1033 = 702.44. We must round this to an integer,
so we use x = 702. Also, n =1033 and C-Level = 0.95. The calculator output of (0.651, 0.708) matches our previously
computed interval of (0.651, 0.709) with minor rounding difference.

http://www.openintro.org/redirect.php?go=TI84_1_PROP_CI&referrer=ahss3_pdf
http://www.openintro.org/redirect.php?go=CASIO_1_PROP_INFERENCE&referrer=ahss3_pdf
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6.1.5 Choosing a sample size when estimating a proportion

Planning a sample size before collecting data is important. If we collect too little data, the
standard error of our point estimate may be so large that the estimate is not very useful. On the
other hand, collecting data in some contexts is time-consuming and expensive, so we don’t want to
waste resources on collecting more data than we need.

When considering the sample size, we want to put an upper bound on the margin of error.
Recall that the margin of error is measured as the distance between the point estimate and the
lower or upper bound of a confidence interval.

MARGIN OF ERROR

The margin of error of a confidence interval is given by:

critical value × SE of estimate

The margin of error for a C% confidence interval tells us that we can be C% confident that our
point estimate is within that margin of error of the true value.

EXAMPLE 6.10

Suppose we are conducting a university survey to determine whether students support a $200 per
year increase in fees to pay for a new football stadium. Find the smallest sample size n so that the
margin of error of the point estimate p̂ will be no larger than 0.04 when using a 95% confidence
level.

Because we are working with proportions, the critical value is a z? value. We want the margin of
error to be less than or equal to 0.04, so we have:

z? ×
√
p(1− p)

n
≤ 0.04

There are two unknowns in the inequality: p and n. If we have an estimate of p, perhaps from a
similar survey, we could use that value. If we have no such estimate, we must use some other value
for p. It turns out that the margin of error is largest when p is 0.5, so we typically use this worst
case estimate of p = 0.5 if no other estimate is available.

1.96×
√

0.5(1− 0.5)

n
≤ 0.04

1.962 × 0.5(1− 0.5)

n
≤ 0.042

1.962 × 0.5(1− 0.5)

0.042
≤ n

600.25 ≤ n
n = 601

The sample size must be an integer and we round up because n must be greater than or equal to
600.25. We need at least 601 participants to ensure the sample proportion is within 0.04 of the true
proportion with 95% confidence.

No estimate of the true proportion is required in sample size computations for a proportion.
However, if we have a reliable estimate of the proportion, we should use it in place of the worst case
estimate of 0.5.
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EXAMPLE 6.11

A recent estimate of Congress’ approval rating was 17%. If another poll were taken, what minimum
sample size does this estimate suggest should be used to have a margin of error no greater than 0.04
with 95% confidence?

We complete the same computations as before, except now we use 0.17 instead of 0.5 for p:

1.96×
√

0.17(1− 0.17)

n
≤ 0.04

n ≥ 338.8

n = 339

If the true proportion is 0.17, then 339 is the minimum sample size that will ensure a margin of
error no greater than 0.04 with 95% confidence.

IDENTIFY A SAMPLE SIZE FOR A PARTICULAR MARGIN OF ERROR

When estimating a single proportion, we find the minimum sample size n needed to achieve a
margin of error no greater than m with a specified confidence level as follows:

z? ×
√
p(1− p)

n
≤ m

where z? depends on the confidence level. If no reliable estimate of p exists, use p = 0.5.

GUIDED PRACTICE 6.12

All other things being equal, what would we have to do to the sample size in order to halve the
margin of error (decrease it by a factor of 2)?4

GUIDED PRACTICE 6.13

A manager is about to oversee the mass production of a new tire model in her factory, and she
would like to estimate the proportion of these tires that will be rejected through quality control.
The quality control team has previously found that about 6.2% of tires fail inspection.

(a) How many tires should the manager examine to estimate the failure rate of the new tire model
to within 2% with a 90% confidence level?5

(b) What if the estimate of p is 1.7% rather than 6.2%?6

4To decrease the error, we would need to increase the sample size. We note that
√
n is in the denominator of the

SE formula, so we would have to quadruple the sample size in order to decrease the SE by a factor of 2. The margin
of error as well as the width of the confidence interval is proportional to 1√

n
.

5The z? corresponding to a 90% confidence level is 1.645. Since we have an estimate for p of 6.2%, we use it. So

we have: 1.645×
√

0.062(1−0.062)
n

≤ 0.02. Rearranging for n gives: n ≥ 393.4, so she should use n = 394.
6Substituting 0.017 for p gives an n of 114. We can note that in this case n× p = 114× 0.017 = 1.9 < 10. Since

the success-failure condition is not met, the use of z? = 1.645 based on a normal model is not appropriate. We would
need additional methods than what we’ve covered so far to get a good estimate for the minimum sample size in this
scenario.
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6.1.6 Hypothesis testing for a proportion

While a confidence interval provides a range of reasonable values for an unknown parameter,
a hypothesis test evaluates a specific claim. In a hypothesis test, we set up competing hypotheses
and find degrees of evidence against the null hypothesis.

EXAMPLE 6.14

Deborah Toohey is running for Congress, and her campaign manager claims she has more than 50%
support from the district’s electorate. A newspaper collects a random sample of 500 likely voters in
the district and estimates Toohey’s support to be 52%.

(a) Identify the null and the alternative hypothesis. What value should we use as the null value,
p0?

(b) Can we model p̂ using a normal model? Check the conditions.

(a) The alternative hypothesis, the one that bears the burden of proof, argues that Toohey has more
than 50% support. Therefore, HA will be one-sided and the null value will be p0 = 0.5. So we have
H0: p = 0.5 and HA: p > 0.5. Note that the hypotheses are about a population parameter. The
hypotheses are never about the sample.

(b) First, we observe that the problem states that a random sample was chosen. We assume that
the size of the electorate in Toohey’s district is more than 10 times the size of the sample. Next,
we check the success-failure condition. Because we assume that p = p0 for the calculations of the
hypothesis test, we use the hypothesized value p0 rather than the sample value p̂ when verifying the
success-failure condition.

np0 ≥ 10 → 500(0.5) ≥ 10

n(1− p0) ≥ 10 → 500(1− 0.5) ≥ 10

The conditions for a normal model are met.

In Chapter 5, we saw that the general form of the test statistic for a hypothesis test takes the
following form:

test statistic =
point estimate− null value

SE of estimate

When the conditions for a normal model are met:

• We use Z as the test statistic and call the test a Z-test.

• The point estimate is the sample proportion p̂ (just like for a confidence interval).

• Since we compute the test statistic assuming the null hypothesis (that p = p0) is true, we
compute the standard error of the sample proportion using the null value p0.

SE =

√
p0(1− p0)

n

CONFIDENCE INTERVALS VERSUS HYPOTHESIS TESTS FOR A SINGLE PROPORTION

1-proportion Z-interval

Check: np̂ ≥ 10 and n(1− p̂) ≥ 10 SE =

√
p̂(1− p̂)

n

1-proportion Z-test

Check: np0 ≥ 10 and n(1− p0) ≥ 10 SE =

√
p0(1− p0)

n
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EXAMPLE 6.15

(Continues previous example). Deborah Toohey’s campaign manager claimed she has more than
50% support from the district’s electorate. A newspaper poll finds that 52% of 500 likely voters
who were sampled support Toohey. Does this provide convincing evidence for the claim by Toohey’s
manager at the 5% significance level?

We will use a one-sided test with the following hypotheses:

H0: p = 0.5. Toohey’s support is 50%.

HA: p > 0.5. Toohey’s manager is correct, and her support is higher than 50%.

We will use a significance level of α = 0.05 for the test. We can compute the standard error as

SE =

√
p0(1− p0)

n
=

√
0.5(1− 0.5 )

500
= 0.022

The test statistic can be computed as:

Z =
point estimate− null value

SE of estimate
=

0.52− 0.50

0.022
= 0.89

Because the alternative hypothesis uses a greater than sign (>), this is an upper-tail test. We find
the area under the standard normal curve to the right of Z = 0.89. A figure featuring the p-value
is shown in Figure 6.1 as the shaded region.

0 0.89

Figure 6.1: Sampling distribution for the sample proportion if the null hypothesis
is true for Example 6.15. The p-value for the test is shaded.

Using a table or a calculator, we find the p-value is 0.19. This p-value of 0.19 is greater than
α = 0.05, so we do not reject H0. That is, we do not have sufficient evidence to support Toohey’s
campaign manager’s claims that she has more than 50% support within the district.

EXAMPLE 6.16

Based on the result above, do we have evidence that Toohey’s support equals 50%?

No. In a hypothesis test we look for degrees of evidence against the null hypothesis. We cannot ever
prove the null hypothesis directly. The value 0.5 is reasonable, but many other values are reasonable
as well. There are many values that would not get rejected by this test.

We now summarize the steps for carrying out a hypothesis test for a proportion using the five
step framework introduced in the previous chapter.



304 CHAPTER 6. INFERENCE FOR CATEGORICAL DATA

HYPOTHESIS TESTING FOR A PROPORTION

To carry out a complete hypothesis test to test the claim that a single proportion p is equal to
a null value p0,

Identify: Identify the hypotheses and the significance level, α.

H0: p = p0

HA: p 6= p0; HA: p > p0; or HA: p < p0

Choose: Choose the correct test procedure and identify it by name.

To test hypotheses about a single proportion we use a 1-proportion Z-test.

Check: Check conditions for the sampling distribution for p̂ to be nearly normal, assuming H0:
p = p0 is true.

1. Independence: Data come from a random sample or random process. When sampling

without replacement, check that sample size is less than 10% of the population size.

2. Success-failure: np0 ≥ 10 and n(1− p0) ≥ 10

Calculate: Calculate the Z-statistic and p-value.

Z = point estimate − null value
SE of estimate

point estimate: the sample proportion p̂

SE of estimate:
√

p0(1−p0)
n

null value: p0

p-value = (based on the Z-statistic and the direction of HA)

Conclude: Compare the p-value to α, and draw a conclusion in context.

If the p-value is < α, reject H0; there is sufficient evidence that [HA in context].

If the p-value is > α, do not reject H0; there is not sufficient evidence that [HA in context].
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EXAMPLE 6.17

A Gallup poll conducted in March of 2016 found that 54% of respondents oppose nuclear energy.
This was the first time since Gallup first asked the question in 1994 that a majority of respondents
said they oppose nuclear energy. The survey was based on telephone interviews from a random
sample of 1,019 adults in the United States. Does this poll provide evidence that greater than half
of U.S. adults oppose nuclear energy? Carry out an appropriate test at the 0.10 significance level.
Use the five step framework to organize your work.

Identify: We will test the following hypotheses at the α = 10% significance level.
H0: p = 0.5
HA: p > 0.5 Greater than half of all U.S. adults oppose nuclear energy.

Note: p > 0.5 is what we want to find evidence for; this bears the burden of proof, so this
corresponds to HA.

Choose: Because the hypotheses are about a single proportion, we choose the 1-proportion Z-test.

Check: We must check the independence and success-failure conditions to show that the sample
proportion can be modeled using a normal distribution. The problem states that the data
come from a random sample. Again, the population is adults in the U.S., so the sample size is
much smaller than 10% of the population size. Also, 1019(0.5) ≥ 10 and 1019(1 − 0.5) ≥ 10.
(Remember to use the hypothesized proportion, not the sample proportion, when checking the
conditions for this test.)

Calculate: We will calculate the Z-statistic and the p-value.

Z =
point estimate − null value

SE of estimate

The point estimate is the sample proportion: p̂ = 0.54.

The value hypothesized for the parameter in H0 is the null value: p0 = 0.5

The SE of the sample proportion, assuming H0 is true, is:
√

p0(1−p0)
n =

√
0.5(1−0.5)

1019

Z =
0.54− 0.5√

0.5(1−0.5)
1019

= 2.5

Because HA uses a greater than sign (>), meaning that it is an upper-tail test, the p-value
is the area to the right of Z = 2.5 under the standard normal curve. This area can be found
using a normal table or a calculator. The area or p-value = 0.006.

Conclude: The p-value of 0.006 is < 0.10, so we reject H0; there is sufficient evidence that greater
than half of U.S. adults oppose nuclear energy (as of March 2016).

GUIDED PRACTICE 6.18

In context, interpret the p-value of 0.006 from the previous example.7

7Assuming the normal model is accurate and assuming the null hypothesis is true, i.e. that the true proportion
of U.S. adults that oppose nuclear energy really is 0.5, there is a 0.006 probability of getting a test statistic as large
or larger than 2.5 (H0 uses a > sign, so the p-value is the area in the right tail). Note: We start by assuming H0

is true, that p really equals 0.5. Then, assuming this, we estimate the probability of getting a sample proportion of
0.54 or larger by finding the area under the standard normal curve to the right of 2.5. This probability is very small,
which casts doubt on the null hypothesis and leads us to reject it.
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6.1.7 Technology: the 1-proportion Z-test

A calculator can be useful for evaluating the test statistic and computing the p-value.

TI-83/84: 1-PROPORTION Z-TEST

Use STAT, TESTS, 1-PropZTest.

1. Choose STAT.

2. Right arrow to TESTS.

3. Down arrow and choose 5:1-PropZTest.

4. Let p0 be the null or hypothesized value of p.

5. Let x be the number of yeses (must be an integer).

6. Let n be the sample size.

7. Choose 6=, <, or > to correspond to HA.

8. Choose Calculate and hit ENTER, which returns

z Z-statistic
p p-value
p̂ the sample proportion
n the sample size

CASIO FX-9750GII: 1-PROPORTION Z-TEST

The steps closely match those of the 1-proportion confidence interval.

1. Navigate to STAT (MENU button, then hit the 2 button or select STAT).

2. Choose the TEST option (F3 button).

3. Choose the Z option (F1 button).

4. Choose the 1-P option (F3 button).

5. Specify the test details:

• Specify the sidedness of the test using the F1, F2, and F3 keys.

• Enter the null value, p0.

• Enter the number of successes, x.

• Enter the sample size, n.

6. Hit the EXE button, which returns

z Z-statistic
p p-value
p̂ the sample proportion
n the sample size

GUIDED PRACTICE 6.19

Using a calculator, find the test statistic and p-value for the earlier Example 6.17. Recall that we
were looking for evidence that more than half of U.S. adults oppose nuclear energy. The sample
percent was 54%, and the sample size was 1019.8

8Navigate to the 1-proportion Z-test on the calculator. Let p0 = 0.5. To find x, do 0.54 × 1019 = 550.26. This
needs to be an integer, so round to the closest integer. Here x = 550. Also, n = 1019. We are looking for evidence
that greater than half oppose, so choose > p0. When we do Calculate, we get the test statistic: Z = 2.64 and the
p-value: p = 0.006.

http://www.openintro.org/redirect.php?go=TI84_1_PROP_HT&referrer=ahss3_pdf
http://www.openintro.org/redirect.php?go=CASIO_1_PROP_INFERENCE&referrer=ahss3_pdf
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Section summary

Most of the confidence interval procedures and hypothesis tests of this book involve: a point
estimate, the standard error for the point estimate, and an assumption about the shape of
the sampling distribution of the point estimate. In this section, we explore inference when the
parameter of interest is a proportion.

• We use the sample proportion p̂ as the point estimate for the unknown population proportion
p. The sampling distribution for p̂ is approximately normal when the success-failure condition
is met and the observations are independent. When the sampling distribution for p̂ is normal,
the standardized test statistic also follows a normal distribution.

• When verifying the success-failure condition and calculating the SE,

– use the sample proportion p̂ for the confidence interval, but

– use the null/hypothesized proportion p0 for the hypothesis test.

• When there is one sample and the parameter of interest is a single proportion:

– Estimate p at the C% confidence level using a 1-proportion Z-interval.

– Test H0: p = p0 at the α significance level using a 1-proportion Z-test.

• The one proportion Z-test and Z-interval require the sampling distribution for p̂ to be nearly
normal. For this reason we must check that the following conditions are met.

1. Independence: The data should come from a random sample or random process. When
sampling without replacement, check that the sample size is less than 10% of the popu-
lation size.

2. Success-failure for Interval: np̂ ≥ 10 and n(1− p̂) ≥ 10.
Success-failure for Test, assuming H0: p = p0 is true: np0 ≥ 10 and n(1− p0) ≥ 10.

• When the conditions are met, we calculate the confidence interval and the test statistic as
follows.

Confidence interval: point estimate ± z? × SE of estimate

Test statistic: Z = point estimate − null value
SE of estimate

Here the point estimate is the sample proportion p̂.

The SE of estimate is the SE of the sample proportion.

– For an Interval, use SE =
√

p̂(1−p̂)
n .

– For a Test with H0: p = p0, use SE =
√

p0(1−p0)
n .

• The margin of error (ME) for a one-sample confidence interval for a proportion is z?
√

p̂(1−p̂)
n ,

which is proportional to 1√
n

.

• To find the minimum sample size needed to estimate a proportion with a given confidence
level and a given margin of error, m, set up an inequality of the form:

z?
√
p̂(1− p̂)

n
< m

z? depends on the desired confidence level. Unless a particular proportion is given in the
problem, use p̂ = 0.5. We solve for the sample size n. The final answer should be an integer,
since n refers to a number of people or things.
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Exercises

6.1 Orange tabbies. Suppose that 90% of orange tabby cats are male. Determine if the following state-
ments are true or false, and explain your reasoning.

(a) The distribution of sample proportions of random samples of size 30 is left skewed.

(b) Using a sample size that is 4 times as large will reduce the standard error of the sample proportion by
one-half.

(c) The distribution of sample proportions of random samples of size 140 is approximately normal.

(d) The distribution of sample proportions of random samples of size 280 is approximately normal.

6.2 Young Americans, Part II. About 25% of young Americans have delayed starting a family due to
the continued economic slump. Determine if the following statements are true or false, and explain your
reasoning.9

(a) The distribution of sample proportions of young Americans who have delayed starting a family due to
the continued economic slump in random samples of size 12 is right skewed.

(b) In order for the distribution of sample proportions of young Americans who have delayed starting a
family due to the continued economic slump to be approximately normal, we need random samples
where the sample size is at least 40.

(c) A random sample of 50 young Americans where 20% have delayed starting a family due to the continued
economic slump would be considered unusual.

(d) A random sample of 150 young Americans where 20% have delayed starting a family due to the continued
economic slump would be considered unusual.

(e) Tripling the sample size will reduce the standard error of the sample proportion by one-third.

6.3 Gender equality. The General Social Survey asked a random sample of 1,390 Americans the following
question: “On the whole, do you think it should or should not be the government’s responsibility to promote
equality between men and women?” 82% of the respondents said it “should be”. At a 95% confidence level,
this sample has 2% margin of error. Based on this information, determine if the following statements are
true or false, and explain your reasoning.10

(a) We are 95% confident that between 80% and 84% of Americans in this sample think it’s the government’s
responsibility to promote equality between men and women.

(b) We are 95% confident that between 80% and 84% of all Americans think it’s the government’s respon-
sibility to promote equality between men and women.

(c) If we considered many random samples of 1,390 Americans, and we calculated 95% confidence intervals
for each, 95% of these intervals would include the true population proportion of Americans who think
it’s the government’s responsibility to promote equality between men and women.

(d) In order to decrease the margin of error to 1%, we would need to quadruple (multiply by 4) the sample
size.

(e) Based on this confidence interval, there is sufficient evidence to conclude that a majority of Americans
think it’s the government’s responsibility to promote equality between men and women.

6.4 Elderly drivers. The Marist Poll published a report stating that 66% of adults nationally think licensed
drivers should be required to retake their road test once they reach 65 years of age. It was also reported
that interviews were conducted on a random sample of 1,018 American adults, and that the margin of error
was 3% using a 95% confidence level.11

(a) Verify the margin of error reported by The Marist Poll.

(b) Based on a 95% confidence interval, does the poll provide convincing evidence that more than two
thirds of the population think that licensed drivers should be required to retake their road test once
they turn 65?

9Demos.org. “The State of Young America: The Poll”. In: (2011).
10National Opinion Research Center, General Social Survey, 2018.
11Marist Poll, Road Rules: Re-Testing Drivers at Age 65?, March 4, 2011.

http://www.openintro.org/redirect.php?go=textbook-young_americans_2011_extra&referrer=ahss3_pdf
http://www.openintro.org/redirect.php?go=textbook-gss-data&referrer=ahss3_pdf
http://www.openintro.org/redirect.php?go=textbook-drivers_at_65_2011&referrer=ahss3_pdf
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6.5 Fireworks on July 4th. A local news outlet reported that 56% of 600 randomly sampled Kansas
residents planned to set off fireworks on July 4th. Determine the margin of error for the 56% point estimate
using a 95% confidence level.12

6.6 Life rating in Greece. Greece has faced a severe economic crisis since the end of 2009. A Gallup poll
surveyed 1,000 randomly sampled Greeks in 2011 and found that 25% of them said they would rate their
lives poorly enough to be considered “suffering”.13

(a) Describe the population parameter of interest. What is the value of the point estimate of this parameter?

(b) Check if the conditions required for constructing a confidence interval based on these data are met.

(c) Construct a 95% confidence interval for the proportion of Greeks who are “suffering”.

(d) Without doing any calculations, describe what would happen to the confidence interval if we decided to
use a higher confidence level.

(e) Without doing any calculations, describe what would happen to the confidence interval if we used a
larger sample.

6.7 Study abroad. A survey on 1,509 high school seniors who took the SAT and who completed an optional
web survey shows that 55% of high school seniors are fairly certain that they will participate in a study
abroad program in college.14

(a) Is this sample a representative sample from the population of all high school seniors in the US? Explain
your reasoning.

(b) Let’s suppose the conditions for inference are met. Even if your answer to part (a) indicated that this
approach would not be reliable, this analysis may still be interesting to carry out (though not report).
Construct a 90% confidence interval for the proportion of high school seniors (of those who took the
SAT) who are fairly certain they will participate in a study abroad program in college, and interpret
this interval in context.

(c) What does “90% confidence” mean?

(d) Based on this interval, would it be appropriate to claim that the majority of high school seniors are
fairly certain that they will participate in a study abroad program in college?

6.8 Legalization of marijuana, Part I. The General Social Survey asked a random sample of 1,578 US
residents: “Do you think the use of marijuana should be made legal, or not?” 61% of the respondents said
it should be made legal.15

(a) Is 61% a sample statistic or a population parameter? Explain.

(b) Construct a 95% confidence interval for the proportion of US residents who think marijuana should be
made legal, and interpret it in the context of the data.

(c) A critic points out that this 95% confidence interval is only accurate if the statistic follows a normal
distribution, or if the normal model is a good approximation. Is this true for these data? Explain.

(d) A news piece on this survey’s findings states, “Majority of Americans think marijuana should be legal-
ized.” Based on your confidence interval, is this news piece’s statement justified?

6.9 National Health Plan, Part I. A Kaiser Family Foundation poll for a random sample of US adults
in 2019 found that 79% of Democrats, 55% of Independents, and 24% of Republicans supported a generic
“National Health Plan”. There were 347 Democrats, 298 Republicans, and 617 Independents surveyed.16

(a) A political pundit on TV claims that a majority of Independents support a National Health Plan. Do
these data provide strong evidence to support this type of statement?

(b) Would you expect a confidence interval for the proportion of Independents who oppose the public option
plan to include 0.5? Explain.

12Survey USA, News Poll #19333, data collected on June 27, 2012.
13Gallup World, More Than One in 10 “Suffering” Worldwide, data collected throughout 2011.
14studentPOLL, College-Bound Students’ Interests in Study Abroad and Other International Learning Activities,

January 2008.
15National Opinion Research Center, General Social Survey, 2018.
16Kaiser Family Foundation, The Public On Next Steps For The ACA And Proposals To Expand Coverage, data

collected between Jan 9-14, 2019.

http://www.openintro.org/redirect.php?go=textbook-SurveyUSA_19333&referrer=ahss3_pdf
http://www.openintro.org/redirect.php?go=textbook-1_in_10_suffering_2011&referrer=ahss3_pdf
http://www.openintro.org/redirect.php?go=textbook-Interests_in_Study_Abroad_2008&referrer=ahss3_pdf
http://www.openintro.org/redirect.php?go=textbook-gss-data&referrer=ahss3_pdf
http://www.openintro.org/redirect.php?go=textbook-kff_nat_health_plan_2019&referrer=ahss3_pdf
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6.10 Is college worth it? Part I. Among a simple random sample of 331 American adults who do not have
a four-year college degree and are not currently enrolled in school, 48% said they decided not to go to college
because they could not afford school.17

(a) A newspaper article states that only a minority of the Americans who decide not to go to college do
so because they cannot afford it and uses the point estimate from this survey as evidence. Conduct a
hypothesis test to determine if these data provide strong evidence supporting this statement.

(b) Would you expect a confidence interval for the proportion of American adults who decide not to go to
college because they cannot afford it to include 0.5? Explain.

6.11 Taste test. Some people claim that they can tell the difference between a diet soda and a regular
soda in the first sip. A researcher wanting to test this claim randomly sampled 80 such people. He then
filled 80 plain white cups with soda, half diet and half regular through random assignment, and asked each
person to take one sip from their cup and identify the soda as diet or regular. 53 participants correctly
identified the soda.

(a) Do these data provide strong evidence that these people are able to detect the difference between diet and
regular soda, in other words, are the results significantly better than just random guessing? Carry out
an appropriate test and include all steps of the Identify, Choose, Check, Calculate, Conclude framework.

(b) Interpret the p-value in this context.

6.12 Is college worth it? Part II. Exercise 6.10 presents a poll where 48% of 331 randomly selected
Americans reported that they decided not to go to college because they cannot afford it.

(a) Calculate a 90% confidence interval to estimate the proportion of Americans who decide to not go
to college because they cannot afford it. Include all steps of the Identify, Choose, Check, Calculate,
Conclude framework.

(b) Suppose we wanted the margin of error for the 90% confidence level to be about 1.5%. How large of a
survey would you recommend?

6.13 National Health Plan, Part II. Exercise 6.9 presents the results of a poll evaluating support for a generic
“National Health Plan” in the US in 2019, reporting that 55% of Independents are supportive. If we want
to estimate the percent of Independents who are supportive this year to within 1% with 90% confidence,
what would be an appropriate sample size?

6.14 Legalize Marijuana, Part II. As discussed in Exercise 6.8, the General Social Survey reported a sample
where about 61% of US residents thought marijuana should be made legal. If we wanted to limit the margin
of error of a 95% confidence interval to 2%, about how many Americans would we need to survey?

17Pew Research Center Publications, Is College Worth It?, data collected between March 15-29, 2011.

http://www.openintro.org/redirect.php?go=ahss_eoce_sol-taste_test_HT&referrer=ahss3_pdf
http://www.openintro.org/redirect.php?go=textbook-college_worth_it_2011&referrer=ahss3_pdf
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6.2 Inference for the difference of two proportions

We often wish to compare two groups to each other. In this section, we will answer the following

questions:

• How much more effective is a blood thinner than a placebo for those who undergo CPR for a

heart attack?

• How different is the approval of the 2010 healthcare law under two different question phrasings?

• Does the use of fish oils reduce heart attacks better than a placebo?

Learning objectives

1. State and verify whether or not the conditions for inference on the difference of two proportions

using a normal distribution are met.

2. Recognize that the standard error calculation is different for the test and for the interval, and

explain why that is the case.

3. Know how to calculate the pooled proportion and when to use it.

4. Carry out a complete confidence interval procedure for the difference of two proportions.

5. Carry out a complete hypothesis test for the difference of two proportions.

6.2.1 Sampling distribution for the difference of two proportions (review)

In this section we want to compare proportions from two independent groups. When comparing
two proportions, the quantity that we generally want to estimate is the difference p1 − p2, which
tells us how far apart the two population proportions are.

Before we perform inference for the two proportion case, we must review the sampling distri-
bution for p̂1 − p̂2, which will represent our point estimate. We know from Section 4.3 that when
the independence condition is satisfied, the sampling distribution for p̂1 − p̂2 is centered on p1 − p2

and the standard deviation is given by:

σp̂1−p̂2 =

√
p1(1− p1)

n1
+
p2(1− p2)

n2
.

When the individual population proportions are unknown, we estimate the standard deviation of
p̂1− p̂2 using the Standard Error, abbreviated SE. The SE of p̂1− p̂2 is found by substituting in our
best estimates of p1 and p2 using the sample values:

SEp̂1−p̂2 =

√
p̂1(1− p̂1)

n1
+
p̂2(1− p̂2)

n2
.

The difference of two sample proportions p̂1 − p̂2 follows a nearly normal distribution when
two conditions are met. First, the sampling distribution for each sample proportion must be nearly
normal. Second, the observations must be independent, both within and between groups. We cover
these conditions in greater detail next.
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6.2.2 Checking conditions for inference using a normal distribution

When comparing two proportions, we carry out inference on p1−p2. To model the test statistic
with a normal distribution, we need the sampling distribution for p̂1−p̂2 to be nearly normal,
and this assumption is reasonable when two conditions are met:

Independence. The observations across the two samples are independent. This condition is gener-
ally satisfied by checking whether the data are collected from two independent random samples
or from an experiment with two randomly assigned treatments. Randomly assigning subjects
to treatments is equivalent to randomly assigning treatments to subjects. When sampling
without replacement, the observations can be considered independent when the sample sizes
is less than 10% of the population size for both samples.

Success-failure condition. In the two-sample case, the number of successes and failures should
be at least 10 for both groups, so there are four inequalities to check.

6.2.3 Confidence interval for the difference of two proportions

We consider an experiment for patients who underwent CPR for a heart attack and were
subsequently admitted to a hospital. These patients were randomly divided into a treatment group
where they received a blood thinner or the control group where they did not receive a blood thinner.
The outcome variable of interest was whether the patients survived for at least 24 hours. The results
are shown in Figure 6.2.

Survived Died Total
Treatment 14 26 40
Control 11 39 50
Total 25 65 90

Figure 6.2: Results for the CPR study. Patients in the treatment group were given
a blood thinner, and patients in the control group were not.

Here, the parameter of interest is a difference of population proportions, specifically, the differ-
ence in the proportion of similar patients that would survive for at least 24 hours if in the treatment
group versus if in the control group. Let:

p1 : proportion that would survive in treatment group, and

p2 : proportion that would survive in control group

Then the parameter of interest is p1 − p2. In order to use a Z-interval to estimate this difference,
we must see if the point estimate, p̂1 − p̂2, follows a normal distribution. Because the patients were
randomly assigned to one of the two groups and one heart attack patient is unlikely to influence the
next that was in the study, the observations are considered independent, both within the samples
and between the samples (since there is no sampling, there is no need to check the 10% condition).
Next, the success-failure condition should be verified for each group. We use the sample proportions
along with the sample sizes to check the condition.

n1p̂1 ≥ 10 n1(1− p̂1) ≥ 10 n2p̂2 ≥ 10 n2(1− p̂2) ≥ 10

40× 14

40
≥ 10 40× (1− 14

40
) ≥ 10 50× 11

50
≥ 10 50× (1− 11

50
) ≥ 10

Because all conditions are met, the normal model can be used for the point estimate of the difference
in survival rate.

The point estimate is:

p̂1 − p̂2 =
14

40
− 11

50
= 0.35− 0.22 = 0.13
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We compute the standard error for the difference of sample proportions in the same way that
we compute the standard deviation for the difference of sample proportions – the only difference is
that we use the sample proportions in place of the population proportions:

SE =

√
p̂1(1− p̂1)

n1
+
p̂2(1− p̂2)

n2
=

√
0.35(1− 0.35)

40
+

0.22(1− 0.22)

50
= 0.095

Let us estimate the true difference in survival rate with 90% confidence. For a 90% confidence
level, we use z? = 1.645. The 90% confidence interval is calculated as:

point estimate ± z? × SE of estimate

0.13 ± 1.65× 0.095

(−0.027, 0.287)

We are 90% confident that the true difference in the survival rate (treatment − control) lies between
-0.027 and 0.287. That is, we are 90% confident that the treatment of blood thinners changes
survival rate for patients like those in the study by -2.7% to +28.7% percentage points. Because
this interval contains both negative and positive values, we do not have enough information to say
with confidence whether blood thinners harm or help heart attack patients who have been admitted
after they have undergone CPR.

CONSTRUCTING A CONFIDENCE INTERVAL FOR THE DIFFERENCE OF TWO PROPORTIONS

To carry out a complete confidence interval procedure to estimate the difference of two
proportions p1 − p2,

Identify: Identify the parameter and the confidence level, C%.

The parameter will be a difference of proportions, e.g. the true difference in the proportion
of 17 and 18 year olds with a summer job (proportion of 18 year olds − proportion of 17
year olds).

Choose: Identify the correct interval procedure and identify it by name.

To estimate a difference of proportions we choose the 2-proportion Z-interval.

Check: Check conditions for the sampling distribution for p̂1 − p̂2 to be nearly normal.

1. Independence: Data come from 2 independent random samples or from a randomized

experiment with two treatments. When sampling without replacement, check that the

sample size is less than 10% of the population size for both samples.

2. Success-failure: n1p̂1 ≥ 10, n1(1− p̂1) ≥ 10, n2p̂2 ≥ 10, and n2(1− p̂2) ≥ 10

Calculate: Calculate the confidence interval and record it in interval form.

point estimate ± z? × SE of estimate

point estimate: the difference of sample proportions p̂1 − p̂2

SE of estimate:
√

p̂1(1−p̂1)
n1

+ p̂2(1−p̂2)
n2

z?: use a t-table at row ∞ and confidence level C%

( , )

Conclude: Interpret the interval and, if applicable, draw a conclusion in context.

We are C% confident that the true difference in the proportion of [...] is between and
. If applicable, draw a conclusion based on whether the interval is entirely above, is

entirely below, or contains the value 0.
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EXAMPLE 6.20

A remote control car company is considering a new manufacturer for wheel gears. The new man-
ufacturer would be more expensive but their higher quality gears are more reliable, resulting in
happier customers and fewer warranty claims. However, management must be convinced that the
more expensive gears are worth the conversion before they approve the switch. The quality control
engineer collects a sample of gears from each supplier, examining 1000 gears from each company,
and finds that 879 gears pass inspection from the current supplier and 958 pass inspection from the
prospective supplier. Using these data, construct a 95% confidence interval for the difference in the
proportion from each supplier that would pass inspection. Use the five step framework described
above to organize your work.

Identify: First we identify the parameter of interest. Here the parameter we wish to estimate is
the true difference in the proportion of gears from each supplier that would pass inspection,
p1 − p2. We will take the difference as: current − prospective, so p1 is the true proportion
that would pass from the current supplier and p2 is the true proportion that would pass from
the prospective supplier. We will estimate the difference using a 95% confidence level.

Choose: Because the parameter to be estimated is a difference of proportions, we will use a 2-
proportion Z-interval.

Check: The samples are independent, but not necessarily random, so to proceed we must assume
the gears are all independent. For this sample we will suppose this assumption is reasonable,
but the engineer would be more knowledgeable as to whether this assumption is appropriate.
We will also assume that the 1000 gears represents less than 10% of the total gears from each
supplier. Next, we verify the minimum sample size conditions:

1000× 879

1000
≥ 10 1000× 121

1000
≥ 10 1000× 958

1000
≥ 10 1000× 42

1000
≥ 10

The success-failure condition is met for both samples.

Calculate: We will calculate the interval:

point estimate ± z? × SE of estimate

The point estimate is the difference of sample proportions: p̂1 − p̂2 = 0.879− 0.958 = −0.079.

The SE of the difference of sample proportions is:√
p̂1(1−p̂1)

n1
+ p̂2(1−p̂2)

n2
=
√

0.879(1−0.879)
1000 + 0.958(1−0.958)

1000 = 0.0121

So the 95% confidence interval is given by:

0.879− 0.958 ± 1.96×
√

0.879(1− 0.879)

1000
+

0.958(1− 0.958)

1000

−0.079 ± 1.96× 0.0121

(−0.103, −0.055)

Conclude: We are 95% confident that the true difference (current − prospective) in the proportion
that would pass inspection is between -0.103 and -0.055, meaning that we are 95% confident
that the prospective supplier would have between a 5.5% and 10.3% greater rate of passing
inspection. Because the entire interval is below zero, the data provide sufficient evidence that
the prospective gears pass inspection more often than the current gears. The remote control
car company should go with the new manufacturer.
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6.2.4 Technology: the 2-proportion Z-interval

As with the 1-proportion Z-interval, a calculator can be helpful for evaluating the final interval.

TI-83/84: 2-PROPORTION Z-INTERVAL

Use STAT, TESTS, 2-PropZInt.

1. Choose STAT.

2. Right arrow to TESTS.

3. Down arrow and choose B:2-PropZInt.

4. Let x1 be the number of yeses (must be an integer) in sample 1 and let n1 be the size of
sample 1.

5. Let x2 be the number of yeses (must be an integer) in sample 2 and let n2 be the size of
sample 2.

6. Let C-Level be the desired confidence level.

7. Choose Calculate and hit ENTER, which returns:
( , ) the confidence interval
p̂1 sample 1 proportion n1 size of sample 1
p̂2 sample 2 proportion n2 size of sample 2

CASIO FX-9750GII: 2-PROPORTION Z-INTERVAL

1. Navigate to STAT (MENU button, then hit the 2 button or select STAT).

2. Choose the INTR option (F4 button).

3. Choose the Z option (F1 button).

4. Choose the 2-P option (F4 button).

5. Specify the interval details:

• Confidence level of interest for C-Level.

• Enter the number of successes for each group, x1 and x2.

• Enter the sample size for each group, n1 and n2.

6. Hit the EXE button, which returns

Left, Right the ends of the confidence interval
p̂1, p̂2 the sample proportions
n1, n2 sample sizes

GUIDED PRACTICE 6.21

From Example 6.20, we have that a quality control engineer collects a sample of gears, examining
1000 gears from each company and finds that 879 gears pass inspection from the current supplier
and 958 pass inspection from the prospective supplier. Use a calculator to find a 95% confidence
interval for the difference (current − prospective) in the proportion that would pass inspection.18

18Navigate to the 2-proportion Z-interval on the calculator. Let x1 = 879, n1 = 1000, x2 = 958, and n2 = 1000.
C-Level is .95. This should lead to an interval of (-0.1027, -0.0553), which matches what we found previously.

http://www.openintro.org/redirect.php?go=TI84_2_PROP_CI&referrer=ahss3_pdf
http://www.openintro.org/redirect.php?go=CASIO_2_PROP_INFERENCE&referrer=ahss3_pdf
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6.2.5 Hypothesis testing when H0: p1 = p2H0: p1 = p2H0: p1 = p2

Here we use a new example to examine a special estimate of the standard error when the null
hypothesis is that two population proportions equal each other, i.e. H0: p1 = p2. We investigate
whether the way a question is phrased can influence a person’s response. Pew Research Center
conducted a survey with the following question:

As you may know, by 2014 nearly all Americans will be required to have health insurance.
[People who do not buy insurance will pay a penalty] while [People who cannot afford it
will receive financial help from the government]. Do you approve or disapprove of this
policy?

For each randomly sampled respondent, the statements in brackets were randomized: either they
were kept in the original order given above, or they were reversed. Results are presented in Figure 6.3

sample sizeApprove
law (%)

Disapprove
law (%)

Other

“People who do not buy insur-
ance will pay a penalty” is given
first (original order)

771 47 49 3

“People who cannot afford it will
receive financial help from the
government” is given first (re-
versed order)

732 34 63 3

Figure 6.3: Results for a Pew Research Center poll where the ordering of two
statements in a question regarding healthcare were randomized.

GUIDED PRACTICE 6.22

Is this study an experiment or an observational study?19

The approval percents of 47% and 34% seem far apart. However, could this difference be due to
random chance? We will answer this question using a hypothesis test. To simplify things, let

p1: the proportion of respondents that would approve of policy with the original statement ordering, and

p2: the proportion of respondents that would approve of policy with the reversed statement ordering.

EXAMPLE 6.23

Set up hypotheses to test whether the two statement orders produce the same response.

The null claim is that the question order does not matter, that is, that the two proportions should
be equal. The alternate claim, the one that bears the burden of proof, is that the question ordering
does matter.

H0: p1 = p2

HA: p1 6= p2

19There is a random sample involved, but there are also two treatments. Half of the respondents are given the
original statement order and the other half, randomly, are given the reversed statement order. This is an experiment
because there are randomly assigned treatments.
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Now, we can note that:

p1 = p2 is equivalent to p1 − p2 = 0, and

p1 6= p2 is equivalent to p1 − p2 6= 0.

We can now see that the hypotheses are really about a difference of proportions: p1 − p2. In the
last section, we used a 2-proportion Z-interval to estimate the parameter p1 − p2; here, we will use
a 2-proportion Z-test to test the null hypothesis that p1 − p2 = 0, i.e. that p1 = p2.

Recall that the test statistic Z has the form:

Z =
point estimate− null value

SE of estimate

The parameter of interest is p1 − p2, so the point estimate will be the observed difference of sample
proportions: p̂1 − p̂2 = 0.47− 0.34 = 0.13.

The null value depends on the null hypothesis. The null hypothesis is that the approval rate
would be the same for both statement orderings, i.e. that the difference is 0, therefore, the null value
is 0. In this section we consider only the case where H0: p1 = p2, so the null value for the difference
will always be 0.

The SD of a difference of sample proportions has the form:

SD =

√
p1(1− p1)

n1
+
p2(1− p2)

n2

However, in a hypothesis test, the distribution of the point estimate is always examined assuming
the null hypothesis is true, i.e. in this case, p1 = p2. Both the success-failure check and the standard
error formula should reflect this equality in the null hypothesis. We will use pc to represent the
common proportion that support healthcare law regardless of statement order:

SD =

√
pc(1− pc)

n1
+
pc(1− pc)

n2

=
√
pc(1− pc)

√
1

n1
+

1

n2

We don’t know the true proportion pc, but we can obtain a good estimate of it, p̂c, by pooling the
results of both samples. We find the total number of “yeses” or “successes” and divide that by the
total number of cases. This is equivalent to taking a weighted average of p̂1 and p̂2. We call p̂c the
pooled sample proportion, and we use it to check the success-failure condition and to compute
the standard error when the null hypothesis is that p1 = p2. Here:

p̂c =
771(0.47) + 732(0.34)

771 + 732
= 0.407

POOLED SAMPLE PROPORTION

When the null hypothesis is p1 = p2, it is useful to find the pooled sample proportion:

p̂c =
number of “successes”

number of cases
=

x1 + x2

n1 + n2
=
n1p̂1 + n2p̂2

n1 + n2

Here x1 represents the number of successes in sample 1. If x1 is not given, it can be computed
as n1 × p̂1. Similarly, x2 represents the number of successes in sample 2 and can be computed
as n2 × p̂2.
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USE THE POOLED SAMPLE PROPORTION WHENH0: p1 = p2H0: p1 = p2H0: p1 = p2

When the null hypothesis states that the proportions are equal, we use the pooled sample
proportion (p̂c) to check the success-failure condition and to estimate the standard error:

SE =
√
p̂c(1− p̂c)

√
1

n1
+

1

n2

EXAMPLE 6.24

Verify that conditions for using the normal are met and find the SE of estimate for this hypothesis
test. Recall that the pooled proportion p̂c = 0.407, n1 = 771, and n2 = 732.

The data do come from a randomized experiment, where the treatments are the two different or-
derings of the question regarding healthcare (because this is an experiment, the 10% condition does
not need to be checked). Also, the success-failure condition (minimums of 10) easily holds for each
group.

771× 0.407 ≥ 10 771× (1− 0.407) ≥ 10 732× 0.407 ≥ 10 732× (1− 0.407) ≥ 10xf

Here, we compute the SE for the difference of sample proportions as:

SE =
√
p̂c(1− p̂c)

√
1

n1
+

1

n2
=
√

0.407(1− 0.407)

√
1

771
+

1

732
= 0.025

EXAMPLE 6.25

Complete the hypothesis test using a significance level of 0.01.

We have already set up the hypotheses and verified that the difference of proportions can be modeled
using a normal distribution. We can now calculate the test statistic and p-value.

Z =
point estimate− null value

SE of estimate
=

(0.47− 0.34)− 0

0.025
= 5.2

This is a two-tailed test as HA is that p1 6= p2. We can find the area in one tail and double it.
Here, the p-value ≈ 0. Because the p-value is smaller than α = 0.01, we reject the null hypothesis
and conclude that the order of the statements affects how likely a respondent is to support the 2010
healthcare law.
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HYPOTHESIS TESTING FOR THE DIFFERENCE OF TWO PROPORTIONS

To carry out a complete hypothesis test to test the claim that two proportions p1 and p2 are
equal to each other,

Identify: Identify the hypotheses and the significance level, α.

H0: p1 = p2

HA: p1 6= p2; HA: p1 > p2; or HA: p1 < p2

Choose: Choose the correct test procedure and identify it by name.

To test hypotheses about a difference of proportions we use a 2-proportion Z-test.

Check: Check conditions for the sampling distribution for p̂1−p̂2 to be nearly normal, assuming
H0: p1 = p2 is true.

1. Independence: Data come from 2 independent random samples or from a randomized

experiment with two treatments. When sampling without replacement, check that the

sample size is less than 10% of the population size for both samples.

2. Success-failure: n1p̂c ≥ 10, n1(1− p̂c) ≥ 10, n2p̂c ≥ 10, and n2(1− p̂c) ≥ 10

Calculate: Calculate the Z-statistic and p-value.

Z = point estimate − null value
SE of estimate

point estimate: the difference of sample proportions p̂1 − p̂2

SE of estimate:
√
p̂c(1− p̂c)

√
1
n1

+ 1
n2

, where p̂c is the pooled proportion

null value: 0

p-value = (based on the Z-statistic and the direction of HA)

Conclude: Compare the p-value to α, and draw a conclusion in context.

If the p-value is < α, reject H0; there is sufficient evidence that [HA in context].

If the p-value is > α, do not reject H0; there is not sufficient evidence that [HA in context].
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EXAMPLE 6.26

A 5-year experiment was conducted to evaluate the effectiveness of fish oils on reducing heart attacks,
where each subject was randomized into one of two treatment groups. We’ll consider heart attack
outcomes in these patients:

heart attack no event Total
fish oil 145 12788 12933
placebo 200 12738 12938

Carry out a complete hypothesis test at the 10% significance level to test whether the use of fish
oils is effective in reducing heart attacks.

Identify: Define p1 and p2 as follows:
p1: the true proportion that would suffer a heart attack if given fish oil
p2: the true proportion that would suffer a heart attack if given placebo

We will test the following hypotheses at the α = 0.10 significance level.

H0: p1 = p2 Fish oil and placebo are equally effective.
HA: p1 < p2 Fish oil is effective in reducing heart attacks.

Choose: Because we are testing whether two proportions equal each other, we choose the 2-
proportion Z-test for a difference of proportions.

Check: We must verify that the difference of sample proportions can be modeled using a normal
distribution. First we note that there is a randomized experiment with two treatments: fish
oil and placebo. Second, we calculate the pooled proportion as follows:

p̂c =
x1 + x2

n1 + n2
=

145 + 200

12933 + 12938
= 0.0133

We can now verify: 12933(0.0133) ≥ 10, 12933(1 − 0.0133) ≥ 10, 12938(0.0133) ≥ 10, and
12938(1− 0.0133) ≥ 10, so both conditions are met.

Calculate: We will calculate the Z-statistic and the p-value.

Z =
point estimate − null value

SE of estimate

The point estimate is the difference of sample proportions: p̂1−p̂2 = 0.0112−0.0155 = −0.0043.

The value hypothesized for the parameter in H0 is the null value: null value = 0.

The pooled proportion, calculated above, is: p̂c = 0.0133.

The SE of the difference of sample proportions, assuming H0 is true, is:√
p̂c(1− p̂c)

√
1
n1

+ 1
n2

=
√

0.0133(1− 0.0133)
√

1
12933 + 1

12938 = 0.00142.

Z =
−0.0043− 0

0.00142
= −3.0

Because HA uses a less than, meaning that it is a lower-tail test, the p-value is the area to the
left of Z = −3.0 under the standard normal curve. This area can be found using a normal
table or a calculator. The area or p-value = 0.0013.

Conclude: The p-value of 0.0013 is < 0.10, so we reject H0; there is sufficient evidence that fish
oil is effective in reducing heart attacks.
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6.2.6 Technology: the 2-proportion Z-test

TI-83/84: 2-PROPORTION Z-TEST

Use STAT, TESTS, 2-PropZTest.

1. Choose STAT.

2. Right arrow to TESTS.

3. Down arrow and choose 6:2-PropZTest.

4. Let x1 be the number of yeses (must be an integer) in sample 1 and let n1 be the size of
sample 1.

5. Let x2 be the number of yeses (must be an integer) in sample 2 and let n2 be the size of
sample 2.

6. Choose 6=, <, or > to correspond to HA.

7. Choose Calculate and hit ENTER, which returns:
z Z-statistic p p-value
p̂1 sample 1 proportion p̂ pooled sample proportion
p̂2 sample 2 proportion

CASIO FX-9750GII: 2-PROPORTION Z-TEST

1. Navigate to STAT (MENU button, then hit the 2 button or select STAT).

2. Choose the TEST option (F3 button).

3. Choose the Z option (F1 button).

4. Choose the 2-P option (F4 button).

5. Specify the test details:

• Specify the sidedness of the test using the F1, F2, and F3 keys.

• Enter the number of successes for each group, x1 and x2.

• Enter the sample size for each group, n1 and n2.

6. Hit the EXE button, which returns

z Z-statistic p̂1, p̂2 sample proportions
p p-value p̂ pooled proportion

n1, n2 sample sizes

GUIDED PRACTICE 6.27

Use a calculator to find the test statistic, p-value, and pooled proportion for a test with:
HA: p for fish oil < p for placebo.20

heart attack no event Total
fish oil 145 12788 12933
placebo 200 12738 12938

20Correctly going through the calculator steps should lead to a solution with the test statistic z = -2.977 and the
p-value p = 0.00145. These two values match our calculated values from the previous example to within rounding
error. The pooled proportion is given as p̂ = 0.0133. Note: values for x1 and x2 were given in the table. If, instead,
proportions are given, find x1 and x2 by multiplying the proportions by the sample sizes and rounding the result to
an integer.

http://www.openintro.org/redirect.php?go=TI84_2_PROP_HT&referrer=ahss3_pdf
http://www.openintro.org/redirect.php?go=CASIO_2_PROP_INFERENCE&referrer=ahss3_pdf
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Section summary

In the previous section, we looked at inference for a single proportion. In this section, we compared
two groups to each other with respect to a proportion or a percent.

• We are interested in whether the true proportion of yeses is the same or different between two
distinct groups. Call these proportions p1 and p2. The difference, p1 − p2 tells us whether p1

is greater than, less than, or equal to p2.

• When comparing two proportions to each other, the parameter of interest is the difference of
proportions, p1 − p2, and we use the difference of sample proportions, p̂1 − p̂2, as the point
estimate.

• The sampling distribution for p̂1 − p̂2 is nearly normal when the success-failure condition is
met for both groups and when the observations are independent between and within groups.
When the sampling distribution for p̂1 − p̂2 is nearly normal, the standardized test statistic
also follows a normal distribution.

• When the null hypothesis is that the two populations proportions are equal to each other, use
the pooled sample proportion p̂c = x1+x2

n1+n2
, i.e. the combined number of yeses over the

combined sample sizes, when verifying the success-failure condition and when finding the SE.
For the confidence interval, do not use the pooled sample proportion; use the separate values
of p̂1 and p̂2.

• When there are two samples or treatments and the parameter of interest is a difference of
proportions, e.g. the true difference in proportion of 17 and 18 year olds with a summer job
(proportion of 18 year olds − proportion of 17 year olds):

– Estimate p1 − p2 at the C% confidence level using a 2-proportion Z-interval.

– Test H0: p1 − p2 = 0 at the α significance level using a 2-proportion Z-test.

• The two proportion Z-interval and Z-test require the sampling distribution for p̂1 − p̂2 to be
nearly normal. For this reason we must check that the following conditions are met.

1. Independence: Data come from 2 independent random samples or from a randomized
experiment with 2 treatments. When sampling without replacement, check that the
sample size is less than 10% of the population size for both samples.

2. Success-failure for CI: n1p̂1 ≥ 10, n1(1− p̂1) ≥ 10, n2p̂2 ≥ 10, and n2(1− p̂2) ≥ 10.

Success-failure for Test: n1p̂c ≥ 10, n1(1− p̂c) ≥ 10, n2p̂c ≥ 10, and n2(1− p̂c) ≥ 10.

• When the conditions are met, we calculate the confidence interval and the test statistic using
the same structure as in the previous section.

Confidence interval: point estimate ± z? × SE of estimate

Test statistic: Z = point estimate − null value
SE of estimate

Here the point estimate is the difference of sample proportions p̂1 − p̂2.

The SE of estimate is the SE of a difference of sample proportions.

– For a CI, use: SE =
√

p̂1(1−p̂1)
n1

+ p̂2(1−p̂2)
n2

.

– For a Test, use: SE =
√
p̂c(1− p̂c)

√
1
n1

+ 1
n2

.
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Exercises

6.15 Social experiment, Part I. A “social experiment” conducted by a TV program questioned what
people do when they see a very obviously bruised woman getting picked on by her boyfriend. On two
different occasions at the same restaurant, the same couple was depicted. In one scenario the woman was
dressed “provocatively” and in the other scenario the woman was dressed “conservatively”. The table below
shows how many restaurant diners were present under each scenario, and whether or not they intervened.

Scenario
Provocative Conservative Total

Intervene
Yes 5 15 20
No 15 10 25
Total 20 25 45

Explain why the sampling distribution for the difference between the proportions of interventions under
provocative and conservative scenarios does not follow an approximately normal distribution.

6.16 Heart transplant success. The Stanford University Heart Transplant Study was conducted to de-
termine whether an experimental heart transplant program increased lifespan. Each patient entering the
program was officially designated a heart transplant candidate, meaning that he was gravely ill and might
benefit from a new heart. Patients were randomly assigned into treatment and control groups. Patients in
the treatment group received a transplant, and those in the control group did not. The table below displays
how many patients survived and died in each group.21

control treatment

survived 4 24
died 30 45

Suppose we are interested in estimating the difference in survival rate between the control and treatment
groups using a confidence interval. Explain why we cannot construct such an interval using the normal
approximation. What might go wrong if we constructed the confidence interval despite this problem?

6.17 Gender and color preference. A study asked 1,924 male and 3,666 female undergraduate college
students their favorite color. A 95% confidence interval for the difference between the proportions of males
and females whose favorite color is black (pmale − pfemale) was calculated to be (0.02, 0.06). Based on this
information, determine if the following statements about undergraduate college students are true or false,
and explain your reasoning for each statement you identify as false.22

(a) We are 95% confident that the true proportion of males whose favorite color is black is 2% lower to 6%
higher than the true proportion of females whose favorite color is black.

(b) We are 95% confident that the true proportion of males whose favorite color is black is 2% to 6% higher
than the true proportion of females whose favorite color is black.

(c) 95% of random samples will produce 95% confidence intervals that include the true difference between
the population proportions of males and females whose favorite color is black.

(d) We can conclude that there is a significant difference between the proportions of males and females
whose favorite color is black and that the difference between the two sample proportions is too large to
plausibly be due to chance.

(e) The 95% confidence interval for (pfemale − pmale) cannot be calculated with only the information given
in this exercise.

21B. Turnbull et al. “Survivorship of Heart Transplant Data”. In: Journal of the American Statistical Association
69 (1974), pp. 74–80.

22L Ellis and C Ficek. “Color preferences according to gender and sexual orientation”. In: Personality and
Individual Differences 31.8 (2001), pp. 1375–1379.

http://www.openintro.org/redirect.php?go=textbook-heart_transplant_1974&referrer=ahss3_pdf
http://www.openintro.org/redirect.php?go=textbook-color_pref_2001&referrer=ahss3_pdf
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6.18 The Daily Show. A Pew Research foundation poll indicates that among a random sample of 1,099
college graduates, 33% watch The Daily Show. Meanwhile, 22% of the 1,110 people with a high school
degree but no college degree in the poll watch The Daily Show. A 95% confidence interval for (pcollege grad−
pHS or less), where p is the proportion of those who watch The Daily Show, is (0.07, 0.15). Based on this
information, determine if the following statements are true or false, and explain your reasoning if you identify
the statement as false.23

(a) At the 5% significance level, the data provide convincing evidence of a difference between the proportions
of college graduates and those with a high school degree or less who watch The Daily Show.

(b) We are 95% confident that 7% less to 15% more college graduates watch The Daily Show than those
with a high school degree or less.

(c) 95% of random samples of 1,099 college graduates and 1,110 people with a high school degree or less
will yield differences in sample proportions between 7% and 15%.

(d) A 90% confidence interval for (pcollege grad − pHS or less) would be wider.

(e) A 95% confidence interval for (pHS or less − pcollege grad) is (-0.15,-0.07).

6.19 National Health Plan, Part III. Exercise 6.9 presents the results of a poll evaluating support for a
generically branded “National Health Plan” in the United States. 79% of 347 Democrats and 55% of 617
Independents support a National Health Plan.

(a) Calculate a 95% confidence interval for the difference between the proportion of Democrats and Inde-
pendents who support a National Health Plan (pD − pI), and interpret it in this context. We have
already checked conditions for you.

(b) True or false: If we had picked a random Democrat and a random Independent at the time of this poll,
it is more likely that the Democrat would support the National Health Plan than the Independent.

6.20 Sleep deprivation, CA vs. OR, Part I. According to a report on sleep deprivation by the Centers for
Disease Control and Prevention, the proportion of California residents who reported insufficient rest or sleep
during each of the preceding 30 days is 8.0%, while this proportion is 8.8% for Oregon residents. These
data are based on simple random samples of 11,545 California and 4,691 Oregon residents. Calculate a 95%
confidence interval to estimate the difference between the proportions of Californians and Oregonians who
are sleep deprived. Include all steps of the Identify, Choose, Check, Calculate, Conclude framework.24

6.21 Sleep deprived transportation workers. The National Sleep Foundation conducted a survey on the
sleep habits of randomly sampled transportation workers and randomly sampled non-transportation workers
that serve as a “control” for comparison. The results of the survey are shown below.25

Transportation Professionals
Truck Train Bus/Taxi/Limo

Control Pilots Drivers Operators Drivers
Less than 6 hours of sleep 35 19 35 29 21
6 to 8 hours of sleep 193 132 117 119 131
More than 8 hours 64 51 51 32 58
Total 292 202 203 180 210

Conduct a hypothesis test to evaluate if these data provide evidence of a difference between the proportion
of truck drivers and non-transportation workers (the “control” group) who get less than 6 hours of sleep
per day (i.e. are considered sleep deprived). Include all steps of the Identify, Choose, Check, Calculate,
Conclude framework.

23The Pew Research Center, Americans Spending More Time Following the News, data collected June 8-28, 2010.
24CDC, Perceived Insufficient Rest or Sleep Among Adults — United States, 2008.
25National Sleep Foundation, 2012 Sleep in America Poll: Transportation Workers’ Sleep, 2012.

http://www.openintro.org/redirect.php?go=textbook-americans_news_2010&referrer=ahss3_pdf
http://www.openintro.org/redirect.php?go=textbook-Perceived_Insufficient_Rest_or_Sleep_Among_Adults&referrer=ahss3_pdf
http://www.openintro.org/redirect.php?go=textbook-trans_workers_sleep_2012&referrer=ahss3_pdf
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6.22 Sleep deprivation, CA vs. OR, Part II. Exercise 6.20 provides data on sleep deprivation rates of
Californians and Oregonians. The proportion of California residents who reported insufficient rest or sleep
during each of the preceding 30 days is 8.0%, while this proportion is 8.8% for Oregon residents. These data
are based on simple random samples of 11,545 California and 4,691 Oregon residents.

(a) Conduct a hypothesis test to determine if these data provide strong evidence that the rate of sleep
deprivation is different for the two states. (Reminder: Check conditions)

(b) It is possible the conclusion of the test in part (a) is incorrect. If this is the case, what type of error was
made?

6.23 Prenatal vitamins and Autism. Researchers studying the link between prenatal vitamin use and
autism surveyed the mothers of a random sample of children aged 24 - 60 months with autism and conducted
another separate random sample for children with typical development. The table below shows the number of
mothers in each group who did and did not use prenatal vitamins during the three months before pregnancy
(periconceptional period).26

Autism
Autism Typical development Total

Periconceptional No vitamin 111 70 181
prenatal vitamin Vitamin 143 159 302

Total 254 229 483

(a) State appropriate hypotheses to test for independence of use of prenatal vitamins during the three
months before pregnancy and autism.

(b) Complete the hypothesis test and state an appropriate conclusion. (Reminder: Verify any necessary
conditions for the test.)

(c) A New York Times article reporting on this study was titled “Prenatal Vitamins May Ward Off Autism”.
Do you find the title of this article to be appropriate? Explain your answer. Additionally, propose an
alternative title.27

6.24 An apple a day keeps the doctor away. A physical education teacher at a high school wanting to
increase awareness on issues of nutrition and health asked her students at the beginning of the semester
whether they believed the expression “an apple a day keeps the doctor away”, and 40% of the students
responded yes. Throughout the semester she started each class with a brief discussion of a study highlighting
positive effects of eating more fruits and vegetables. She conducted the same apple-a-day survey at the end
of the semester, and this time 60% of the students responded yes. Can she used a two-proportion method
from this section for this analysis? Explain your reasoning.

26R.J. Schmidt et al. “Prenatal vitamins, one-carbon metabolism gene variants, and risk for autism”. In: Epidemi-
ology 22.4 (2011), p. 476.

27R.C. Rabin. “Patterns: Prenatal Vitamins May Ward Off Autism”. In: New York Times (2011).

http://www.openintro.org/redirect.php?go=textbook-prenatal_vitamins_autism_2011&referrer=ahss3_pdf
http://www.openintro.org/redirect.php?go=textbook-nytimes_prenatal_vitamins_autism_2011&referrer=ahss3_pdf
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6.3 Testing for goodness of fit using chi-square

In this section, we develop a method for assessing a null model when the data take on more than

two categories, such as yes/no/maybe instead of simply yes/no. This allows us to answer questions

such as the following:

• Are juries representative of the population in terms of race/ethnicity, or is there a bias in jury

selection?

• Is the color distribution of actual M&M’s consistent with what was reported on the Mars

website?

• Do people choose rock, paper, scissors with the same likelihood, or is one choice favored over

another?

Learning objectives

1. Calculate the expected counts and degrees of freedom for a one-way table.

2. Calculate and interpret the test statistic χ2.

3. State and verify whether or not the conditions for the chi-square goodness of fit are met.

4. Carry out a complete hypothesis test to evaluate if the distribution of a categorical variable

follows a hypothesized distribution.

5. Understand how the degrees of freedom affect the shape of the chi-square curve.

6.3.1 Creating a test statistic for one-way tables

Data is collected from a random sample of 275 jurors in a small county. Jurors identified
their racial/ethnic group, as shown in Figure 6.4, and we would like to determine if these jurors
are representative of the population with respect to race/ethnicity. If the jury is representative of
the population, then the proportions in the sample should roughly reflect the population of eligible
jurors, i.e. registered voters.

Race/Ethnicity White Black Hispanic Other Total
Representation in juries 205 26 25 19 275
Registered voters 0.72 0.07 0.12 0.09 1.00

Figure 6.4: Representation by race in a city’s juries and population.

While the proportions in the juries do not precisely represent the population proportions, it is
unclear whether these data provide convincing evidence that the sample is not representative. If the
jurors really were randomly sampled from the registered voters, we might expect small differences
due to chance. However, unusually large differences may provide convincing evidence that the juries
were not representative.
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EXAMPLE 6.28

Of the people in the city, 275 served on a jury. If the individuals are randomly selected to serve on a
jury, about how many of the 275 people would we expect to be White? How many would we expect
to be Black?

About 72% of the population is White, so we would expect about 72% of the jurors to be White:
0.72× 275 = 198.

Similarly, we would expect about 7% of the jurors to be Black, which would correspond to about
0.07× 275 = 19.25 Black jurors.

GUIDED PRACTICE 6.29

Twelve percent of the population is Hispanic and 9% represent other racial/ethnic groups. How many
of the 275 jurors would we expect to be Hispanic or from another racial/ethnic group? Answers can
be found in Figure 6.5.

Race/Ethnicity White Black Hispanic Other Total
Observed data 205 26 25 19 275
Expected counts 198 19.25 33 24.75 275

Figure 6.5: Actual and expected make-up of the jurors.

The sample proportion represented from each race/ethnicity among the 275 jurors was not a
precise match for any ethnic group. While some sampling variation is expected, we would expect
the sample proportions to be fairly similar to the population proportions if there is no bias on juries.
We need to test whether the differences are strong enough to provide convincing evidence that the
jurors are not a random sample. These ideas can be organized into hypotheses:

H0: The jurors are a random sample, i.e. there is no racial/ethnic bias in who serves on a jury,
and the observed counts reflect natural sampling fluctuation.

HA: The jurors are not randomly sampled, i.e. there is racial/ethnic bias in juror selection.

To evaluate these hypotheses, we quantify how different the observed counts are from the expected
counts. Strong evidence for the alternative hypothesis would come in the form of unusually large
deviations in the groups from what would be expected based on sampling variation alone.

6.3.2 The chi-square test statistic

In previous hypothesis tests, we constructed a test statistic of the following form:

Z =
point estimate− null value

SE of point estimate

This construction was based on (1) identifying the difference between a point estimate and an
expected value if the null hypothesis was true, and (2) standardizing that difference using the
standard error of the point estimate. These two ideas will help in the construction of an appropriate
test statistic for count data.

In this example we have four categories: White, Black, Hispanic, and other. Because we have
four values rather than just one or two, we need a new tool to analyze the data. Our strategy will
be to find a test statistic that measures the overall deviation between the observed and the expected
counts. We first find the difference between the observed and expected counts for the four groups:

White Black Hispanic Other

observed - expected 205− 198 26− 19.25 25− 33 19− 24.75
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Next, we square the differences:

White Black Hispanic Other

(observed - expected)
2

(205− 198)2 (26− 19.25)2 (25− 33)2 (19− 24.75)2

We must standardize each term. To know whether the squared difference is large, we compare it to
what was expected. If the expected count was 5, a squared difference of 25 is very large. However,
if the expected count was 1,000, a squared difference of 25 is very small. We will divide each of the
squared differences by the corresponding expected count.

White Black Hispanic Other

(observed - expected)
2

expected

(205− 198)2

198

(26− 19.25)2

19.25

(25− 33)2

33

(19− 24.75)2

24.75

Finally, to arrive at the overall measure of deviation between the observed counts and the expected
counts, we add up the terms.

χ2 =
∑ (observed - expected)

2

expected

=
(205− 198)2

198
+

(26− 19.25)2

19.25
+

(25− 33)2

33
+

(19− 24.75)2

24.75

We can write an equation for χ2 using the observed counts and expected counts:

χ2 =
(observed count1 − expected count1)2

expected count1

+ · · ·+ (observed count4 − expected count4)2

expected count4

The final number χ2 summarizes how strongly the observed counts tend to deviate from the null
counts.

In Section 6.3.4, we will see that if the null hypothesis is true, then χ2 follows a new distribution
called a chi-square distribution. Using this distribution, we will be able to obtain a p-value to evaluate
whether there appears to be racial/ethnic bias in the juries for the city we are considering.

6.3.3 The chi-square distribution and finding areas

The chi-square distribution is sometimes used to characterize data sets and statistics that
are always positive and typically right skewed. Recall a normal distribution had two parameters –
mean and standard deviation – that could be used to describe its exact characteristics. The chi-
square distribution has just one parameter called degrees of freedom (df), which influences the
shape, center, and spread of the distribution.

GUIDED PRACTICE 6.30

Figure 6.6 shows three chi-square distributions. (a) How does the center of the distribution change
when the degrees of freedom is larger? (b) What about the variability (spread)? (c) How does the
shape change?28

Figure 6.6 and Guided Practice 6.30 demonstrate three general properties of chi-square distri-
butions as the degrees of freedom increases: the distribution becomes more symmetric, the center
moves to the right, and the variability inflates.

28(a) The center becomes larger. If we look carefully, we can see that the center of each distribution is equal
to the distribution’s degrees of freedom. (b) The variability increases as the degrees of freedom increases. (c) The
distribution is very strongly right skewed for df = 2, and then the distributions become more symmetric for the larger
degrees of freedom df = 4 and df = 9. In fact, as the degrees of freedom increase, the χ2 distribution approaches a
normal distribution.
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0 5 10 15 20 25

Degrees of Freedom

2
4
9

Figure 6.6: Three chi-square distributions with varying degrees of freedom.

Our principal interest in the chi-square distribution is the calculation of p-values, which (as we
have seen before) is related to finding the relevant area in the tail of a distribution. To do so, a new
table is needed: the chi-square table, partially shown in Figure C.5. A more complete table is
presented in Appendix C.4 on page 518. This table is very similar to the t-table from Sections 7.1
and 7.3: we identify a range for the area, and we examine a particular row for distributions with
different degrees of freedom. One important difference from the t-table is that the chi-square table
only provides upper tail values.

Upper tail 0.3 0.2 0.1 0.05 0.02 0.01 0.005 0.001
df 1 1.07 1.64 2.71 3.84 5.41 6.63 7.88 10.83

2 2.41 3.22 4.61 5.99 7.82 9.21 10.60 13.82

3 3.66 4.64 6.25 7.81 9.84 11.34 12.84 16.27

4 4.88 5.99 7.78 9.49 11.67 13.28 14.86 18.47

5 6.06 7.29 9.24 11.07 13.39 15.09 16.75 20.52

6 7.23 8.56 10.64 12.59 15.03 16.81 18.55 22.46

7 8.38 9.80 12.02 14.07 16.62 18.48 20.28 24.32

Figure 6.7: A section of the chi-square table. A complete table is in Appendix C.4.

EXAMPLE 6.31

Figure 6.8(a) shows a chi-square distribution with 3 degrees of freedom and an upper shaded tail
starting at 6.25. Use Figure C.5 to estimate the shaded area.

This distribution has three degrees of freedom, so only the row with 3 degrees of freedom (df) is
relevant. This row has been italicized in the table. Next, we see that the value – 6.25 – falls in the
column with upper tail area 0.1. That is, the shaded upper tail of Figure 6.8(a) has area 0.1.

EXAMPLE 6.32

We rarely observe the exact value in the table. For instance, Figure 6.8(b) shows the upper tail of
a chi-square distribution with 2 degrees of freedom. The lower bound for this upper tail is at 4.3,
which does not fall in Figure C.5. Find the approximate tail area.

The cutoff 4.3 falls between the second and third columns in the 2 degrees of freedom row. Because
these columns correspond to tail areas of 0.2 and 0.1, we can be certain that the area shaded in
Figure 6.8(b) is between 0.1 and 0.2.

Using a calculator or statistical software allows us to get more precise areas under the chi-square
curve than we can get from the table alone.
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0 5 10 15 20 25

(a)

0 5 10 15 20 25

(b)

0 5 10 15 20 25

(c)

0 5 10 15 20 25

(d)

0 5 10 15 20 25

(e)

0 5 10 15 20 25

(f)

Figure 6.8: (a) Chi-square distribution with 3 degrees of freedom, area above
6.25 shaded. (b) 2 degrees of freedom, area above 4.3 shaded. (c) 5 degrees of
freedom, area above 5.1 shaded. (d) 7 degrees of freedom, area above 11.7 shaded.
(e) 4 degrees of freedom, area above 10 shaded. (f) 3 degrees of freedom, area
above 9.21 shaded.
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TI-84: FINDING AN UPPER TAIL AREA UNDER THE CHI-SQUARE CURVE

Use the χ2cdf command to find areas under the chi-square curve.

1. Hit 2ND VARS (i.e. DISTR).

2. Choose 8:χ2cdf.

3. Enter the lower bound, which is generally the chi-square value.

4. Enter the upper bound. Use a large number, such as 1000.

5. Enter the degrees of freedom.

6. Choose Paste and hit ENTER.

TI-83: Do steps 1-2, then type the lower bound, upper bound, and degrees of freedom separated
by commas. e.g. χ2cdf(5, 1000, 3), and hit ENTER.

CASIO FX-9750GII: FINDING AN UPPER TAIL AREA UNDER THE CHI-SQ. CURVE

1. Navigate to STAT (MENU button, then hit the 2 button or select STAT).

2. Choose the DIST option (F5 button).

3. Choose the CHI option (F3 button).

4. Choose the Ccd option (F2 button).

5. If necessary, select the Var option (F2 button).

6. Enter the Lower bound (generally the chi-square value).

7. Enter the Upper bound (use a large number, such as 1000).

8. Enter the degrees of freedom, df.

9. Hit the EXE button.

GUIDED PRACTICE 6.33

Figure 6.8(c) shows an upper tail for a chi-square distribution with 5 degrees of freedom and a cutoff
of 5.1. Find the tail area using a calculator.29

GUIDED PRACTICE 6.34

Figure 6.8(d) shows a cutoff of 11.7 on a chi-square distribution with 7 degrees of freedom. Find the
area of the upper tail.30

GUIDED PRACTICE 6.35

Figure 6.8(e) shows a cutoff of 10 on a chi-square distribution with 4 degrees of freedom. Find the
area of the upper tail.31

GUIDED PRACTICE 6.36

Figure 6.8(f) shows a cutoff of 9.21 with a chi-square distribution with 3 df. Find the area of the
upper tail.32

29Use a lower bound of 5.1, an upper bound of 1000, and df = 5. The upper tail area is 0.4038.
30The area is 0.1109.
31The area is 0.0404.
32The area is 0.0266.

http://www.openintro.org/redirect.php?go=TI84_CHISQ_TAIL_AREA&referrer=ahss3_pdf
http://www.openintro.org/redirect.php?go=CASIO_CHISQ_TAIL_AREA&referrer=ahss3_pdf
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6.3.4 Finding a p-value for a chi-square distribution

In Section 6.3.2, we identified a new test statistic (χ2) within the context of assessing whether
there was evidence of racial/ethnic bias in how jurors were sampled. The null hypothesis represented
the claim that jurors were randomly sampled and there was no racial/ethnic bias. The alternative
hypothesis was that there was racial/ethnic bias in how the jurors were sampled.

We determined that a large χ2 value would suggest strong evidence favoring the alternative
hypothesis: that there was racial/ethnic bias. However, we could not quantify what the chance was
of observing such a large test statistic (χ2 = 5.89) if the null hypothesis actually was true. This
is where the chi-square distribution becomes useful. If the null hypothesis was true and there was
no racial/ethnic bias, then χ2 would follow a chi-square distribution, with three degrees of freedom
in this case. Under certain conditions, the statistic χ2 follows a chi-square distribution with k − 1
degrees of freedom, where k is the number of bins or categories of the variable.

EXAMPLE 6.37

How many categories were there in the juror example? How many degrees of freedom should be
associated with the chi-square distribution used for χ2?

In the jurors example, there were k = 4 categories: White, Black, Hispanic, and other. According
to the rule above, the test statistic χ2 should then follow a chi-square distribution with k − 1 = 3
degrees of freedom if H0 is true.

Just like we checked sample size conditions to use the normal model in earlier sections, we must
also check a sample size condition to safely model χ2 with a chi-square distribution. Each expected
count must be at least 5. In the juror example, the expected counts were 198, 19.25, 33, and 24.75,
all easily above 5, so we can model the χ2 test statistic, using a chi-square distribution.

EXAMPLE 6.38

If the null hypothesis is true, the test statistic χ2 = 5.89 would be closely associated with a chi-
square distribution with three degrees of freedom. Using this distribution and test statistic, identify
the p-value and state whether or not there is evidence of racial/ethnic bias in the juror selection.

The chi-square distribution and p-value are shown in Figure 6.9. Because larger chi-square values
correspond to stronger evidence against the null hypothesis, we shade the upper tail to represent the
p-value. Using a calculator, we look at the chi-square curve with 3 degrees of freedom and find the
area to the right of χ2 = 5.89. This area, which corresponds to the p-value, is equal to 0.117. This
p-value is larger than the default significance level of 0.05, so we do not reject the null hypothesis. In
other words, the data do not provide convincing evidence of racial/ethnic bias in the juror selection.

0 5 10 15

Figure 6.9: The p-value for the juror hypothesis test is shaded in the chi-square
distribution with df = 3.

The test that we just carried out regarding jury selection is known as the χ2χ2χ2 goodness of
fit test. It is called “goodness of fit” because we test whether or not the proposed or expected
distribution is a good fit for the observed data.
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CHI-SQUARE GOODNESS OF FIT TEST FOR ONE-WAY TABLE

Suppose we are to evaluate whether there is convincing evidence that a set of observed counts
O1, O2, ..., Ok in k categories are unusually different from what might be expected under a null
hypothesis. Calculate the expected counts that are based on the null hypothesis E1, E2, ..., Ek.
If each expected count is at least 5 and the null hypothesis is true, then the test statistic below
follows a chi-square distribution with k − 1 degrees of freedom:

χ2 =
(O1 − E1)2

E1
+

(O2 − E2)2

E2
+ · · ·+ (Ok − Ek)2

Ek

The p-value for this test statistic is found by looking at the upper tail of this chi-square distri-
bution. We consider the upper tail because larger values of χ2 would provide greater evidence
against the null hypothesis.

CONDITIONS FOR THE CHI-SQUARE GOODNESS OF FIT TEST

The chi-square goodness of fit test requires the test statistic to be well modeled by a chi-square
distribution. This will be valid when the observations are independent and the expected counts
are large. If these conditions are not met, the chi-square goodness of fit test should not be used.

Independence. The observations can be considered independent if the data come from a
random process. If randomly sampling without replacement from a finite population,
the observations can be considered independent when sampling less than 10% of the
population.

Large expected counts. In order for the χ2-statistic to follow the chi-square distribution,
each particular bin or category must have at least 5 expected cases under the assumption
that the null hypothesis is true.
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6.3.5 Evaluating goodness of fit for a distribution

GOODNESS OF FIT TEST FOR A ONE-WAY TABLE

When there is one sample and we are comparing the distribution of a categorical variable to
a specified or population distribution, e.g. using sample values to determine if a machine is
producing M&M’s with the specified distribution of color,

Identify: Identify the hypotheses and the significance level, α.

H0: The distribution of [...] matches the specified or population distribution.

HA: The distribution of [...] doesn’t match the specified or population distribution.

Choose: Choose the correct test procedure and identify it by name.

Here we use a χ2χ2χ2 goodness of fit test.

Check: Check that the test statistic follows a chi-square distribution.

1. Independence: Data come from a random sample or random process. If sampling

without replacement, check that the sample size is less than 10% of the population

size.

2. Expected counts: All expected counts are ≥ 5.

Calculate: Calculate the χ2-statistic, df , and p-value.

test statistic: χ2 =
∑ (observed − expected)2

expected

df = # of categories − 1

p-value = (area to the right of χ2-statistic with the appropriate df)

Conclude: Compare the p-value to α, and draw a conclusion in context.

If the p-value is < α, reject H0; there is sufficient evidence that [HA in context].

If the p-value is > α, do not reject H0; there is not sufficient evidence that [HA in context].

Have you ever wondered about the color distribution of M&M’s®? If so, then you will be
glad to know that Rick Wicklin, a statistician working at the statistical software company SAS,
wondered about this too. But he did more than wonder; he decided to collect data to test whether
the distribution of M&M colors was consistent with the stated distribution published on the Mars
website in 2008. Starting at end of 2016, over the course of several weeks, he collected a sample of
712 candies, or about 1.5 pounds. We will investigate his results in the next example. You can read
about his adventure in the Quartz article linked in the Data Appendix, which starts on page 503.
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EXAMPLE 6.39

The stated color distribution of M&M’s on the Mars website in 2008 is shown in the table below,
along with the observed percentages from Rick Wicklin’s sample of size 712. (See the paragraph
before this example for more background.)

Blue Orange Green Yellow Red Brown

website percentages (2008): 24% 20% 16% 14% 13% 13%
observed percentages: 18.7% 18.7% 19.5% 14.5% 15.1% 13.5%

Is there evidence at the 5% significance level that the distribution of M&M’s in 2016 were different
from the stated distribution on the website in 2008? Use the five step framework to organize your
work.

Identify: We will test the following hypotheses at the α = 0.05 significance level.

H0: The distribution of M&M colors is the same as the stated distribution in 2008.
HA: The distribution of M&M colors is different than the stated distribution in 2008.

Choose: Because we have one variable (color), broken up into multiple categories, we choose the
chi-square goodness of fit test.

Check: We must verify that the test statistic follows a chi-square distribution. Note that there is
only one sample here. The website percentages are considered fixed – they are not the result
of a sample and do not have sampling variability associated with them. To carry out the
chi-square goodness of fit test, we will have to assume that Wicklin’s sample can be considered
a random sample of M&M’s. We note that the total population size of M&M’s is much larger
than 10 times the sample size of 712. Next, we need to find the expected counts. Here, n = 712.
If H0 is true, then we would expect 24% of the M&M’s to be Blue, 20% to be Orange, etc. So
the expected counts can be found as:

Blue Orange Green Yellow Red Brown

expected counts: 0.24(712) 0.20(712) 0.16(712) 0.14(712) 0.13(712) 0.13(712)
= 170.9 = 142.4 = 113.9 = 99.6 = 92.6 = 92.6

Calculate: We will calculate the chi-square statistic, degrees of freedom, and the p-value.
To calculate the chi-square statistic, we need the observed counts as well as the expected
counts. To find the observed counts, we use the observed percentages. For example, 18.7% of
712 = 0.187(712) = 133.

Blue Orange Green Yellow Red Brown

observed counts: 133 133 139 103 108 96
expected counts: 170.9 142.4 113.9 99.6 92.6 92.6

χ2 =
∑ (observed − expected)2

expected

=
(133− 170.9)2

170.9
+

(133− 142.4)2

142.4
+ · · ·+ (108− 92.6)2

92.6
+

(96− 92.6)2

92.6

=8.41 + 0.62 + 5.53 + 0.12 + 2.56 + 0.12

=17.36

Because there are six colors, the degrees of freedom is 6− 1 = 5.
In a chi-square test, the p-value is always the area to the right of the chi-square statistic. Here,
the area to the right of 17.36 under the chi-square curve with 5 degrees of freedom is 0.004.

Conclude: The p-value of 0.004 is < 0.05, so we reject H0; there is sufficient evidence that the
distribution of M&M’s does not match the stated distribution on the website in 2008.
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EXAMPLE 6.40

For Wicklin’s sample, which color showed the most prominent difference from the stated website
distribution in 2008?

We can compare the website percentages with the observed percentages. However, another approach
is to look at the terms used when calculating the chi-square statistic. We note that the largest term,
8.41, corresponds to Blue. This means that the observed number for Blue was, relatively speaking,
the farthest from the expected number among all of the colors. This is consistent with the observation
that the largest difference in website percentage and observed percentage is for Blue (24% vs 18.7%).
Wicklin observed far fewer Blue M&M’s than would have been expected if the website percentages
were still true.
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6.3.6 Technology: the chi-square goodness of fit test

TI-84: CHI-SQUARE GOODNESS OF FIT TEST

Use STAT, TESTS, χ2GOF-Test.

1. Enter the observed counts into list L1 and the expected counts into list L2.

2. Choose STAT.

3. Right arrow to TESTS.

4. Down arrow and choose D:χ2GOF-Test.

5. Leave Observed: L1 and Expected: L2.

6. Enter the degrees of freedom after df:

7. Choose Calculate and hit ENTER, which returns:

χ2 chi-square test statistic
p p-value
df degrees of freedom

TI-83: Unfortunately the TI-83 does not have this test built in. To carry out the test manually,
make list L3 = (L1 - L2)2 / L2 and do 1-Var-Stats on L3. The sum of L3 will correspond
to the value of χ2 for this test.

CASIO FX-9750GII: CHI-SQUARE GOODNESS OF FIT TEST

1. Navigate to STAT (MENU button, then hit the 2 button or select STAT).

2. Enter the observed counts into a list (e.g. List 1) and the expected counts into list (e.g.
List 2).

3. Choose the TEST option (F3 button).

4. Choose the CHI option (F3 button).

5. Choose the GOF option (F1 button).

6. Adjust the Observed and Expected lists to the corresponding list numbers from Step 2.

7. Enter the degrees of freedom, df.

8. Specify a list where the contributions to the test statistic will be reported using CNTRB.
This list number should be different from the others.

9. Hit the EXE button, which returns

χ2 chi-square test statistic
p p-value
df degrees of freedom
CNTRB list showing the test statistic contributions

GUIDED PRACTICE 6.41

Use the table below and a calculator to find the χ2-statistic and p-value for chi-square goodness of
fit test.33

Blue Orange Green Yellow Red Brown
observed counts: 133 133 139 103 108 96
expected counts: 170.9 142.4 113.9 99.6 92.6 92.6

33Enter the observed counts into L1 and the expected counts into L2. the GOF test. Make sure that Observed: is
L1 and Expected: is L2. Let df: be 5. You should find that χ2 = 17.36 and p-value = 0.004.

http://www.openintro.org/redirect.php?go=TI84_CHISQ_GOF_TEST&referrer=ahss3_pdf
http://www.openintro.org/redirect.php?go=CASIO_CHISQ_GOF_TEST&referrer=ahss3_pdf
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Section summary

The inferential procedures we saw in the first two sections of this chapter are based on the test
statistic following a normal distribution. In this section, we introduced a new distribution called the
chi-square distribution.

• While a normal distribution is defined by its mean and standard deviation, the chi-square
distribution is defined by just one parameter called degrees of freedom.

• For a chi-square distribution, as the degrees of freedom increases: the center increases, the
spread increases, and the shape becomes more symmetric and more normal.34

• When we want to see if a model is a good fit for observed data or if data is representative of
a particular population, we can use a χ2χ2χ2 goodness of fit test. This test is used when there
is one variable with multiple categories (bins) that can be arranged in a one-way table.

• In a chi-square goodness of fit test, we calculate a χ2χ2χ2-statistic, which is a measure of how
far the observed counts in the sample are from the expected counts, relative to the expected

counts, under the null hypothesis. χ2 =
∑ (observed − expected)2

expected .

– Always use whole numbers (counts) for the observed values, not proportions or percents.

– For each category, the expected counts can be found by multiplying the sample size by
the expected proportion under the null hypothesis. Expected counts do not need to be
integers.

• A larger χ2 represents greater deviation between the observed values and the expected values,
relative to the expected values. For a fixed degrees of freedom, a larger χ2 value leads to a
smaller p-value, providing greater evidence against H0.

• χ2χ2χ2 tests for a one-way table. When there is one sample and we are comparing the dis-
tribution of a categorical variable to a specified or population distribution, e.g. using sample
values to determine if a machine is producing M&M’s with the specified distribution of color,
the hypotheses can often be written as:

H0: The distribution of [...] matches the specified or population distribution.

HA: The distribution of [...] doesn’t match the specified or population distribution.

We test these hypotheses at the α significance level using a χ2χ2χ2 goodness of fit test.

• For the χ2 goodness of fit test, we check the following conditions to verify that the test statistic
follows a chi-square distribution.

1. Independence: Data come from a random sample or random process. When sampling

without replacement, check that sample size is less than 10% of the population size.

2. Expected counts: All expected counts are ≥ 5.

• We calculate the test statistic as follows:

test statistic: χ2 =
∑ (observed − expected)2

expected ; df = # of categories − 1

• The p-value is the area to the right of the χ2-statistic under the chi-square curve with the
appropriate df .

• For a χ2 test, the p-value corresponds to the probability of getting a test statistic as large
as we got or larger, assuming the null hypothesis is true and assuming the chi-square model
holds.

34Technically, however, it is always right skewed.
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Exercises

6.25 True or false, Part I. Determine if the statements below are true or false. For each false statement,
suggest an alternative wording to make it a true statement.

(a) The chi-square distribution, just like the normal distribution, has two parameters, mean and standard
deviation.

(b) The chi-square distribution is always right skewed, regardless of the value of the degrees of freedom
parameter.

(c) The chi-square statistic is always greater than or equal to 0.

(d) As the degrees of freedom increases, the shape of the chi-square distribution becomes more skewed.

6.26 True or false, Part II. Determine if the statements below are true or false. For each false statement,
suggest an alternative wording to make it a true statement.

(a) As the degrees of freedom increases, the mean of the chi-square distribution increases.

(b) If you found χ2 = 10 with df = 5 you would fail to reject H0 at the 5% significance level.

(c) When finding the p-value of a chi-square test, we always shade the tail areas in both tails.

(d) As the degrees of freedom increases, the variability of the chi-square distribution decreases.

6.27 Open source textbook. A professor using an open source introductory statistics book predicts
that 60% of the students will purchase a hard copy of the book, 25% will print it out from the web, and
15% will read it online. At the end of the semester he asks his students to complete a survey where they
indicate what format of the book they used. Of the 126 students, 71 said they bought a hard copy of the
book, 30 said they printed it out from the web, and 25 said they read it online.

(a) State the hypotheses for testing if the professor’s predictions were inaccurate.

(b) How many students did the professor expect to buy the book, print the book, and read the book
exclusively online?

(c) List the conditions required for the chi-square goodness of fit test and discuss whether they are satisfied.

(d) Assume conditions are sufficiently met. Calculate the chi-square statistic, the degrees of freedom asso-
ciated with it, and the p-value.

(e) Based on the p-value calculated in part (d), what is the conclusion of the hypothesis test? Interpret
your conclusion in this context.

6.28 Barking deer. Microhabitat factors associated with forage and bed sites of barking deer in Hainan
Island, China were examined. In this region woods make up 4.8% of the land, cultivated grass plot makes
up 14.7%, and deciduous forests make up 39.6%. Of the 426 sites where the deer forage, 4 were categorized
as woods, 16 as cultivated grassplot, and 61 as deciduous forests. The table below summarizes these data.35

Woods Cultivated grassplot Deciduous forests Other Total

4 16 61 345 426

(a) Do these data provide convincing evidence that barking deer prefer to
forage in certain habitats over others? Conduct an appropriate hy-
pothesis test to answer this research question, and acknowledge any
assumptions you had to make to carry out this test. Include all steps
of the Identify, Choose, Check, Calculate, Conclude framework.

(b) Interpret the calculated p-value in the context of the problem.

Photo by Shrikant Rao

(http://flic.kr/p/4Xjdkk)

CC BY 2.0 license

35Liwei Teng et al. “Forage and bed sites characteristics of Indian muntjac (Muntiacus muntjak) in Hainan Island,
China”. In: Ecological Research 19.6 (2004), pp. 675–681.

http://www.openintro.org/redirect.php?go=ahss_eoce_sol-opensource_text_chisq_GOF&referrer=ahss3_pdf
http://www.openintro.org/redirect.php?go=textbook-flickr_shrikant_rao_barking_deer&referrer=ahss3_pdf
http://www.openintro.org/redirect.php?go=textbook-CC_BY_2&referrer=ahss3_pdf
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6.4 Chi-square tests in two-way tables

We encounter two-way tables in this section, and we learn about two new and closely related chi-

square tests. We will answer questions such as the following:

• Does the phrasing of the question affect how likely sellers are to disclose problems with a

product?

• Is gender associated with whether Facebook users know how to adjust their privacy settings?

• Is political affiliation associated with support for the use of full body scans at airports?

Learning objectives

1. Calculate the expected counts and degrees of freedom for a chi-square test involving a two-way

table.

2. State and verify whether or not the conditions for a chi-square test for a two-way table are

met.

3. Explain the difference between the chi-square test for homogeneity and chi-square test for

independence.

4. Carry out a complete hypothesis test for homogeneity and for independence.
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6.4.1 Introduction to two-way tables

Google is constantly running experiments to test new search algorithms. For example, Google
might test three algorithms using a sample of 10,000 google.com search queries. Figure 6.10 shows an
example of 10,000 queries split into three algorithm groups.36 The group sizes were specified before
the start of the experiment to be 5000 for the current algorithm and 2500 for each test algorithm.

Search algorithm current test 1 test 2 Total
Counts 5000 2500 2500 10000

Figure 6.10: Experiment breakdown of test subjects into three search groups.

EXAMPLE 6.42

What is the ultimate goal of the Google experiment? What are the null and alternative hypotheses,
in regular words?

The ultimate goal is to see whether there is a difference in the performance of the algorithms. The
hypotheses can be described as the following:

H0: The algorithms each perform equally well.

HA: The algorithms do not perform equally well.

In this experiment, the explanatory variable is the search algorithm. However, an outcome
variable is also needed. This outcome variable should somehow reflect whether the search results
align with the user’s interests. One possible way to quantify this is to determine whether (1) there
was no new, related search, and the user clicked one of the links provided, or (2) there was a new,
related search performed by the user. Under scenario (1), we might think that the user was satisfied
with the search results. Under scenario (2), the search results probably were not relevant, so the
user tried a second search.

Figure 6.11 provides the results from the experiment. These data are very similar to the count
data in Section 6.3. However, now the different combinations of two variables are binned in a two-
way table. In examining these data, we want to evaluate whether there is strong evidence that at
least one algorithm is performing better than the others. To do so, we apply a chi-square test to this
two-way table. The ideas of this test are similar to those ideas in the one-way table case. However,
degrees of freedom and expected counts are computed a little differently than before.

Search algorithm
current test 1 test 2 Total

No new search 3511 1749 1818 7078
New search 1489 751 682 2922
Total 5000 2500 2500 10000

Figure 6.11: Results of the Google search algorithm experiment.

WHAT IS SO DIFFERENT ABOUT ONE-WAY TABLES AND TWO-WAY TABLES?

A one-way table describes counts for each outcome in a single variable. A two-way table
describes counts for combinations of outcomes for two variables. When we consider a two-way
table, we often would like to know, are these variables related in any way?

The hypothesis test for this Google experiment is really about assessing whether there is statis-
tically significant evidence that the choice of the algorithm affects whether a user performs a second
search. In other words, the goal is to check whether the three search algorithms perform differently.

36Google regularly runs experiments in this manner to help improve their search engine. It is entirely possible that
if you perform a search and so does your friend, that you will have different search results. While the data presented
in this section resemble what might be encountered in a real experiment, these data are simulated.
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6.4.2 Expected counts in two-way tables

EXAMPLE 6.43

From the experiment, we estimate the proportion of users who were satisfied with their initial search
(no new search) as 7078/10000 = 0.7078. If there really is no difference among the algorithms and
70.78% of people are satisfied with the search results, how many of the 5000 people in the “current
algorithm” group would be expected to not perform a new search?

About 70.78% of the 5000 would be satisfied with the initial search:

0.7078× 5000 = 3539 users

That is, if there was no difference between the three groups, then we would expect 3539 of the
current algorithm users not to perform a new search.

GUIDED PRACTICE 6.44

Using the same rationale described in Example 6.43, about how many users in each test group
would not perform a new search if the algorithms were equally helpful?37

We can compute the expected number of users who would perform a new search for each group
using the same strategy employed in Example 6.43 and Guided Practice 6.44. These expected counts
were used to construct Figure 6.12, which is the same as Figure 6.11, except now the expected counts
have been added in parentheses.

Search algorithm current test 1 test 2 Total
No new search 3511 (3539) 1749 (1769.5) 1818 (1769.5) 7078
New search 1489 (1461) 751 (730.5) 682 (730.5) 2922
Total 5000 2500 2500 10000

Figure 6.12: The observed counts and the (expected counts).

The examples and exercises above provided some help in computing expected counts. In general,
expected counts for a two-way table may be computed using the row totals, column totals, and the
table total. For instance, if there was no difference between the groups, then about 70.78% of each
column should be in the first row:

0.7078× (column 1 total) = 3539

0.7078× (column 2 total) = 1769.5

0.7078× (column 3 total) = 1769.5

Looking back to how the fraction 0.7078 was computed – as the fraction of users who did not perform
a new search (7078/10000) – these three expected counts could have been computed as(

row 1 total

table total

)
(column 1 total) = 3539(

row 1 total

table total

)
(column 2 total) = 1769.5(

row 1 total

table total

)
(column 3 total) = 1769.5

This leads us to a general formula for computing expected counts in a two-way table when we would
like to test whether there is strong evidence of an association between the column variable and row
variable.

37We would expect 0.7078 ∗ 2500 = 1769.5. It is okay that this is a fraction.
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COMPUTING EXPECTED COUNTS IN A TWO-WAY TABLE

To identify the expected count for the ith row and jth column, compute

Expected Countrow i, col j =
(row i total)× (column j total)

table total

6.4.3 The chi-square test for homogeneity in two-way tables

The chi-square test statistic for a two-way table is found the same way it is found for a one-way
table. For each table count, compute

General formula
(observed count − expected count)2

expected count

Row 1, Col 1
(3511− 3539)2

3539
= 0.222

Row 1, Col 2
(1749− 1769.5)2

1769.5
= 0.237

...
...

Row 2, Col 3
(682− 730.5)2

730.5
= 3.220

Adding the computed value for each cell gives the chi-square test statistic χ2:

χ2 = 0.222 + 0.237 + · · ·+ 3.220 = 6.120

Just like before, this test statistic follows a chi-square distribution. However, the degrees of freedom
is computed a little differently for a two-way table.38 For two way tables, the degrees of freedom is
equal to

df = (number of rows - 1)× (number of columns - 1)

In our example, the degrees of freedom is

df = (2− 1)× (3− 1) = 2

If the null hypothesis is true (i.e. the algorithms are equally useful), then the test statistic χ2 = 6.12
closely follows a chi-square distribution with 2 degrees of freedom. Using this information, we can
compute the p-value for the test, which is depicted in Figure 6.13.

COMPUTING DEGREES OF FREEDOM FOR A TWO-WAY TABLE

When using the chi-square test to a two-way table, we use

df = (R− 1)× (C − 1)

where R is the number of rows in the table and C is the number of columns.

USE TWO-PROPORTION METHODS FOR 2-BY-2 CONTINGENCY TABLES

When analyzing 2-by-2 contingency tables, use the two-proportion methods introduced in Sec-
tion 6.2.

38Recall: in the one-way table, the degrees of freedom was the number of groups minus 1.
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0 5 10 15

Figure 6.13: Computing the p-value for the Google hypothesis test.

CONDITIONS FOR THE CHI-SQUARE TEST FOR HOMOGENEITY

There are two conditions that must be checked before performing a chi-square test for homo-
geneity. If these conditions are not met, this test should not be used.

Independence. Data should be come from multiple independent random samples or from a
randomized experiment with multiple treatments. Data can then be organized into a two-
way table. When sampling without replacement, the sample size should be less than 10%
of the population size for each sample.

Large expected counts. All of the cells in the two-way table must have at least 5 expected
cases under the assumption that the null hypothesis is true.

EXAMPLE 6.45

Compute the p-value and draw a conclusion about whether the search algorithms have different
performances.

Here, found that the degrees of freedom for this 3×2 table is 2. The p-value corresponds to the area
under the chi-square curve with 2 degrees of freedom to the right of χ2 = 6.120. Using a calculator,
we find that the p-value = 0.047. Using an α = 0.05 significance level, we reject H0. That is, the
data provide convincing evidence that there is some difference in performance among the algorithms.

Notice that the conclusion of the test is that there is some difference in performance among the
algorithms. This chi-square test does not tell us which algorithm performed better than the others.
To answer this question, we could compare the relevant proportions or construct bar graphs. The
proportion that resulted in the new search can be calculated as

current:
1489

5000
= 0.298 test 1:

751

2500
= 0.300 test 2:

682

2500
= 0.136.

This suggests that the test 2 algorithm performed better than the current algorithm and test 1
algorithm, because it led to fewer new searches; however, to formally test this specific claim we
would need to use a test that includes a multiple comparisons correction, which is beyond the scope
of this textbook.

A careful reader may have noticed that when there are exactly 2 random samples or treatments
and the counts can be arranged in a 2 × 2 table, both a chi-square test for homogeneity and a
2-proportion Z-test could apply. In this case, the chi-square test for homogeneity and the two-sided
2-proportion Z-test are equivalent, meaning that they produce the same p-value.39

39Sometimes the success-failure condition for the Z-test is weakened to require the number of successes and failures
to be at least 5, making it consistent with the chi-square condition that expected counts must at least 5.
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χ2χ2χ2 TEST FOR HOMOGENEITY

When there are multiple samples or treatments and we are comparing the distribution of a cate-
gorical variable across several groups, e.g. comparing the distribution of rural/urban/suburban
dwellers among 4 states,

Identify: Identify the hypotheses and the significance level, α.

H0: The distribution of [...] is the same for each population/treatment.

HA: The distribution of [...] is not the same for each population/treatment.

Choose: Choose the correct test procedure and identify it by name.

Here we use a χ2χ2χ2 test for homogeneity.

Check: Check that the test statistic follows a chi-square distribution.

1. Independence: Data come from multiple random samples or from a randomized

experiment with multiple treatments. When sampling without replacement, the sample

size should be less than 10% of the population size for each sample.

2. Expected counts: All expected counts are ≥ 5 (calculate and record expected counts).

Calculate: Calculate the χ2-statistic, df , and p-value.

test statistic: χ2 =
∑ (observed − expected)2

expected

df = (# of rows− 1)× (# of columns− 1)

p-value = (area to the right of χ2-statistic with the appropriate df)

Conclude: Compare the p-value to α, and draw a conclusion in context.

If the p-value is < α, reject H0; there is sufficient evidence that [HA in context].

If the p-value is > α, do not reject H0; there is not sufficient evidence that [HA in context].
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EXAMPLE 6.46

In an experiment, each individual was asked to be a seller of an iPod (a product commonly used
to store music on before smart phones). The participant received $10 + 5% of the sale price for
participating. The iPod they were selling had frozen twice in the past inexplicitly but otherwise
worked fine. Unbeknownst to the participants who were the sellers in the study, the buyers were
collaborating with the researchers to evaluate the influence of different questions on the likelihood of
getting the sellers to disclose the past issues with the iPod. The scripted buyers started with “Okay,
I guess I’m supposed to go first. So you’ve had the iPod for 2 years ...” and ended with one of three
questions:

• General: What can you tell me about it?

• Positive Assumption: It doesn’t have any problems, does it?

• Negative Assumption: What problems does it have?

The outcome variable is whether the participant discloses or hides the problem with the iPod.

Question Type
General Positive Assump. Negative Assump.

Response Disclose 2 23 36
Hide 71 50 37
Total 73 73 73

Does the phrasing of the question affect how likely individuals are to disclose the problems with the
iPod? Carry out an appropriate test at the 0.05 significance level.

Identify: We will test the following hypotheses at the α = 0.05 significance level.
H0: The likelihood of disclosing the problem is the same for each question type.
HA: The likelihood of disclosing the problem is not the same for each question type.

Choose: We want to know if the distribution of disclose/hide is the same for each of the three
question types, so we want a chi-square test for homogeneity.

Check: This is an experiment in which there were three randomly allocated treatments. Here a
treatment corresponds to a question type. All values in the table of expected counts are ≥ 5.
Table of expected counts:

Question Type
General Positive Assump. Negative Assump.

Response Disclose 20.3 20.3 20.3
Hide 52.7 52.7 52.7

Calculate: Using technology, we get χ2 = 40.1
df = (# of rows− 1)× (# of columns− 1) = 2× 1 = 2
The p-value is the area under the chi-square curve with 2 degrees of freedom to the right of
χ2 = 40.1. Thus, the p-value is almost 0.

Conclude: Because the p-value ≈ 0 < α, we reject H0. We have strong evidence that the likelihood
of disclosing the problem is not the same for each question type.

GUIDED PRACTICE 6.47

If an error was made in the test in the previous example, would it have been a Type I error or a
Type II error?40

40In this test, the p-value was less than α, so we rejected H0. If H0 is in fact true, and we reject it, that would be
committing a Type I error. We could not have made a Type II error, because a Type II error involves not rejecting H0.
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6.4.4 The chi-square test for independence in two-way tables

Often, instead of having separate random samples or treatments, we have just one sample and
we want to look at the association between two variables. When these two variables are categorical,
we can arrange the responses in a two-way table.

In Chapter 3 we looked at independence in the context of probability. Here we look at inde-
pendence in the context of inference. We want to know if any observed association is due to random
chance or if there is evidence of a real association in the population that the sample was taken from.
To answer this, we use a chi-square test for independence. The chi-square test for independence ap-
plies when there is only one random sample and there are two categorical variables. The null claim
is always that the two variables are independent, while the alternate claim is that the variables are
dependent.

EXAMPLE 6.48

Figure 6.14 summarizes the results of a Pew Research poll. A random sample of adults in the U.S.
was taken, and each was asked whether they approved or disapproved of the job being done by
President Obama, Democrats in Congress, and Republicans in Congress. The results are shown in
Figure 6.14. We would like to determine if the three groups and the approval ratings are associated.
What are appropriate hypotheses for such a test?

H0: The group and their ratings are independent. (There is no difference in approval ratings
between the three groups.)

HA: The group and their ratings are dependent. (There is some difference in approval ratings
between the three groups, e.g. perhaps Obama’s approval differs from Democrats in Congress.)

Congress
Obama Democrats Republicans Total

Approve 842 736 541 2119
Disapprove 616 646 842 2104
Total 1458 1382 1383 4223

Figure 6.14: Pew Research poll results of a March 2012 poll.

CONDITIONS FOR THE CHI-SQUARE TEST FOR INDEPENDENCE

There are two conditions that must be checked before performing a chi-square test for indepen-
dence. If these conditions are not met, this test should not be used.

Independence. The data must be arrived at by taking one random sample. When sampling
without replacement from a finite population, the sample size should be less than 10% of
the population size. After the data is collected, it is separated and categorized according
to two variables and can be organized into a two-way table.

Large expected counts. All of the cells in the two-way table must have at least 5 expected
cases assuming the null hypothesis is true.
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EXAMPLE 6.49

First, we observe that the data came from a random sample of adults in the U.S. and that the
population size for adults in the U.S. is much larger than 10 times the sample size. Next, let’s
compute the expected values that correspond to Figure 6.14, if the null hypothesis is true, that is,
if group and rating are independent.

The expected count for row one, column one is found by multiplying the row one total (2119) and
column one total (1458), then dividing by the table total (4223): 2119×1458

4223 = 731.6. Similarly for
the first column and the second row: 2104×1458

4223 = 726.4. Repeating this process, we get the expected
counts:

Obama Congr. Dem. Congr. Rep.
Approve 731.6 693.5 694.0
Disapprove 726.4 688.5 689.0

The table above gives us the number we would expect for each of the six combinations if group
and rating were really independent. Because all of the expected counts are at least 5 and there is
one random sample, we can carry out the chi-square test for independence.

The chi-square test for independence and the chi-square test for homogeneity both involve
counts in a two-way table. The chi-square statistic and the degrees of freedom are calculated in the
same way.

EXAMPLE 6.50

Calculate the chi-square statistic.

We calculate (obs−exp)2

exp for each of the six cells in the table. Adding the results of each cell gives the
chi-square test statistic.

χ2 =
∑ (obs− exp)2

exp

=
(842− 731.6)2

731.6
+ · · ·

=16.7 + · · · = 106.4

EXAMPLE 6.51

Find the p-value for the test and state the appropriate conclusion.

We must first find the degrees of freedom for this chi-square test. Because there are 2 rows and
3 columns, the degrees of freedom is df = (2 − 1) × (3 − 1) = 2. We find the area to the right
of χ2 = 106.4 under the chi-square curve with df = 2. The p-value is extremely small, much less
than 0.01, so we reject H0. We have evidence that the three groups and their approval ratings are
dependent.
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χ2χ2χ2 TEST FOR INDEPENDENCE

When there is one sample and we are looking for association or dependence between two
categorical variables, e.g. testing for an association between gender and political party,

Identify: Identify the hypotheses and the significance level, α.

H0: [variable 1] and [variable 2] are independent.

HA: [variable 1] and [variable 2] are dependent.

Choose: Choose the correct test procedure and identify it by name.

Here we use a χ2χ2χ2 test for independence.

Check: Check that the test statistic follows a chi-square distribution.

1. Independence: Data come from one random sample. If sampling without replacement,
check that the sample size is less than 10% of the population size.

2. Expected counts: All expected counts are ≥ 5 (calculate and record expected counts).

Calculate: Calculate the χ2-statistic, df , and p-value.

test statistic: χ2 =
∑ (observed − expected)2

expected

df = (# of rows− 1)× (# of columns− 1)

p-value = (area to the right of χ2-statistic with the appropriate df)

Conclude: Compare the p-value to α, and draw a conclusion in context.

If the p-value is < α, reject H0; there is sufficient evidence that [HA in context].

If the p-value is > α, do not reject H0; there is not sufficient evidence that [HA in context].
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EXAMPLE 6.52

A 2021 Pew Research poll asked a random sample of U.S. residents their generation and whether
they have personally taken action to help address climate change within the last year. The data are
shown below.

Response
Took action Didn’t take action Total

Gen Z 292 620 912
Generation Millenial 885 2,275 3,160

Gen X 809 2,709 3,518
Boomer & older 1,276 4,798 6,074
Total 3,262 10,402 13,664

We can see that the percent in the sample from each generation that took action vary: 32% for Gen
Z, 28% for Millenial, 23% for Gen X, and 21% for Boomer & older. However, could this be due to
random variation based on who happened to end up in the sample? Carry out an appropriate test
at the 0.05 significance level to see if there is an association between generation and taking action
to help address climate change.

Identify: We will test the following hypotheses at the α = 0.05 significance level.
H0: Generation and taking action to help address climate change are independent.
HA: Generation and taking action to help address climate change are dependent.

Choose: Two variables were recorded on the respondents: generation and whether or not they have
taken action to help address climate change within the last year. We want to know if these
variables are associated / dependent, so we will carry out a chi-square test for independence.

Check: According to the problem, there was one random sample taken. We note that the population
of U.S. residents is much larger than 10 times the sample size of 13,664. Also, all values in the
table of expected counts are ≥ 5. Table of expected counts:

Response
Took action Didn’t take action

Gen Z 217.72 694.28
Generation Millenial 754.39 2405.60

Gen X 839.85 2678.10
Boomer & older 1450.00 4624.00

Calculate: Using technology, we get χ2 = 91.9. The degrees of freedom for this test is given by:
df = (# of rows− 1)× (# of columns− 1) = 3× 1 = 3.
The p-value is the area under the chi-square curve with 3 degrees of freedom to the right of
χ2 = 91.9. Thus, the p-value = 8.46x10−20 ≈ 0.

Conclude: Because the p-value ≈ 0 < α, we reject H0. We have sufficient evidence that generation
and taking action to help address climate change are dependent.

GUIDED PRACTICE 6.53

In context, interpret the p-value of the test in the previous example.41

41The p-value in this test corresponds to the area to the right of χ2 = 91.9 under the chi-square curve with 3 degrees
of freedom. Assuming the probability model is true and assuming the null hypothesis is true, i.e. that generation
and response really are independent, there is close to a 0% probability of getting a χ2-statistic as large or larger than
91.9. Equivalently, it is the probability of our observed counts being this different from the expected counts, relative
to the expected counts, if the null is true and the model holds. Because the p-value is so small, we reject the null
hypothesis.
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6.4.5 Technology: the chi-square test for two-way tables

TI-83/84: ENTERING DATA INTO A TWO-WAY TABLE

1. Hit 2ND x−1 (i.e. MATRIX).

2. Right arrow to EDIT.

3. Hit 1 or ENTER to select matrix A.

4. Enter the dimensions by typing #rows, ENTER, #columns, ENTER.

5. Enter the data from the two-way table.

TI-83/84: CHI-SQUARE TEST FOR HOMOGENEITY AND INDEPENDENCE

Use STAT, TESTS, χ2-Test.

1. First enter two-way table data as described in the previous box.

2. Choose STAT.

3. Right arrow to TESTS.

4. Down arrow and choose C:χ2-Test.

5. Down arrow, choose Calculate, and hit ENTER, which returns

χ2 chi-square test statistic
p p-value
df degrees of freedom

TI-83/84: CHI-SQUARE TEST FOR HOMOGENEITY AND INDEPENDENCE

TI-83/84: Finding the expected counts

1. First enter two-way table data as described previously.

2. Carry out the chi-square test for homogeneity or independence as described in previous
box.

3. Hit 2ND x−1 (i.e. MATRIX).

4. Right arrow to EDIT.

5. Hit 2 to see matrix B.

This matrix contains the expected counts.

http://www.openintro.org/redirect.php?go=TI84_CHISQ_2_WAY_TEST&referrer=ahss3_pdf
http://www.openintro.org/redirect.php?go=TI84_CHISQ_2_WAY_TEST&referrer=ahss3_pdf
http://www.openintro.org/redirect.php?go=TI84_CHISQ_2_WAY_TEST&referrer=ahss3_pdf
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CASIO FX-9750GII: CHI-SQUARE TEST FOR HOMOGENEITY AND INDEPENDENCE

1. Navigate to STAT (MENU button, then hit the 2 button or select STAT).

2. Choose the TEST option (F3 button).

3. Choose the CHI option (F3 button).

4. Choose the 2WAY option (F2 button).

5. Enter the data into a matrix:

• Hit .MAT (F2 button).

• Navigate to a matrix you would like to use (e.g. Mat C) and hit EXE.

• Specify the matrix dimensions: m is for rows, n is for columns.

• Enter the data.

• Return to the test page by hitting EXIT twice.

6. Enter the Observed matrix that was used by hitting MAT (F1 button) and the matrix letter
(e.g. C).

7. Enter the Expected matrix where the expected values will be stored (e.g. D).

8. Hit the EXE button, which returns

χ2 chi-square test statistic
p p-value
df degrees of freedom

9. To see the expected values of the matrix, go to .MAT (F6 button) and select the corre-
sponding matrix.

GUIDED PRACTICE 6.54

The table from Figure 6.14 is reproduced below. Use a calculator to find the expected values and
the χ2-statistic, df , and p-value for the chi-square test for independence.42

Congress
Obama Democrats Republicans Total

Approve 842 736 541 2119
Disapprove 616 646 842 2104
Total 1458 1382 1383 4223

42First create a 2× 3 matrix with the data. The final summaries should be χ2 = 106.4, p-value is
p = 8.06× 10−24 ≈ 0, and df = 2. Below is the matrix of expected values:

Obama Congr. Dem. Congr. Rep.
Approve 731.59 693.45 693.96
Disapprove 726.41 688.55 689.04

http://www.openintro.org/redirect.php?go=CASIO_CHISQ_2_WAY_TEST&referrer=ahss3_pdf
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Section summary

• When there are two categorical variables, rather than one, the data can be arranged in a
two-way table.

• When working with a two-way table, the expected count for each row,column combination

is calculated as: expected count = (row total)×(column total)
table total .

• When categorical data are arranged in a two way table, use the χ2 test for homogeneity or
the χ2 test for independence. These tests are almost identical; the differences lie in the data
collection method and in the hypotheses.

• When there are multiple random samples or treatments and we are comparing the
distribution of a categorical variable across several groups, e.g. comparing the distribution of
rural/urban/suburban dwellers among 4 states, the hypotheses can be written as follows:

H0: The distribution of [...] is the same for each population/treatment.

HA: The distribution of [...] is not the same for each population/treatment.

We test these hypotheses at the α significance level using a χ2χ2χ2 test for homogeneity.

• When there is one random sample and we are looking for association or dependence between
two categorical variables, e.g. testing for an association between gender and political party,
the hypotheses can be written as:

H0: [variable 1] and [variable 2] are independent.

HA: [variable 1] and [variable 2] are dependent.

We test these hypotheses at the α significance level using a χ2χ2χ2 test for independence.

• In addition to the independence/random condition, all expected counts must be at least 5 for
the test statistic to follow a chi-square distribution.

• The chi-square statistic and associated df are found as follows:

test statistic: χ2 =
∑ (observed − expected)2

expected

df = (# of rows − 1)(# of cols − 1)

• The p-value is the area to the right of χ2-statistic under the chi-square curve with the appro-
priate df .
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Exercises

6.29 Quitters. Does being part of a support group affect the ability of people to quit smoking? A county
health department enrolled 300 smokers in a randomized experiment. 150 participants were randomly
assigned to a group that used a nicotine patch and met weekly with a support group; the other 150 received
the patch and did not meet with a support group. At the end of the study, 40 of the participants in the
patch plus support group had quit smoking while only 30 smokers had quit in the other group.

(a) Create a two-way table presenting the results of this study.

(b) Answer each of the following questions under the null hypothesis that being part of a support group does
not affect the ability of people to quit smoking, and indicate whether the expected values are higher or
lower than the observed values.

i. How many subjects in the “patch + support” group would you expect to quit?

ii. How many subjects in the “patch only” group would you expect to not quit?

6.30 Full body scan, Part II.A news article reports that “Americans have differing views on two potentially
inconvenient and invasive practices that airports could implement to uncover potential terrorist attacks.”
This news piece was based on a survey conducted among a random sample of 1,137 adults nationwide, where
one of the questions on the survey was “Some airports are now using ‘full-body’ digital x-ray machines to
electronically screen passengers in airport security lines. Do you think these new x-ray machines should
or should not be used at airports?” Below is a summary of responses based on party affiliation.43 The
differences in each political group may be due to chance. Complete the following computations under the
null hypothesis of independence between an individual’s party affiliation and his support of full-body scans.
It may be useful to first add on an extra column for row totals before proceeding with the computations.

Party Affiliation
Republican Democrat Independent

Answer
Should 264 299 351
Should not 38 55 77
Don’t know/No answer 16 15 22
Total 318 369 450

(a) How many Republicans would you expect to not support the use of full-body scans?

(b) How many Democrats would you expect to support the use of full- body scans?

(c) How many Independents would you expect to not know or not answer?

6.31 Offshore drilling. A survey asked 827 randomly sampled registered voters in California “Do
you support? Or do you oppose? Drilling for oil and natural gas off the Coast of California? Or do you
not know enough to say?” Below is the distribution of responses, separated based on whether or not the
respondent has a college degree.44 Complete a chi-square test for these data to test whether there is an
association between opinions regarding offshore drilling for oil and having a college degree. Include all steps
of the Identify, Choose, Check, Calculate, Conclude framework.

College Degree
Yes No

Support 154 132
Oppose 180 126
Do not know 104 131
Total 438 389

43S. Condon. “Poll: 4 in 5 Support Full-Body Airport Scanners”. In: CBS News (2010).
44Survey USA, Election Poll #16804, data collected July 8-11, 2010.

http://www.openintro.org/redirect.php?go=ahss_eoce_sol-offshore_drilling_chisq_indep&referrer=ahss3_pdf
http://www.openintro.org/redirect.php?go=textbook-airport_scanners_2010&referrer=ahss3_pdf
http://www.openintro.org/redirect.php?go=textbook-SurveyUSA_16804&referrer=ahss3_pdf
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6.32 Parasitic worm. Lymphatic filariasis is a disease caused by a parasitic worm. Complications of the
disease can lead to extreme swelling and other complications. Here we consider results from a randomized
experiment that compared three different drug treatment options to clear people of the this parasite, which
people are working to eliminate entirely. The results for the second year of the study are given below:45

Clear at Year 2 Not Clear at Year 2

Three drugs 52 2
Two drugs 31 24
Two drugs annually 42 14

(a) Set up hypotheses for evaluating whether there is any difference in the performance of the treatments,
and also check conditions.

(b) Statistical software was used to run a chi-square test, which output:

X2 = 23.7 df = 2 p-value = 7.2e-6

Use these results to evaluate the hypotheses from part (a), and provide a conclusion in the context of
the problem.

45Christopher King et al. “A Trial of a Triple-Drug Treatment for Lymphatic Filariasis”. In: New England Journal
of Medicine 379 (2018), pp. 1801–1810.

http://www.openintro.org/redirect.php?go=textbook-King_Suamani_2018&referrer=ahss3_pdf
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Chapter highlights

Calculating a confidence interval or a test statistic and p-value are generally done with statistical
software. It is important, then, to focus not on the calculations, but rather on

1. choosing the correct procedure

2. understanding when the procedures do or do not apply, and

3. interpreting the results.

Choosing the correct procedure requires understanding the type of data and the method of data
collection. All of the inference procedures in Chapter 6 are for categorical variables. Here we list
the five tests encountered in this chapter and when to use them.

• 1-proportion Z-test

– 1 random sample, a yes/no variable

– Compare the sample proportion to a fixed / hypothesized proportion.

• 2-proportion Z-test

– 2 independent random samples or randomly allocated treatments

– Compare two populations or treatments to each other with respect to one yes/no variable;
e.g. comparing the proportion over age 65 in two distinct populations.

• χ2χ2χ2 goodness of fit test

– 1 random sample, a categorical variable (generally at least three categories)

– Compare the distribution of a categorical variable to a fixed or known population distri-
bution; e.g. looking at distribution of color among M&M’s.

• χ2χ2χ2 test for homogeneity:

– 2 or more independent random samples or randomly allocated treatments

– Compare the distribution of a categorical variable across several populations or treat-
ments; e.g. party affiliation over various years, or patient improvement compared over 3
treatments.

• χ2χ2χ2 test for independence

– 1 random sample, 2 categorical variables

– Determine if, in a single population, there is an association between two categorical
variables; e.g. grade level and favorite class.

Even when the data and data collection method correspond to a particular test, we must verify that
conditions are met to see if the assumptions of the test are reasonable. All of the inferential proce-
dures of this chapter require some type of random sample or process. In addition, the 1-proportion
Z-test/interval and the 2-proportion Z-test/interval require that the success-failure condition is met
and the three χ2 tests require that all expected counts are at least 5.

Finally, understanding and communicating the logic of a test and being able to accurately interpret
a confidence interval or p-value are essential. For a refresher on this, review Chapter 5: Foundations
for inference.
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Chapter exercises

6.33 Active learning. A teacher wanting to increase the active learning component of her course is con-
cerned about student reactions to changes she is planning to make. She conducts a survey in her class,
asking students whether they believe more active learning in the classroom (hands on exercises) instead of
traditional lecture will helps improve their learning. She does this at the beginning and end of the semester
and wants to evaluate whether students’ opinions have changed over the semester. Can she used the methods
we learned in this chapter for this analysis? Explain your reasoning.

6.34 Website experiment. The OpenIntro website occasionally experiments with design and link place-
ment. We conducted one experiment testing three different placements of a download link for this textbook
on the book’s main page to see which location, if any, led to the most downloads. The number of site visitors
included in the experiment was 701 and is captured in one of the response combinations in the following
table:

Download No Download

Position 1 13.8% 18.3%
Position 2 14.6% 18.5%
Position 3 12.1% 22.7%

(a) Calculate the actual number of site visitors in each of the six response categories.

(b) Each individual in the experiment had an equal chance of being in any of the three experiment groups.
However, we see that there are slightly different totals for the groups. Is there any evidence that the
groups were actually imbalanced? Carry out an appropriate test and include all steps of the ICCCC
framework.

(c) Complete an appropriate hypothesis test to check whether there is evidence that there is a higher rate
of site visitors clicking on the textbook link in any of the three groups. Include all steps of the Identify,
Choose, Check, Calculate, Conclude framework.

6.35 Shipping holiday gifts. A local news survey asked 500 randomly sampled Los Angeles residents
which shipping carrier they prefer to use for shipping holiday gifts. The table below shows the distribution
of responses by age group as well as the expected counts for each cell (shown in parentheses).

Age
18-34 35-54 55+ Total

Shipping Method

USPS 72 (81) 97 (102) 76 (62) 245
UPS 52 (53) 76 (68) 34 (41) 162
FedEx 31 (21) 24 (27) 9 (16) 64
Something else 7 (5) 6 (7) 3 (4) 16
Not sure 3 (5) 6 (5) 4 (3) 13
Total 165 209 126 500

(a) State the null and alternative hypotheses for testing for independence of age and preferred shipping
method for holiday gifts among Los Angeles residents.

(b) Are the conditions for inference using a chi-square test satisfied?

6.36 The Civil War. A national survey conducted among a simple random sample of 1,507 adults shows
that 56% of Americans think the Civil War is still relevant to American politics and political life.46

(a) Conduct a hypothesis test to determine if these data provide strong evidence that the majority of the
Americans think the Civil War is still relevant.

(b) Interpret the p-value in this context.

(c) Calculate a 90% confidence interval for the proportion of Americans who think the Civil War is still
relevant. Interpret the interval in this context, and comment on whether or not the confidence interval
agrees with the conclusion of the hypothesis test.

46Pew Research Center Publications, Civil War at 150: Still Relevant, Still Divisive, data collected between March
30 - April 3, 2011.

http://www.openintro.org/redirect.php?go=textbook-civil_war_at_150&referrer=ahss3_pdf
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6.37 College smokers. We are interested in estimating the proportion of students at a university
who smoke. Out of a random sample of 200 students from this university, 40 students smoke.

(a) Calculate a 95% confidence interval for the proportion of students at this university who smoke, and
interpret this interval in context. (Reminder: Check conditions.)

(b) If we wanted the margin of error to be no larger than 2% at a 95% confidence level for the proportion
of students who smoke, how big of a sample would we need?

6.38 Acetaminophen and liver damage. It is believed that large doses of acetaminophen (the active
ingredient in over the counter pain relievers like Tylenol) may cause damage to the liver. A researcher
wants to conduct a study to estimate the proportion of acetaminophen users who have liver damage. For
participating in this study, he will pay each subject $20 and provide a free medical consultation if the patient
has liver damage.

(a) If he wants to limit the margin of error of his 98% confidence interval to 2%, what is the minimum
amount of money he needs to set aside to pay his subjects?

(b) The amount you calculated in part (a) is substantially over his budget so he decides to use fewer subjects.
How will this affect the width of his confidence interval?

6.39 Life after college. We are interested in estimating the proportion of graduates at a mid-sized uni-
versity who found a job within one year of completing their undergraduate degree. Suppose we conduct a
survey and find out that 348 of the 400 randomly sampled graduates found jobs. The graduating class under
consideration included over 4500 students.

(a) Describe the population parameter of interest. What is the value of the point estimate of this parameter?

(b) Check if the conditions for constructing a confidence interval based on these data are met.

(c) Calculate a 95% confidence interval for the proportion of graduates who found a job within one year of
completing their undergraduate degree at this university, and interpret it in the context of the data.

(d) What does “95% confidence” mean?

(e) Now calculate a 99% confidence interval for the same parameter and interpret it in the context of the
data.

(f) Compare the widths of the 95% and 99% confidence intervals. Which one is wider? Explain.

6.40 Diabetes and unemployment. A Gallup poll surveyed Americans about their employment status
and whether or not they have diabetes. The survey results indicate that 1.5% of the 47,774 employed (full
or part time) and 2.5% of the 5,855 unemployed 18-29 year olds have diabetes.47

(a) Create a two-way table presenting the results of this study.

(b) State appropriate hypotheses to test.

(c) The sample difference is about 1%. If we completed the hypothesis test, we would find that the p-value
is very small (about 0), meaning the difference is statistically significant. Use this result to explain the
difference between statistically significant and practically significant findings.

6.41 Rock-paper-scissors. Rock-paper-scissors is a hand game played by two or more people where
players choose to sign either rock, paper, or scissors with their hands. For your statistics class project, you
want to evaluate whether players choose between these three options randomly, or if certain options are
favored above others. You ask two friends to play rock-paper-scissors and count the times each option is
played. The following table summarizes the data:

Rock Paper Scissors

43 21 35

Use these data to evaluate whether players choose between these three options randomly, or if certain options
are favored above others. Make sure to clearly outline each step of your analysis, and interpret your results
in context of the data and the research question.

47Gallup Wellbeing, Employed Americans in Better Health Than the Unemployed, data collected Jan. 2, 2011 -
May 21, 2012.

http://www.openintro.org/redirect.php?go=ahss_eoce_sol-college_smokers_CI_sample_size&referrer=ahss3_pdf
http://www.openintro.org/redirect.php?go=textbook-employed_americans_in_better_health_2012&referrer=ahss3_pdf
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6.42 2010 Healthcare Law. On June 28, 2012 the U.S. Supreme Court upheld the much debated 2010
healthcare law, declaring it constitutional. A Gallup poll released the day after this decision indicates that
46% of 1,012 randomly sampled Americans agree with this decision. At a 95% confidence level, this sample
has a 3% margin of error. Based on this information, determine if the following statements are true or false,
and explain your reasoning.48

(a) We are 95% confident that between 43% and 49% of Americans in this sample support the decision of
the U.S. Supreme Court on the 2010 healthcare law.

(b) We are 95% confident that between 43% and 49% of Americans support the decision of the U.S. Supreme
Court on the 2010 healthcare law.

(c) If we considered many random samples of 1,012 Americans, and we calculated the sample proportions
of those who support the decision of the U.S. Supreme Court, 95% of those sample proportions will be
between 43% and 49%.

(d) The margin of error at a 90% confidence level would be higher than 3%.

6.43 Browsing on the mobile device. A survey of 2,254 randomly selected American adults indicates that
17% of cell phone owners browse the internet exclusively on their phone rather than a computer or other
device.49

(a) According to an online article, a report from a mobile research company indicates that 38 percent of
Chinese mobile web users only access the internet through their cell phones.50 Conduct a hypothesis
test to determine if these data provide strong evidence that the proportion of Americans who only use
their cell phones to access the internet is different than the Chinese proportion of 38%.

(b) Interpret the p-value in this context.

(c) Calculate a 95% confidence interval for the proportion of Americans who access the internet on their
cell phones, and interpret the interval in this context.

6.44 Which chi-square test? Part 1. Consider each of the following tables. Determine (i) if a goodness
of fit test, test for homogeneity, or test for independence is more appropriate, and (ii) how many degrees of
freedom should be used for the test.

(a)

Favorite Animal Count

Red Panda 22
Koala 7
Otter 13
Fennec Fox 25
Hedgehog 38

(b)

Favorite Kid Food Count

Pizza 167
Tacos 48
Mac and Cheese 171
Chicken or Veggie Nuggets 74
Broccoli 2

(c)

Rushing Not

Freshman 14 275
Sophomore 5 392
Other 7 725

(d)

Commute Time Count

≤ 10 minutes 198
11-30 minutes 130
31-60 minutes 48
> 60 minutes 29

6.45 Which chi-square test? Part 2. Consider each of the following planned studies. Determine (i) if a
goodness of fit test, test for homogeneity, or test for independence is more appropriate, and (ii) how many
degrees of freedom should be used for the test.

(a) A state is conducting a study to better understand pay for tradespeople in the state’s three largest cities.
In each city, the state will take a random sample of tradespeople and estimate the proportion who made
at least $100,000 in each of the cities. In their final report, they would also like to note whether that
proportion varies across the three cities.

(b) A particular gene has 3 variants that can be found in proportions p1 = 0.15, p2 = 0.60, and p3 = 0.25
in the general population. Scientists suspect different variants of this gene might indicate an elevated
risk for a particular genetic disease, and one way to evaluate this is to see if the general population
distribution is the same in patients with the disease. The scientists will sample 450 patients with the
disease and identify which variant each patient has.

(c) A candy company produces candy pieces in 5 different colors that are mixed into bags. The colors
should be in the following proportions: 15% green, 22% orange, 20% yellow, 24% red, and 19% purple.
As a quality control check, the company randomly samples 1500 candy pieces and wants to determine
if the target proportions match those of the observed distribution.

48Gallup, Americans Issue Split Decision on Healthcare Ruling, data collected June 28, 2012.
49Pew Internet, Cell Internet Use 2012, data collected between March 15 - April 13, 2012.
50S. Chang. “The Chinese Love to Use Feature Phone to Access the Internet”. In: M.I.C Gadget (2012).

http://www.openintro.org/redirect.php?go=textbook-healthcare_split_2012&referrer=ahss3_pdf
http://www.openintro.org/redirect.php?go=textbook-cell_internet_use_2012&referrer=ahss3_pdf
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Chapter 7
Inference for numerical data

7.1 Inference for a mean with the t-distribution

7.2 Inference with paired data

7.3 Inference for the difference of two means
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Chapter 5 introduced a framework for statistical inference based on confidence inter-

vals and hypothesis tests. Chapter 6 summarized inference procedures for categorical

data (counts and proportions), using the normal distribution and the chi-square dis-

tribution. In this chapter, we focus on inference procedures for numerical data and

we encounter a new distribution. In each case, the inference ideas remain the same:

1. Determine which point estimate or test statistic is useful.

2. Identify an appropriate distribution for the point estimate or test statistic.

3. Apply the ideas from Chapter 5 using the distribution from step 2.

Each section in Chapter 7 explores a new situation: a single mean (7.1), a mean of

differences (7.2); and a difference of means (7.3).

For videos, slides, and other resources, please visit

www.openintro.org/ahss

http://www.openintro.org/redirect.php?go=stat&referrer=ahss3_pdf
http://www.openintro.org/redirect.php?go=ahss&referrer=ahss3_pdf
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7.1 Inference for a mean with the ttt-distribution

In this section, we turn our attention to numerical variables and answer questions such as the

following:

• How well can we estimate the mean income of people in a certain city, county, or state?

• What is the average mercury content in various types of fish?

• Are people’s run times getting faster or slower, on average?

• How does the sample size affect the expected error in our estimates?

• When is it reasonable to model the sample mean x̄ using a normal distribution, and when will

we need to use a new distribution, known as the t-distribution?

Learning objectives

1. Understand the relationship between a t-distribution and a normal distribution, and explain

why we use a t-distribution for inference on a mean.

2. State and verify whether or not the conditions for inference for a mean based on the t-

distribution are met. Understand when it is necessary to look at the distribution of the

sample data.

3. Know the degrees of freedom associated with a one-sample t-procedure.

4. Carry out a complete hypothesis test for a single mean.

5. Carry out a complete confidence interval procedure for a single mean.

6. Find the minimum sample size needed to estimate a mean with C% confidence and a margin

of error no greater than a certain value.

7.1.1 Using a normal distribution for inference when σσσ is known

In Section 4.2 we saw that the distribution of a sample mean is normal if the population is
normal or if the sample size is at least 30. In these problems, we used the population mean and
population standard deviation to find a Z-score. However, in the case of inference, these values
will be unknown. In rare circumstances we may know the standard deviation of a population, even
though we do not know its mean. For example, in some industrial processes, the mean may be
known to shift over time, while the standard deviation of the process remains the same. In these
cases, we can use the normal model as the basis for our inference procedures. We use x̄ as our point
estimate for µ and the SD formula for a sample mean calculated in Section 4.2: σx̄ = σ√

n
. That

leads to a confidence interval and a test statistic as follows:

CI: x̄ ± z?
σ√
n

Z =
x̄− null value

σ√
n

What happens if we do not know the population standard deviation σ, as is usually the case?
The best we can do is use the sample standard deviation, denoted by s, to estimate the population
standard deviation.

SE =
s√
n
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However, when we do this we run into a problem: when carrying out our inference procedures, we
will be trying to estimate two quantities: both the mean and the standard deviation. Looking at
the SD and SE formulas, we can make some important observations that will give us a hint as to
what will happen when we use s instead of σ.

• For a given population, σ is a fixed number and does not vary.

• s, the standard deviation of a sample, will vary from one sample to the next and will not be
exactly equal to σ.

• The larger the sample size n, the better the estimate s will tend to be for σ.

For this reason, the normal model still works well when the sample size is large. For smaller
sample sizes, we run into a problem: our use of s, which is used when computing the standard error,
tends to add more variability to our test statistic. It is this extra variability that leads us to a new
distribution: the t-distribution.

7.1.2 Introducing the ttt-distribution

When we use the sample standard deviation s in place of the population standard deviation
σ to standardize the sample mean, we get an entirely new distribution - one that is similar to the
normal distribution, but has greater spread. This distribution is known as the t-distribution. A
t-distribution, shown as a solid line in Figure 7.1, has a bell shape. However, its tails are thicker
than the normal model’s. We can see that a greater proportion of the area under the t-distribution
is beyond 2 standard units from 0 than under the normal distribution. These extra thick tails are
exactly the correction we need to resolve the problem of a poorly estimated standard deviation.

−4 −2 0 2 4

Figure 7.1: Comparison of a t-distribution (solid line) and a normal distribution
(dotted line).

The t-distribution, always centered at zero, has a single parameter: degrees of freedom. The
degrees of freedom (df) describes the precise form of the bell-shaped t-distribution. Several
t-distributions are shown in Figure 7.2. When there are more degrees of freedom, the t-distribution
looks more like the standard normal distribution.

−4 −2 0 2 4

normal
t, df = 8
t, df = 4
t, df = 2
t, df = 1

Figure 7.2: The larger the degrees of freedom, the more closely the t-distribution
resembles the standard normal distribution.
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DEGREES OF FREEDOM

The degrees of freedom describes the shape of the t-distribution. The larger the degrees of
freedom, the more closely the distribution resembles the standard normal distribution.

When the degrees of freedom is large, about 30 or more, the t-distribution is nearly indistin-
guishable from the normal distribution. In Section 7.1.4, we will see how degrees of freedom relates
to sample size.

We will find it useful to become familiar with the t-distribution, because it plays a very similar
role to the normal distribution during inference. We use a ttt-table, partially shown in Figure 7.3, in
place of the normal probability table when the population standard deviation is unknown, especially
when the sample size is small. A larger table is presented in Appendix C.3.

one tail 0.100 0.050 0.025 0.010 0.005
df 1 3.078 6.314 12.71 31.82 63.66

2 1.886 2.920 4.303 6.965 9.925
3 1.638 2.353 3.182 4.541 5.841
...

...
...

...
...

17 1.333 1.740 2.110 2.567 2.898
18 1.330 1.734 2.101 2.552 2.878
19 1.328 1.729 2.093 2.539 2.861
20 1.325 1.725 2.086 2.528 2.845

...
...

...
...

...
1000 1.282 1.646 1.962 2.330 2.581
∞ 1.282 1.645 1.960 2.326 2.576

Confidence level C 80% 90% 95% 98% 99%

Figure 7.3: An abbreviated look at the t-table. Each row represents a different
t-distribution. The columns describe the cutoffs for specific tail areas. The row
with df = 18 has been highlighted.

Each row in the t-table represents a t-distribution with different degrees of freedom. The
columns correspond to tail probabilities. For instance, if we know we are working with the t-
distribution with df = 18, we can examine row 18, which is highlighted in Figure 7.3. If we want
the value in this row that identifies the cutoff for an upper tail of 10%, we can look in the column
where one tail is 0.100. This cutoff is 1.33. If we had wanted the cutoff for the lower 10%, we would
use -1.33. Just like the normal distribution, all t-distributions are symmetric.

EXAMPLE 7.1

What proportion of the t-distribution with 18 degrees of freedom falls below -2.10?

Just like a normal probability problem, we first draw a picture as shown in Figure 7.4 and shade
the area below -2.10. To find this area, we identify the appropriate row: df = 18. Then we identify
the column containing the absolute value of -2.10; it is the third column. Because we are looking
for just one tail, we examine the top line of the table, which shows that a one tail area for a value
in the third row corresponds to 0.025. That is, 2.5% of the distribution falls below -2.10.

EXAMPLE 7.2

For the t-distribution with 18 degrees of freedom, what percent of the curve is contained between
-1.330 and +1.330?

Using row df = 18, we find 1.330 in the table. The area in each tail is 0.100 for a total of 0.200,
which leaves 0.800 in the middle between -1.33 and +1.33. This corresponds to the 80%, which can
be found at the very bottom of that column.
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−4 −2 0 2 4

Figure 7.4: The t-distribution with 18 degrees of freedom. The area below -2.10
has been shaded.

−4 −2 0 2 4 −4 −2 0 2 4

Figure 7.5: Left: The t-distribution with 3 degrees of freedom, with the area
farther than 3.182 units from 0 shaded. Right: The t-distribution with 20 degrees
of freedom, with the area above 1.65 shaded.

EXAMPLE 7.3

For the t-distribution with 3 degrees of freedom, as shown in the left panel of Figure 7.5, what should
the value of t? be so that 95% of the area of the curve falls between -t? and +t??

We can look at the column in the t-table that says 95% along the bottom row and trace it up to
row df = 3 to find that t? = 3.182.

EXAMPLE 7.4

A t-distribution with 20 degrees of freedom is shown in the right panel of Figure 7.5. Estimate the
proportion of the distribution falling above 1.65.

We identify the row in the t-table using the degrees of freedom: df = 20. Then we look for 1.65;
it is not listed. It falls between the first and second columns. Since these values bound 1.65, their
tail areas will bound the tail area corresponding to 1.65. We identify the one tail area of the first
and second columns, 0.050 and 0.10, and we conclude that between 5% and 10% of the distribution
is more than 1.65 standard deviations above the mean. If we like, we can identify the precise area
using statistical software: 0.0573.

When the desired degrees of freedom is not listed on the table, choose a conservative value:
round the degrees of freedom down, i.e. move up to the previous row listed. Another option is to
use a calculator or statistical software to get a precise answer.



366 CHAPTER 7. INFERENCE FOR NUMERICAL DATA

7.1.3 Technology: finding area under the ttt-distribution

It is possible to find areas under a t-distribution on a calculator.

TI-84: FINDING AREA UNDER THE T-CURVE

Use 2ND VARS, tcdf to find an area/proportion/probability between two t-scores or to the left
or right of a t-score.

1. Choose 2ND VARS (i.e. DISTR).

2. Choose 6:tcdf.

3. Enter the lower (left) t-score and the upper (right) t-score.

• If finding just a lower tail area, set lower to -100.

• For an upper tail area, set upper to 100.

4. Enter the degrees of freedom after df:.

5. Down arrow, choose Paste, and hit ENTER.

TI-83: Do steps 1-2, then enter the lower bound, upper bound, degrees of freedom, e.g. tcdf(2,
100, 5), and hit ENTER.

CASIO FX-9750GII: FINDING AREA UNDER THE T-DISTRIBUTION

1. Navigate to STAT (MENU, then hit 2).

2. Select DIST (F5), then t (F2), and then tcd (F2).

3. If needed, set Data to Variable (Var option, which is F2).

4. Enter the Lower t-score and the Upper t-score. Set the degrees of freedom (df).

• If finding just a lower tail area, set Lower to -100.

• For an upper tail area, set Upper to 100.

5. Hit EXE, which will return the area probability (p) along with the t-scores for the lower
and upper bounds.

GUIDED PRACTICE 7.5

Use a calculator to find the area to the right of t = 3 under the t-distribution with 35 degrees of
freedom.1

GUIDED PRACTICE 7.6

Without doing any calculations, will the area to the right of Z = 3 under the standard normal curve
be greater than, less than, or equal to the area to the right of t = 3 with 35 degrees of freedom?2

1Because we want to shade to the right of t = 3, we let lower = 3. There is no upper bound, so use a large value
such as 100 for upper. Let df = 35. The area is 0.0025 or 0.25%.

2Because the t-distribution has greater spread and thicker tails than the normal distribution, we would expect the
upper tail area to the right of Z = 3 to be less than the upper tail area to the right of t = 3. One can confirm that
the area to the right of Z = 3 is 0.0013, which is less than 0.0025. With a smaller degrees of freedom, this difference
would be even more pronounced. Try it!
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7.1.4 Checking conditions for inference on a mean using the ttt-distribution

Using the t-distribution for inference on a mean requires that the theoretical sampling distri-
bution for the sample mean x̄ is nearly normal. In practice, we check whether this assumption
is reasonable by verifying that certain conditions are met.

Independence. Observations can be considered independent when the data are collected from a
random process, such as rolling a die, or from a random sample. Without a random sample
or process, the standard error formula would not apply, and it is unclear to what population
the inference would apply. Recall that when sampling without replacement from a finite
population, the observations can be considered independent when sampling less than 10% of
the population.

Sample size / nearly normal population. We saw in Section 4.2 that in order for the sampling
distribution for a sample mean to be nearly normal, we also need the sample to be drawn from
a nearly normal population or we need the sample size to be at least 30 (n ≥ 30).

What should we do when the sample size is small and we are not sure whether the population
distribution is nearly normal? In this case, the best we can do is look at the data for excessive skew.
If the data are very skewed or have obvious outliers, this suggests that the sample did not come
from a nearly normal population. However, if the data do not show obvious skew or outliers, then
the idea of a nearly normal population is generally considered reasonable.

Note that by looking at a small data set, we cannot prove that the population distribution
is nearly normal. However, the data can suggest to us whether the population distribution being
nearly normal is an unreasonable assumption.

THE NORMALITY CONDITION WITH SMALL SAMPLES

If the sample is small and there is strong skew or extreme outliers in the data, the population
from which the sample was drawn may not be nearly normal.

Ideally, we use a graph of the data to check for strong skew or outliers. When the full data set
is not available, summary statistics can also be used.

For larger samples, it is less necessary to check for skew in the data. If the sample size is 30 or
more, it is no longer necessary that the population distribution be nearly normal. When the sample
size is large, the Central Limit Theorem tells us that the sampling distribution for the sample mean
will be nearly normal regardless of the distribution of the population.

7.1.5 One-sample ttt-interval for a mean

Dolphins are at the top of the oceanic food chain, which causes dangerous substances such as
mercury to concentrate in their organs and muscles. This is an important problem for both dolphins
and other animals, like humans, who eat them.

We would like to create a confidence interval to estimate the average mercury content in dolphin
muscles. We will use a sample of 19 Risso’s dolphins from the Taiji area in Japan. The data are
summarized in Figure 7.7.

Because we are estimating a mean, we would like to construct a t-interval, but first we must
check whether the conditions for using a t-interval are met. We will start by assuming that the
sample of 19 Risso’s dolphins constitutes a random sample. Next, we note that the sample size is
small (less than 30), and we do not know whether the distribution of mercury content for all dolphins
is nearly normal. Therefore, we must look at the data. Since we do not have all of the data to graph,
we look at the summary statistics provided in Figure 7.7. These summary statistics do not suggest
any strong skew or outliers; all observations are within 2.5 standard deviations of the mean. Based
on this evidence, we believe it is reasonable that the population distribution of mercury content in
dolphins could be nearly normal.
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Figure 7.6: A Risso’s dolphin.
—————————–
Photo by Mike Baird (www.bairdphotos.com). CC BY 2.0 license.

n x̄ s minimum maximum
19 4.4 2.3 1.7 9.2

Figure 7.7: Summary of mercury content in the muscle of 19 Risso’s dolphins from
the Taiji area. Measurements are in µg/wet g (micrograms of mercury per wet
gram of muscle).

With both conditions met, we will construct a 95% confidence interval. Recall that a confidence
interval has the following form:

point estimate ± critical value× SE of estimate

The point estimate is the sample mean and the SE of the sample mean is given by s/
√
n. What

do we use for the critical value? Since we are using the t-distribution, we use a t-table to find the
critical value. We denote the critical value t?.

• For a 95% confidence interval, we want to find the cutoff t? such that 95% of the t-distribution
is between -t? and t?.

• Using the t-table on page 364, we look at the row that corresponds to the degrees of freedom
and the column that corresponds to the confidence level.

DEGREES OF FREEDOM FOR A SINGLE SAMPLE

If the sample has n observations and we are examining a single mean, then we use the t-
distribution with df = n− 1 degrees of freedom.

http://www.openintro.org/redirect.php?go=textbook-bairdphotos_com&referrer=ahss3_pdf
http://www.openintro.org/redirect.php?go=textbook-CC_BY_2&referrer=ahss3_pdf
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EXAMPLE 7.7

Calculate a 95% confidence interval for the average mercury content in dolphin muscles based on
this sample. Recall that n = 19, x̄ = 4.4 µg/wet g, and s = 2.3 µg/wet g.

To find the critical value t? we use the t-distribution with n − 1 degrees of freedom. The sample
size is 19, so df = 19 − 1 = 18 degrees of freedom. Using the t-table with row df = 18 and column
corresponding to a 95% confidence level, we get t? = 2.10. The point estimate is the sample mean
x̄ and the standard error of a sample mean is given by s√

n
. Now we have all the pieces we need to

calculate a 95% confidence interval for the average mercury content in dolphin muscles.

point estimate ± critical value× SE of estimate

x̄ ± t? × s√
n

df = n− 1

4.4 ± 2.10× 2.3√
19

df = 18

= (3.29, 5.51)

EXAMPLE 7.8

How do we interpret this 95% confidence interval? To what population is it applicable?

A random sample of Risso’s dolphins was taken from the Taiji area in Japan. The mercury content
in the muscles of other types of dolphins and from dolphins from other regions may vary. Therefore,
we can only make an inference to Risso’s dolphins from this area. We are 95% confident the true
average mercury content in the muscles of Risso’s dolphins in the Taiji area of Japan is between 3.29
and 5.51 µg/wet gram.
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CONSTRUCTING A CONFIDENCE INTERVAL FOR A MEAN

To carry out a complete confidence interval procedure to estimate a single mean µ,

Identify: Identify the parameter and the confidence level, C%.

The parameter will be an unknown population mean, e.g. the true mean (or average)
mercury content in Risso’s dolphins.

Choose: Choose the appropriate interval procedure and identify it by name.

To estimate a single mean we use a 1-sample ttt-interval.

Check: Check conditions for the sampling distribution for x̄ to be nearly normal.

1. Independence: Data come from a random sample or random process. When sampling

without replacement, check that sample size is less than 10% of the population size.

2. Large sample or normal population: n ≥ 30 or the population distr. is nearly normal.

If the sample size is less than 30 and the population distribution is unknown, check

for strong skew or outliers in the data. If neither is found, the condition that the

population distribution is nearly normal is considered reasonable.

Calculate: Calculate the confidence interval and record it in interval form.

point estimate ± t? × SE of estimate, df = n− 1

point estimate: the sample mean x̄

SE of estimate: s√
n

t?: use a t-table at row df = n− 1 and confidence level C%

( , )

Conclude: Interpret the interval and, if applicable, draw a conclusion in context.

Here, we are C% confident that the true mean of [...] is between and . A conclusion
depends upon whether the interval is entirely above, is entirely below, or contains the value
of interest.
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EXAMPLE 7.9

The FDA’s webpage provides some data on mercury content of fish. Based on a sample of 15 croaker
white fish (Pacific), a sample mean and standard deviation were computed as 0.287 and 0.069 ppm
(parts per million), respectively. The 15 observations ranged from 0.18 to 0.41 ppm. Construct
an appropriate 95% confidence interval for the true average mercury content of croaker white fish
(Pacific). Is there evidence that the average mercury content is greater than 0.275 ppm? Use the
five step framework to organize your work.

Identify: The parameter of interest is the true mean mercury content in croaker white fish (Pacific).
We want to estimate this at the 95% confidence level.

Choose: Because the parameter to be estimated is a single mean, we will use a 1-sample t-interval.

Check: We must check that the sampling distribution for the mean can be modeled using a normal
distribution. We will assume that the sample constitutes a random sample of less than 10%
of all croaker white fish (Pacific) and that independence is reasonable. The sample size n
is small, but there are no obvious outliers; all observations are within 2 standard deviations
of the mean. If there is skew, it is not too great. Therefore we think it is reasonable that
the population distribution of mercury content in croaker white fish (Pacific) could be nearly
normal.

Calculate: We will calculate the interval:

point estimate ± t? × SE of estimate

The point estimate is the sample mean: x̄ = 0.287

The SE of the sample mean is: s√
n

= 0.069√
15

We find t? for the one-sample case using the t-table at row df = n − 1 and confidence level
C%. For a 95% confidence level and df = 15− 1 = 14, t? = 2.145.

So the 95% confidence interval is given by:

0.287 ± 2.145× 0.069√
15

df = 14

0.287 ± 2.145× 0.0178

= (0.249, 0.325)

Conclude: We are 95% confident that the true average mercury content of croaker white fish
(Pacific) is between 0.249 and 0.325 ppm. Because the interval contains 0.275 as well as values
less than 0.275, we do not have evidence that the true average mercury content is greater than
0.275 ppm.

EXAMPLE 7.10

Based on the interval calculated in Example 7.9 above, can we say that 95% of croaker white fish
(Pacific) have mercury content between 0.249 and 0.325 ppm?

No. The interval estimates the average amount of mercury with 95% confidence. It is not trying to
capture 95% of the values.



372 CHAPTER 7. INFERENCE FOR NUMERICAL DATA

7.1.6 Technology: the 1-sample ttt-interval

TI-83/84: 1-SAMPLE T-INTERVAL

Use STAT, TESTS, TInterval.

1. Choose STAT.

2. Right arrow to TESTS.

3. Down arrow and choose 8:TInterval.

4. Choose Data if you have all the data or Stats if you have the mean and standard deviation.

• If you choose Data, let List be L1 or the list in which you entered your data (don’t
forget to enter the data!) and let Freq be 1.

• If you choose Stats, enter the mean, SD, and sample size.

5. Let C-Level be the desired confidence level.

6. Choose Calculate and hit ENTER, which returns:
( , ) the confidence interval
x̄ the sample mean
Sx the sample SD
n the sample size

CASIO FX-9750GII: 1-SAMPLE T-INTERVAL

1. Navigate to STAT (MENU button, then hit the 2 button or select STAT).

2. If necessary, enter the data into a list.

3. Choose the INTR option (F3 button), t (F2 button), and 1-S (F1 button).

4. Choose either the Var option (F2) or enter the data in using the List option.

5. Specify the interval details:

• Confidence level of interest for C-Level.

• If using the Var option, enter the summary statistics. If using List, specify the list
and leave Freq value at 1.

6. Hit the EXE button, which returns

Left, Right ends of the confidence interval
x̄ sample mean
sx sample standard deviation
n sample size

GUIDED PRACTICE 7.11

Use a calculator to find a 95% confidence interval for the mean mercury content in croaker white
fish (Pacific). The sample size was 15, and the sample mean and standard deviation were computed
as 0.287 and 0.069 ppm (parts per million), respectively.3

.

3Choose TInterval or equivalent. We do not have all the data, so choose Stats on a TI or Var on a Casio. Enter
x̄ and Sx. Note: Sx is the sample standard deviation (0.069), not the SE. Let n = 15 and C-Level = 0.95. This
should give the interval (0.249, 0.325).

http://www.openintro.org/redirect.php?go=TI84_1_MEAN_CI&referrer=ahss3_pdf
http://www.openintro.org/redirect.php?go=CASIO_1_MEAN_INFERENCE&referrer=ahss3_pdf
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7.1.7 Choosing a sample size when estimating a mean

In Section 6.1.5, we looked at sample size considerations when estimating a proportion. We
take the same approach when estimating a mean. Recall that the margin of error is measured as
the distance between the point estimate and the upper or lower bound of the confidence interval.
We want to estimate a mean with a particular confidence level while putting an upper bound on the
margin of error. What is the smallest sample size that will satisfy these conditions?

For a one-sample t-interval, the margin of error, ME, is given by ME = t?× s√
n

. The challenge

in this case is that we need to know n to find t?. But n is precisely what we are attempting to
solve for! Fortunately, in most cases we will have a reasonable estimate for the population standard
deviation and the desired n will be large, so we can use ME = z? × σ√

n
, making it easier to solve

for n.

EXAMPLE 7.12

Blood pressure oscillates with the beating of the heart, and the systolic pressure is defined as the
peak pressure when a person is at rest. The standard deviation of systolic blood pressure for people
in the U.S. is about 25 mmHg (millimeters of mercury). How large of a sample is necessary to
estimate the average systolic blood pressure of people in a particular town with a margin of error
no greater than 4 mmHg using a 95% confidence level?

For this problem, we want to find the sample size n so that the margin of error, ME, is less than or
equal to 4 mmHg. We start by writing the following inequality:

z? × σ√
n
≤ 4

For a 95% confidence level, the critical value z? = 1.96. Our best estimate for the population
standard deviation is σ = 25. We substitute in these two values and we solve for n.

1.96× 25√
n
≤ 4

1.96× 25

4
≤
√
n(

1.96× 25

4

)2

≤ n

150.06 ≤ n
n = 151

The minimum sample size that meets the condition is 151. We round up because the sample size
must be an integer and it must be greater than or equal to 150.06.

IDENTIFY A SAMPLE SIZE FOR A PARTICULAR MARGIN OF ERROR

To estimate the minimum sample size required to achieve a margin of error less than or equal
to m, with C% confidence, we set up an inequality as follows:

z?
σ√
n
≤ m

z? depends on the desired confidence level and σ is the standard deviation associated with the
population. We solve for the sample size, n.

Sample size computations are helpful in planning data collection, and they require careful
forethought.
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7.1.8 Hypothesis testing for a mean

Is the typical U.S. runner getting faster or slower over time? Technological advances in shoes,
training, and diet might suggest runners would be faster. An opposing viewpoint might say that with
the average body mass index on the rise, people tend to run slower. In fact, all of these components
might be influencing run time.

We consider this question in the context of the Cherry Blossom Race, which is a 10-mile race
in Washington, DC each spring. The average time for all runners who finished the Cherry Blossom
Race in 2006 was 93.3 minutes (93 minutes and about 18 seconds). We want to determine using
data from 100 participants in the 2017 Cherry Blossom Race whether runners in this race are getting
faster or slower, versus the other possibility that there has been no change. Figure 7.8 shows run
times for 100 randomly selected participants.
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Figure 7.8: A histogram of time for the sample of 2017 Cherry Blossom Race
participants.

EXAMPLE 7.13

What are appropriate hypotheses for this context?

We know that the average run time for all runners in 2006 was 93.3 minutes. We have a sample of
times from the 2017 race. We are interested in whether the average run time has changed, so we
will use a two-sided HA.

Let µ represent the average 10-mile run time of all participants in 2017, which is unknown to us.

H0: µ = 93.3 minutes. The average run time of all participants in 2017 was 93.3 min.
HA: µ 6= 93.3 minutes. The average run time of all participants in 2017 was not 93.3 min.

The data come from a random sample from a large population, so the observations are inde-
pendent. Do we need to check for skew in the data? No – with a sample size of 100, well over 30,
the Central Limit Theorem tells us that the sampling distribution for x̄ will be nearly normal.

With independence satisfied and slight skew not a concern for this large of a sample, we can
proceed with performing a hypothesis test using the t-distribution.

The sample mean and sample standard deviation of the 100 runners from the 2017 Cherry
Blossom Race are 97.3 and 17.0 minutes, respectively. We want to know whether the observed
sample mean of 97.3 is far enough away from 93.3 to provide convincing evidence of a real difference,
or if it is within the realm of expected variation for a sample of size 100.
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To answer this question we will find the test statistic and p-value for the hypothesis test. Since
we will be using a sample standard deviation in our calculation of the test statistic, we will need to
use a t-distribution, just as we did with confidence intervals for a mean. We call the test statistic a
T -statistic. It has the same general form as a Z-statistic.

T =
point estimate − null value

SE of estimate

As we saw before, when carrying out inference on a single mean, the degrees of freedom is given
by n− 1.

THE T-STATISTIC

The T-statistic (or T-score) is analogous to a Z-statistic (or Z-score). Both represent how
many standard errors the observed value is from the null value.

EXAMPLE 7.14

Calculate the test statistic, degrees of freedom, and p-value for this test.

Here, our point estimate is the sample mean, x̄ = 97.3 minutes.

The SE of the sample mean is given by s√
n

, so the SE of estimate = 17.0√
100

= 1.7 minutes.

T =
97.3− 93.3

1.7
= 2.35 df = 100− 1 = 99

Using a calculator, we find that the area above 2.35 under the t-distribution with 99 degrees of
freedom is 0.01. Because this is a two-tailed test, we double this. So the p-value = 2× 0.01 = 0.02.

EXAMPLE 7.15

Does the data provide sufficient evidence that the average Cherry Blossom Run time in 2017 is
different than in 2006?

This depends upon the desired significance level. Since the p-value = 0.02 < 0.05, there is sufficient
evidence at the 5% significance level. However, as the p-value of 0.02 > 0.01, there is not sufficient
evidence at the 1% significance level.

EXAMPLE 7.16

Would you expect the hypothesized value of 93.3 to fall inside or outside of a 95% confidence interval?
What about a 99% confidence interval?

Because the hypothesized value of 93.3 was rejected by the two-sided α = 0.05 test, we would expect
it to be outside the 95% confidence interval. However, because the hypothesized value of 93.3 was not
rejected by the two-sided α = 0.01 test, we would expect it to fall inside the (wider) 99% confidence
interval.
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HYPOTHESIS TEST FOR A MEAN

To carry out a complete hypothesis test to test the claim that a single mean µ is equal to a
null value µ0,

Identify: Identify the hypotheses and the significance level, α.

H0: µ = µ0

HA: µ 6= µ0; HA: µ > µ0; or HA: µ < µ0

Choose: Choose the appropriate test procedure and identify it by name.

To test hypotheses about a single mean we use a 1-sample ttt-test.

Check: Check conditions for the sampling distribution for x̄ to be nearly normal.

1. Independence: Data come from a random sample or random process. When sampling

without replacement, check that sample size is less than 10% of the population size.

2. Large sample or normal population: n ≥ 30 or the population distr. is nearly normal.

- If the sample size is less than 30 and the population distribution is unknown, check

for strong skew or outliers in the data. If neither is found, then the condition that the

population is nearly normal is considered reasonable.

Calculate: Calculate the t-statistic, df , and p-value.

T = point estimate − null value
SE of estimate , df = n− 1

point estimate: the sample mean x̄

SE of estimate: s√
n

null value: µ0

p-value = (based on the t-statistic, the df , and the direction of HA)

Conclude: Compare the p-value to α, and draw a conclusion in context.

If the p-value is < α, reject H0; there is sufficient evidence that [HA in context].

If the p-value is > α, do not reject H0; there is not sufficient evidence that [HA in context].
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EXAMPLE 7.17

Recall the example involving the mercury content in croaker white fish (Pacific). Based on a sample
of size 15, a sample mean and standard deviation were computed as 0.287 and 0.069 ppm (parts per
million), respectively. Carry out an appropriate test to determine if 0.25 is a reasonable value for
the average mercury content of croaker white fish (Pacific). Use the five step method to organize
your work.

Identify: We will test the following hypotheses at the α = 0.05 significance level.
H0: µ = 0.25
HA: µ 6= 0.25 The mean mercury content is not 0.25 ppm.

Choose: Because we are hypothesizing about a single mean we choose the 1-sample t-test.

Check: The conditions were checked previously, namely – the data come from a random sample of
less than 10% of the population of all croaker white fish (Pacific), and because n is less than
30, we verified that there is no strong skew or outliers in the data, so the assumption that the
population distribution of mercury is nearly normally distributed is reasonable.

Calculate: We will calculate the t-statistic and the p-value.

T =
point estimate − null value

SE of estimate

The point estimate is the sample mean: x̄ = 0.287

The SE of the sample mean is: s√
n

= 0.069√
15

= 0.0178

The null value is the value hypothesized for the parameter in H0, which is 0.25.

For the 1-sample t-test, df = n− 1.

T =
0.287− 0.25

0.0178
= 2.07 df = 15− 1 = 14

Because HA is a two-tailed test ( 6= ), the p-value corresponds to the area to the right of
t = 2.07 plus the area to the left of t = −2.07 under the t-distribution with 14 degrees of
freedom. The p-value = 2× 0.029 = 0.058.

Conclude: The p-value of 0.058 > 0.05, so we do not reject the null hypothesis. We do not have
sufficient evidence that the average mercury content in croaker white fish (Pacific) is not 0.25.

GUIDED PRACTICE 7.18

Recall that the 95% confidence interval for the average mercury content in croaker white fish was
(0.249, 0.325). Discuss whether the conclusion of the hypothesis test in the previous example is
consistent or inconsistent with the conclusion of the confidence interval.4

4It is consistent because 0.25 is located (just barely) inside the confidence interval, so it is considered a reasonable
value. Our hypothesis test did not reject the hypothesis that µ = 0.25, also implying that it is a reasonable value.
Note that the p-value was just over the cutoff of 0.05. This is consistent with the value of 0.25 being just inside the
confidence interval. Also note that the hypothesis test did not prove that µ = 0.25. The value 0.25 is just one of
many reasonable values for the true mean.
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7.1.9 Technology: the 1-sample ttt-test

TI-83/84: 1-SAMPLE T-TEST

Use STAT, TESTS, T-Test.

1. Choose STAT.

2. Right arrow to TESTS.

3. Down arrow and choose 2:T-Test.

4. Choose Data if you have all the data or Stats if you have the mean and standard deviation.

5. Let µ0 be the null or hypothesized value of µ.

• If you choose Data, let List be L1 or the list in which you entered your data (don’t
forget to enter the data!) and let Freq be 1.

• If you choose Stats, enter the mean, SD, and sample size.

6. Choose 6=, <, or > to correspond to HA.

7. Choose Calculate and hit ENTER, which returns:
t T-statistic Sx the sample standard deviation
p p-value n the sample size
x̄ the sample mean

CASIO FX-9750GII: 1-SAMPLE T-TEST

1. Navigate to STAT (MENU button, then hit the 2 button or select STAT).

2. If necessary, enter the data into a list.

3. Choose the TEST option (F3 button).

4. Choose the t option (F2 button).

5. Choose the 1-S option (F1 button).

6. Choose either the Var option (F2) or enter the data in using the List option.

7. Specify the test details:

• Specify the sidedness of the test using the F1, F2, and F3 keys.

• Enter the null value, µ0.

• If using the Var option, enter the summary statistics. If using List, specify the list
and leave Freq values at 1.

8. Hit the EXE button, which returns

alternative hypothesis x̄ sample mean
t T-statistic sx sample standard deviation
p p-value n sample size

GUIDED PRACTICE 7.19

The average time for all runners who finished the Cherry Blossom Run in 2006 was 93.3 minutes. In
2017, the average time for 100 randomly selected participants was 97.3, with a standard deviation
of 17.0 minutes. Use a calculator to find the T -statistic and p-value for the appropriate test to see
if the average time for the participants in 2017 is different than it was in 2006.5

5Choose T-Test or equivalent. Let µ0 be 93.3. x̄ is 97.3, Sx is 17.0, and n = 100. Choose 6= to correspond to HA.
We get t = 2.353 and the p-value p = 0.021.

http://www.openintro.org/redirect.php?go=TI84_1_MEAN_HT&referrer=ahss3_pdf
http://www.openintro.org/redirect.php?go=CASIO_1_MEAN_INFERENCE&referrer=ahss3_pdf
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Section summary

• The t-distribution.

– When calculating a test statistic for a mean, using the sample standard deviation in
place of the population standard deviation gives rise to a new distribution called the
t-distribution.

– As the sample size and degrees of freedom increase, s becomes a more stable estimate of
σ, and the corresponding t-distribution has smaller spread.

– As the degrees of freedom go to∞, the t-distribution approaches the normal distribution.
This is why we can use the t-table at df =∞ to find the value of z?.

• When carrying out inference for a single mean, we use the t-distribution with n− 1 degrees of
freedom.

• When there is one sample and the parameter of interest is a single mean:

– Estimate µ at the C% confidence level using a 1-sample ttt-interval.

– Test H0: µ = µ0 at the α significance level using a 1-sample ttt-test.

• The one-sample t-interval and t-test require that the sampling distribution for x̄ be nearly
normal. For this reason we must check that the following conditions are met.

1. Independence: The data come from a random sample or random process. When sampling
without replacement, check that the sample size is less than 10% of the population size.

2. Large sample or normal population: n ≥ 30 or population distribution is nearly normal.
- If the sample size is less than 30 and the population distribution is unknown, check
for strong skew or outliers in the data. If neither is found, then the condition that the
population distribution is nearly normal is considered reasonable.

• When the conditions are met, we calculate the confidence interval and the test statistic as we
did in the previous chapter, except that we use t? for the critical value and we use T for the
test statistic.

Confidence interval: point estimate ± t? × SE of estimate

Test statistic: T = point estimate − null value
SE of estimate

Here the point estimate is the sample mean: x̄.

The SE of estimate is the SE of the sample mean: s√
n

.

The degrees of freedom is given by df = n− 1.

• To calculate the minimum sample size required to estimate a mean with C% confidence and a
margin of error no greater than m, we set up an inequality as follows:

z?
σ√
n
≤ m

z? depends on the desired confidence level and σ is the standard deviation associated with the
population. We solve for the sample size, n. Always round the answer up to the next integer,
since n refers to a number of people or things.
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Exercises

7.1 Identify the critical ttt. A random sample is selected from an approximately normal population
with unknown standard deviation. Find the degrees of freedom and the critical t-value (t?) for the given
sample size and confidence level.

(a) n = 6, CL = 90%

(b) n = 21, CL = 98%

(c) n = 29, CL = 95%

(d) n = 12, CL = 99%

7.2 ttt-distribution. The figure on the right shows three unimodal and symmetric curves: the standard
normal (z) distribution, the t-distribution with 5 degrees of freedom, and the t-distribution with 1 degree of
freedom. Determine which is which, and explain your reasoning.

−4 −2 0 2 4

solid
dashed
dotted

7.3 Find the p-value, Part I. A random sample is selected from an approximately normal population with
an unknown standard deviation. Find the p-value for the given sample size and test statistic. Also determine
if the null hypothesis would be rejected at α = 0.05.

(a) n = 11, T = 1.91

(b) n = 17, T = −3.45

(c) n = 7, T = 0.83

(d) n = 28, T = 2.13

7.4 Find the p-value, Part II. A random sample is selected from an approximately normal population with
an unknown standard deviation. Find the p-value for the given sample size and test statistic. Also determine
if the null hypothesis would be rejected at α = 0.01.

(a) n = 26, T = 2.485

(b) n = 18, T = 0.5

7.5 Working backwards, Part I. A 95% confidence interval for a population mean, µ, is given as (18.985,
21.015). This confidence interval is based on a simple random sample of 36 observations. Calculate the
sample mean and standard deviation. Assume that all conditions necessary for inference are satisfied. Use
the t-distribution in any calculations.

7.6 Working backwards, Part II. A 90% confidence interval for a population mean is (65, 77). The
population distribution is approximately normal and the population standard deviation is unknown. This
confidence interval is based on a simple random sample of 25 observations. Calculate the sample mean, the
margin of error, and the sample standard deviation.

http://www.openintro.org/redirect.php?go=ahss_eoce_sol-identify_critical_t&referrer=ahss3_pdf
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7.7 Sleep habits of New Yorkers. New York is known as “the city that never sleeps”. A random sample
of 25 New Yorkers were asked how much sleep they get per night. Statistical summaries of these data are
shown below. The point estimate suggests New Yorkers sleep less than 8 hours a night on average. Evaluate
the claim that New York is the city that never sleeps keeping in mind that, despite this claim, the true
average number of hours New Yorkers sleep could be less than 8 hours or more than 8 hours.

n x̄ s min max

25 7.73 0.77 6.17 9.78

(a) Write the hypotheses in symbols and in words.

(b) Check conditions, then calculate the test statistic, T , and the associated degrees of freedom.

(c) Find and interpret the p-value in this context. Drawing a picture may be helpful.

(d) What is the conclusion of the hypothesis test?

(e) If you were to construct a 90% confidence interval that corresponded to this hypothesis test, would you
expect 8 hours to be in the interval?

7.8 Heights of adults. Researchers studying anthropometry collected body girth measurements and skele-
tal diameter measurements, as well as age, weight, height and gender, for 507 physically active individuals.
The histogram below shows the sample distribution of heights in centimeters.6
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Median 170.3
Mean 171.1
SD 9.4
Q3 177.8
Max 198.1

(a) What is the point estimate for the average height of active individuals? What about the median?

(b) What is the point estimate for the standard deviation of the heights of active individuals? What about
the IQR?

(c) Is a person who is 1m 80cm (180 cm) tall considered unusually tall? And is a person who is 1m 55cm
(155cm) considered unusually short? Explain your reasoning.

(d) The researchers take another random sample of physically active individuals. Would you expect the mean
and the standard deviation of this new sample to be the ones given above? Explain your reasoning.

(e) The sample means obtained are point estimates for the mean height of all active individuals, if the
sample of individuals is equivalent to a simple random sample. What measure do we use to quantify the
variability of such an estimate? Compute this quantity using the data from the original sample under
the condition that the data are a simple random sample.

6G. Heinz et al. “Exploring relationships in body dimensions”. In: Journal of Statistics Education 11.2 (2003).

http://www.openintro.org/redirect.php?go=textbook-body_dim_2003&referrer=ahss3_pdf
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7.9 Find the mean. You are given the following hypotheses:

H0 : µ = 60

HA : µ 6= 60

We know that the sample standard deviation is 8 and the sample size is 20. For what sample mean would
the p-value be equal to 0.05? Assume that all conditions necessary for inference are satisfied.

7.10 t?t?t? vs. z?z?z?. For a given confidence level, t?df is larger than z?. Explain how t∗df being slightly larger
than z∗ affects the width of the confidence interval.

7.11 Play the piano. Georgianna claims that in a small city renowned for its music school, the average
child takes less than 5 years of piano lessons. We have a random sample of 20 children from the city, with a
mean of 4.6 years of piano lessons and a standard deviation of 2.2 years.

(a) Evaluate Georgianna’s claim using a hypothesis test and include all steps of the Identify, Choose, Check,
Calculate, Conclude framework.

(b) Construct a 95% confidence interval for the number of years students in this city take piano lessons and
include all steps of the Identify, Choose, Check, Calculate, Conclude framework.

(c) Do your results from the hypothesis test and the confidence interval agree? Explain your reasoning.

7.12 Auto exhaust and lead exposure. Researchers interested in lead exposure due to car exhaust sampled
the blood of 52 police officers subjected to constant inhalation of automobile exhaust fumes while working
traffic enforcement in a primarily urban environment. The blood samples of these officers had an average
lead concentration of 124.32 µg/l and a SD of 37.74 µg/l; a previous study of individuals from a nearby
suburb, with no history of exposure, found an average blood level concentration of 35 µg/l.7

(a) Write down the hypotheses that would be appropriate for testing if the police officers appear to have
been exposed to a different concentration of lead.

(b) Explicitly state and check all conditions necessary for inference on these data.

(c) Regardless of your answers in part (b), test the hypothesis that the downtown police officers have a
higher lead exposure than the group in the previous study. Interpret your results in context.

7.13 Car insurance savings. A market researcher wants to evaluate car insurance savings at a
competing company. Based on past studies he is assuming that the standard deviation of savings is $100.
He wants to collect data such that he can get a margin of error of no more than $10 at a 95% confidence
level. How large of a sample should he collect?

7.14 SAT scores. The standard deviation of SAT scores for students at a particular Ivy League college is
250 points. Two statistics students, Raina and Luke, want to estimate the average SAT score of students at
this college as part of a class project. They want their margin of error to be no more than 25 points.

(a) Raina wants to use a 90% confidence interval. How large a sample should she collect?

(b) Luke wants to use a 99% confidence interval. Without calculating the actual sample size, determine
whether his sample should be larger or smaller than Raina’s, and explain your reasoning.

(c) Calculate the minimum required sample size for Luke.

7WI Mortada et al. “Study of lead exposure from automobile exhaust as a risk for nephrotoxicity among traffic
policemen.” In: American journal of nephrology 21.4 (2000), pp. 274–279.

http://www.openintro.org/redirect.php?go=ahss_eoce_sol-play_piano&referrer=ahss3_pdf
http://www.openintro.org/redirect.php?go=ahss_eoce_sol-car_insurance_savings&referrer=ahss3_pdf
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7.2 Inference with paired data

When we have two observations on each person or each case, we can answer questions such as the

following:

• Do students do better on reading or writing sections of standardized tests?

• How do the number of days with temperature above 90°F compare between 1948 and 2018?

• Are Amazon textbook prices lower than the college bookstore prices? If so, how much lower,

on average?

Learning objectives

1. Distinguish between paired and unpaired data.

2. Recognize that inference procedures with paired data use the same one-sample t-procedures

as in the previous section, and that these procedures are applied using the differences of the

paired observations.

3. Carry out a complete hypothesis test with paired data.

4. Carry out a complete confidence interval procedure with paired data.

7.2.1 Paired observations and samples

In the previous edition of this textbook, we found that Amazon prices were, on average, lower than
those of the UCLA Bookstore for UCLA courses in 2010. It’s been several years, and many stores
have adapted to the online market, so we wondered, how is the UCLA Bookstore doing today?

We sampled 201 UCLA courses. Of those, 68 required books that could be found on Amazon.
A portion of the data set from these courses is shown in Figure 7.9, where prices are in U.S. dollars.

subject course number bookstore amazon price difference
1 American Indian Studies M10 47.97 47.45 0.52
2 Anthropology 2 14.26 13.55 0.71
3 Arts and Architecture 10 13.50 12.53 0.97
...

...
...

...
...

...
67 Korean 1 24.96 23.79 1.17
68 Jewish Studies M10 35.96 32.40 3.56

Figure 7.9: Five cases of the textbooks data set.

Each textbook has two corresponding prices in the data set: one for the UCLA Bookstore
and one for Amazon. Therefore, each textbook price from the UCLA bookstore has a natural
correspondence with a textbook price from Amazon. When two sets of observations have this
special correspondence, they are said to be paired.

PAIRED DATA

Two sets of observations are paired if each observation in one set has a special correspondence
or connection with exactly one observation in the other data set.
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UCLA Bookstore Price − Amazon Price (USD)
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Figure 7.10: Histogram of the difference in price for each book sampled. These
data are very strongly skewed. Explore this data set on Tableau Public .

To analyze paired data, it is often useful to look at the difference in outcomes of each pair of
observations. In the textbook data set, we look at the differences in prices, which is represented as
the diff variable. Here, for each book, the differences are taken as

UCLA Bookstore price−Amazon price

It is important that we always subtract using a consistent order; here Amazon prices are
always subtracted from UCLA prices. A histogram of these differences is shown in Figure 7.10.
Using differences between paired observations is a common and useful way to analyze paired data.

GUIDED PRACTICE 7.20

The first difference shown in Figure 7.9 is computed as: 47.97 − 47.45 = 0.52. What does this
difference tell us about the price for this textbook on Amazon versus the UCLA bookstore?8

7.2.2 Hypothesis tests for a mean of differences

To analyze a paired data set, we simply analyze the differences. We can use the same t-
distribution techniques we applied in the last section.

n
diff

x̄
diff

s
diff

68 3.58 13.42

Figure 7.11: Summary statistics for the price differences. There were 68 books, so
there are 68 differences.

8The difference is taken as UCLA Bookstore price − Amazon price. Because the difference is positive, it tells us
that the UCLA Bookstore price was greater for this textbook. In fact, it was $0.52, or 52 cents, more expensive at
the UCLA bookstore than on Amazon.

http://www.openintro.org/redirect.php?go=tableau-hist-textbookdiff-summ&referrer=ahss3_pdf
http://www.openintro.org/redirect.php?go=tableau-hist-textbookdiff-summ&referrer=ahss3_pdf
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We will set up and implement a hypothesis test to determine whether, on average, there is a
difference in textbook prices between Amazon and the UCLA bookstore. We are considering two
scenarios: there is no difference in prices or there is some difference in prices.

H0: µdiff = 0. On average, there is no difference in textbook prices.

HA: µdiff 6= 0. On average, there is some difference in textbook prices.

Can the t-distribution be used for this application? The observations are based on a random
sample from a large population, so independence is reasonable. While the distribution of the data is
very strongly skewed, we do have n = 68 observations. This sample size is large enough that we do
not have to worry about whether the population distribution for difference in price might be nearly
normal or not. Because the conditions are satisfied, we can use the t-distribution to this setting.

We compute the standard error associated with x̄diff using the standard deviation of the dif-
ferences (s

diff
= 13.42) and the number of differences (n

diff
= 68):

SEx̄diff
=

sdiff√
ndiff

=
13.42√

68
= 1.63

Next we compute the test statistic. The point estimate is the observed value of x̄diff . The null
value is the value hypothesized under the null hypothesis. Here, the null hypothesis is that the true
mean of the differences is 0.

T =
point estimate− null value

SE of estimate
=

3.58− 0

1.63
= 2.20

The degrees of freedom are df = 68− 1 = 67. To visualize the p-value, the sampling distribution for
x̄diff is drawn as though H0 is true. This is shown in Figure 7.12. Because this is a two-sided test,
the p-value corresponds to the area in both tails. Using statistical software, we find the area in the
tails to be 0.0312.

Because the p-value of 0.0312 is less than 0.05, we reject the null hypothesis. We have evidence
that, on average, there is a difference in textbook prices. In particular, we can say that, on average,
Amazon prices are lower than the UCLA Bookstore prices for UCLA course textbooks.

µ0 = 0 xdiff = 3.58

Figure 7.12: Sampling distribution for the mean difference in book prices, if the
true average difference is zero.

EXAMPLE 7.21

We have evidence to conclude Amazon is, on average, less expensive. Does this mean that UCLA
students should always buy their books on Amazon?

No. The fact that Amazon is, on average, less expensive, does not imply that it is less expensive for
every textbook. Examining the distribution shown in Figure 7.10, we see that there are certainly a
handful of cases where Amazon prices are much lower than the UCLA Bookstore’s, which suggests
it is worth checking Amazon or other online sites before purchasing. However, in many cases the
Amazon price is above what the UCLA Bookstore charges, and most of the time the price isn’t that
different.

For reference, this is a very different result from what we (the authors) had seen in a similar
data set from 2010. At that time, Amazon prices were almost uniformly lower than those of the
UCLA Bookstore’s and by a large margin, making the case to use Amazon over the UCLA Bookstore
quite compelling at that time.
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HYPOTHESIS TEST FOR A MEAN OF DIFFERENCES

To carry out a complete hypothesis test to test the claim that a mean of differences µdiff is
equal to 0,

Identify: Identify the hypotheses and the significance level, α.

H0: µdiff = 0

HA: µdiff 6= 0; HA: µdiff > 0; or HA: µdiff < 0

Choose: Choose the appropriate test procedure and identify it by name.

To test hypotheses about a mean of differences we use a 1-sample ttt-test with paired
data.

Check: Check conditions for the sampling distribution for x̄diff to be nearly normal.

1. Independence: Data come from one random sample (with paired data) or from a

randomized matched pairs experiment. When sampling without replacement, check

that the sample size is less than 10% of the population size.

2. Large sample or normal population: ndiff ≥ 30 or population of diffs is nearly normal.

- If the number of differences is less than 30 and the distribution of the population

of differences is unknown, check for strong skew or outliers in the sample differences.

If neither is found, then the condition that the population of differences is nearly normal

is considered reasonable.

Calculate: Calculate the t-statistic, df , and p-value.

T = point estimate − null value
SE of estimate , df = ndiff − 1

point estimate: the sample mean of differences x̄diff

SE of estimate:
sdiff√
ndiff

null value: 0

p-value = (based on the t-statistic, the df , and the direction of HA)

Conclude: Compare the p-value to α, and draw a conclusion in context.

If the p-value is < α, reject H0; there is sufficient evidence that [HA in context].

If the p-value is > α, do not reject H0; there is not sufficient evidence that [HA in context].
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EXAMPLE 7.22

An SAT preparation company claims that its students’ scores improve by over 100 points on average
after their course. A consumer group would like to evaluate this claim, and they collect data on
a random sample of 30 students who took the class. Each of these students took the SAT before
and after taking the company’s course, so we have a difference in scores for each student. We will
examine these differences x1 = 57, x2 = 133, ..., x30 = 140. The distribution of the differences has
a mean of 135.9, a standard deviation of 82.2, and is shown below. Do the data provide convincing
evidence to back up the company’s claim? Use the five step framework to organize your work.

Differences

−100 0 100 200 300
0

5

10

Identify: We will test the following hypotheses at the α = 0.05 level:
H0: µdiff = 100. Student scores improve by 100 points, on average.
HA: µdiff > 100. Student scores improve by more than 100 points, on average.

Here, diff = SAT score after course - SAT score before course.

Choose: Because we have paired data and the parameter to be estimated is a mean of differences,
we will use a 1-sample t-test with paired data.

Check: We have a random sample of students and have paired data on them. We will assume
that this sample of size 30 represents less than 10% of the total population of such students.
Finally, the number of differences is ndiff = 30 ≥ 30, so we can proceed with the 1-sample
t-test.

Calculate: We will calculate the test statistic, df , and p-value.

T =
point estimate − null value

SE of estimate

The point estimate is the sample mean of differences: x̄diff = 135.9

The SE of the sample mean of differences is:
sdiff√
ndiff

= 82.2√
30

= 15.0

Because this is a one-sample t-test, the degrees of freedom is ndiff − 1.

T =
135.9− 100

82.2√
30

=
135.9− 100

15.0
= 2.4 df = 30− 1 = 29

The p-value is the area to the right of 2.4 under the t-distribution with 29 degrees of freedom.
The p-value = 0.012.

Conclude: p-value = 0.012 < α so we reject the null hypothesis. The data provide convincing
evidence to support the company’s claim that students’ scores improve by more than 100
points, on average, following the class.

GUIDED PRACTICE 7.23

Because we found evidence to support the company’s claim, does this mean that a student will score
more than 100 points higher on the SAT if they take the class than if they do not take the class?9

9No. First, this is an observational study, so we cannot make a causal conclusion. Maybe SAT test takers tend to
improve their score over time even if they don’t take this SAT class. Second, the test considers the average. It does
not imply that each student improved. With a sample standard deviation of 82.2 and a mean of 135.9, some students
did worse after the SAT class, as shown in the histogram in Example 7.22.
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7.2.3 Technology: the 1-sample ttt-test with paired data

When carrying out a 1-sample t-test with paired data, make sure to use the sample differences
or the summary statistics for the differences.

TI-83/84: 1-SAMPLE T-TEST WITH PAIRED DATA

Use STAT, TESTS, T-Test.

1. Choose STAT.

2. Right arrow to TESTS.

3. Down arrow and choose 2:T-Test.

4. Choose Data if you have all the data or Stats if you have the mean and standard deviation.

5. Let µ0 be the null or hypothesized value of µdiff .

• If you choose Data, let List be L3 or the list in which you entered the differences,
and let Freq be 1.

• If you choose Stats, enter the mean, SD, and sample size of the differences.

6. Choose 6=, <, or > to correspond to HA.

7. Choose Calculate and hit ENTER, which returns:
t T-statistic
p p-value
x̄ the sample mean of the differences
Sx the sample SD of the differences
n the sample size of the differences

CASIO FX-9750GII: 1-SAMPLE T-TEST WITH PAIRED DATA

1. Compute the differences of the paired observations.

2. Using the computed differences, follow the instructions for a 1-sample t-test.

7.2.4 Confidence intervals for the mean of a difference

In the previous examples, we carried out a 1-sample t-test with paired data, where the null
hypothesis was that the true mean of differences is zero. Sometimes we want to estimate the true
mean of differences with a confidence interval, and we use a 1-sample t-interval with paired data.
Consider again the table summarizing data on: UCLA Bookstore price − Amazon price, for each of
the 68 books sampled.

n
diff

x̄
diff

s
diff

68 3.58 13.42

Figure 7.13: Summary statistics for the price differences. There were 68 books, so
there are 68 differences.

We construct a 95% confidence interval for the average price difference between books at the
UCLA Bookstore and on Amazon. Conditions have already verified, namely, that we have paired
data from a random sample and that the number of differences is at least 30. We must find the
critical value, t?. Since df = 67 is not on the t-table, round the df down to 60 to get a t? of 2.00
for 95% confidence. (See Section 7.2.5 for how to get a more precise interval using a calculator.)
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Plugging the t? value, point estimate, and standard error into the confidence interval formula, we get:

point estimate ± t? × SE of estimate → 3.58 ± 2.00× 13.42√
68

→ (0.33, 6.83)

We are 95% confident that the UCLA bookstore is, on average, between $0.33 and $6.83 more
expensive than Amazon for UCLA course books. This interval does not contain zero, so it is
consistent with the earlier hypothesis test that rejected the null hypothesis that the average difference
was 0. Because our interval is entirely above 0, we have evidence that the true average difference is
greater than zero. Unlike the hypothesis test, the confidence interval gives us a good idea of how
much more expensive the UCLA bookstore might be, on average.

EXAMPLE 7.24

Based on the interval, can we say that 95% of the books cost between $0.33 and $6.83 more at the
UCLA Bookstore than on Amazon?

No. This interval is attempting to estimate the average difference with 95% confidence. It is not
attempting to capture 95% of the values. A quick look at Figure 7.10 shows that much less than
95% of the differences fall between $0.32 and $6.84.

CONSTRUCTING A CONFIDENCE INTERVAL FOR A MEAN OF DIFFERENCES

To carry out a complete confidence interval procedure to estimate a mean of differences µdiff ,

Identify: Identify the parameter and the confidence level, C%.

The parameter will be a mean of differences, e.g. the true mean of the differences in
county population (year 2018 − year 2017).

Choose: Choose the appropriate interval procedure and identify it by name.

To estimate a mean of differences we use a 1-sample ttt-interval with paired data.

Check: Check conditions for the sampling distribution for x̄diff to be nearly normal.

1. Independence: Data come from one random sample (with paired data) or from a

randomized matched pairs experiment. When sampling without replacement, check

that the sample size is less than 10% of the population size.

2. Large sample or normal population: ndiff ≥ 30 or population of diffs is nearly normal.

- If the number of differences is less than 30 and the distribution of the population

of differences is unknown, check for strong skew or outliers in the sample differences.

If neither is found, then the condition that the population of differences is nearly normal

is considered reasonable.

Calculate: Calculate the confidence interval and record it in interval form.

point estimate ± t? × SE of estimate, df : ndiff − 1

point estimate: the sample mean of differences x̄diff

SE of estimate:
sdiff√
n

diff

t?: use a t-table at row df = n
diff
− 1 and confidence level C%

( , )

Conclude: Interpret the interval and, if applicable, draw a conclusion in context.

We are C% confident that the true mean of the differences in [...] is between and
. If applicable, draw a conclusion based on whether the interval is entirely above, is

entirely below, or contains the value 0.
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EXAMPLE 7.25

An SAT preparation company claims that its students’ scores improve by over 100 points on average
after their course. A consumer group would like to evaluate this claim, and they collect data on
a random sample of 30 students who took the class. Each of these students took the SAT before
and after taking the company’s course, so we have a difference in scores for each student. We will
examine these differences x1 = 57, x2 = 133, ..., x30 = 140 as a sample to evaluate the company’s
claim. The distribution of the differences, shown in Figure 7.14, has a mean of 135.9 and a standard
deviation of 82.2. Construct a confidence interval to estimate the true average increase in SAT after
taking the company’s course. Is there evidence at the 95% confidence level that students score an
average of more than 100 points higher after the class? Use the five step framework to organize your
work.

Identify: The parameter we want to estimate is µdiff , the true change in SAT score after taking
the company’s course. Here, diff = SAT score after course− SAT score before course. We
will estimate this parameter at the 95% confidence level.

Choose: Because we have paired data and the parameter to be estimated is a mean of differences,
we will use a 1-sample t-interval with paired data.

Check: We have a random sample of students with paired observations on them. We will assume
that these 30 students represent less than 10% of the total number of such students. Finally,
the number of differences is ndiff = 30 ≥ 30, so we can proceed with the 1-sample t-interval.

Calculate: We will calculate the confidence interval as follows.

point estimate ± t? × SE of estimate

The point estimate is the sample mean of differences: x̄diff = 135.9

The SE of the sample mean of differences is:
sdiff√
ndiff

= 82.2√
30

= 15.0

We find t? for the one-sample case using the t-table at row df = n − 1 and confidence level
C%. For a 95% confidence level and df = 30− 1 = 29, t? = 2.045.

The 95% confidence interval is given by:

135.9 ± 2.045× 82.2√
30

df = 29

135.9 ± 2.045× 15.0

= (105.2, 166.6)

Conclude: We are 95% confident that the true average increase in SAT score following the com-
pany’s course is between 105.2 points to 166.6 points. There is sufficient evidence that students
score greater than 100 points higher, on average, after the company’s course because the entire
interval is above 100.

GUIDED PRACTICE 7.26

Based on the interval (105.2, 166.6), calculated previously, can we say that 95% of student scores
increased between 105.2 and 166.6 points after taking the company’s course?10

10No. This interval is attempting to capture the average increase. It is not attempting to capture 95% of the
increases. Looking at Figure 7.14, we see that only a small percent had increases between 105.2 and 166.6.
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Differences
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Figure 7.14: SAT score after course minus the SAT score before course.

7.2.5 Technology: the 1-sample ttt-interval with paired data

When carrying out a 1-sample t-interval with paired data, make sure to use the sample differ-
ences or the summary statistics for the differences.

TI-83/84: 1-SAMPLE T-INTERVAL WITH PAIRED DATA

Use STAT, TESTS, TInterval.

1. Choose STAT.

2. Right arrow to TESTS.

3. Down arrow and choose 8:TInterval.

4. Choose Data if you have all the data or Stats if you have the mean and standard deviation.

• If you choose Data, let List be L3 or the list in which you entered the differences
(don’t forget to enter the differences!) and let Freq be 1.

• If you choose Stats, enter the mean, SD, and sample size of the differences.

5. Let C-Level be the desired confidence level.

6. Choose Calculate and hit ENTER, which returns:

( , ) the confidence interval for the mean of the differences
x̄ the sample mean of the differences
Sx the sample SD of the differences
n the number of differences in the sample

CASIO FX-9750GII: 1-SAMPLE T-INTERVAL WITH PAIRED DATA

1. Compute the differences of the paired observations.

2. Using the computed differences, follow the instructions for a 1-sample t-interval.

GUIDED PRACTICE 7.27

In our UCLA textbook example, we had 68 differences of paired observations. Because df = 67
was not on our t-table, we rounded the df down to 60. This gave us a 95% confidence interval
(0.325, 6.834). Use a calculator to find the more exact 95% confidence interval based on 67 degrees
of freedom. How different is it from the one we calculated based on 60 degrees of freedom?11

n
diff

x̄
diff

s
diff

68 3.58 13.42

11Choose TInterval or equivalent. We do not have all the data, so choose Stats on a TI or Var on a Casio. Enter
x̄ = 3.58 and Sx = 13.42. Let n = 68 and C-Level = 0.95. This should give the interval (0.332, 6.828). The intervals
are equivalent when rounded to two decimal places.
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Section summary

• Paired data can come from a random sample or a matched pairs experiment. With paired data,
we are often interested in whether the difference is positive, negative, or zero. For example,
the difference of paired data from a matched pairs experiment tells us whether one treatment
did better, worse, or the same as the other treatment for each subject.

• We use the notation x̄diff to represent the mean of the sample differences. Likewise, sdiff is
the standard deviation of the sample differences, and ndiff is the number of sample differences.

• To carry out inference with paired data, we first find all of the sample differences. Then, we
perform a one-sample procedure using the differences. For this reason, the confidence interval
and hypothesis test with paired data use the one-sample t-procedures, where the degrees of
freedom is given by ndiff − 1.

• When there is paired data and the parameter of interest is a mean of differences:

– Estimate µdiff at the C% confidence level using a 1-sample ttt-interval with paired data.

– Test H0: µdiff = 0 at the α significance level using a 1-sample ttt-test with paired data.

• The one-sample t-interval and t-test with paired data require the sampling distribution for
x̄diff to be nearly normal. For this reason, we must check that the following conditions are
met.

1. Independence: Data should come from one random sample (with paired observations) or
from a randomized matched pairs experiment. If sampling without replacement, check
that the sample size is less than 10% of the population size.

2. Large sample or normal population: ndiff ≥ 30 or population of differences nearly normal.
- If the number of differences is less than 30 and it is not known that the population of
differences is nearly normal, we argue that the population of differences could be nearly
normal if there is no strong skew or outliers in the sample differences.

• When the conditions are met, we calculate the confidence interval and the test statistic as we
did in the previous section. Here, our data is a list of differences.

Confidence interval: point estimate ± t? × SE of estimate

Test statistic: T = point estimate − null value
SE of estimate

Here the point estimate is the mean of sample differences: x̄diff .

The SE of estimate is the SE of a mean of sample differences:
sdiff√
ndiff

.

The degrees of freedom is given by df = ndiff − 1.
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Exercises

7.15 Air quality. Air quality measurements were collected in a random sample of 25 country capitals in
2013, and then again in the same cities in 2014. We would like to use these data to compare average air
quality between the two years. Should we use a paired or non-paired test? Explain your reasoning.

7.16 True / False: paired. Determine if the following statements are true or false. If false, explain.

(a) In a paired analysis we first take the difference of each pair of observations, and then we do inference
on these differences.

(b) Two data sets of different sizes cannot be analyzed as paired data.

(c) Consider two sets of data that are paired with each other. Each observation in one data set has a natural
correspondence with exactly one observation from the other data set.

(d) Consider two sets of data that are paired with each other. Each observation in one data set is subtracted
from the average of the other data set’s observations.

7.17 Paired or not? Part I. In each of the following scenarios, determine if the data are paired.

(a) Compare pre- (beginning of semester) and post-test (end of semester) scores of students.

(b) Assess gender-related salary gap by comparing salaries of randomly sampled men and women.

(c) Compare artery thicknesses at the beginning of a study and after 2 years of taking Vitamin E for the
same group of patients.

(d) Assess effectiveness of a diet regimen by comparing the before and after weights of subjects.

7.18 Paired or not? Part II. In each of the following scenarios, determine if the data are paired.

(a) We would like to know if Intel’s stock and Southwest Airlines’ stock have similar rates of return. To find
out, we take a random sample of 50 days, and record Intel’s and Southwest’s stock on those same days.

(b) We randomly sample 50 items from Target stores and note the price for each. Then we visit Walmart
and collect the price for each of those same 50 items.

(c) A school board would like to determine whether there is a difference in average SAT scores for students
at one high school versus another high school in the district. To check, they take a simple random
sample of 100 students from each high school.

7.19 Global warming, Part I. Let’s consider a limited set of climate data, examining temperature differences
in 1948 vs 2018. We sampled 197 locations from the National Oceanic and Atmospheric Administration’s
(NOAA) historical data, where the data was available for both years of interest. We want to know: were
there more days with temperatures exceeding 90°F in 2018 or in 1948?12 The difference in number of days
exceeding 90°F (number of days in 2018 - number of days in 1948) was calculated for each of the 197 locations.
The average of these differences was 2.9 days with a standard deviation of 17.2 days. We are interested in
determining whether these data provide strong evidence that there were more days in 2018 that exceeded
90°F from NOAA’s weather stations.

(a) Is there a relationship between the observations collected in 1948
and 2018? Or are the observations in the two groups independent?
Explain.

(b) Write hypotheses for this research in symbols and in words.

(c) Check the conditions required to complete this test. A histogram
of the differences is given to the right.

(d) Calculate the test statistic and find the p-value.

(e) Use α = 0.05 to evaluate the test, and interpret your conclusion
in context.

(f) What type of error might we have made? Explain in context what
the error means.

(g) Based on the results of this hypothesis test, would you expect a
confidence interval for the average difference between the number
of days exceeding 90°F from 1948 and 2018 to include 0? Explain
your reasoning.

Differences in Number of Days
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12NOAA, www.ncdc.noaa.gov/cdo-web/datasets, April 24, 2019.

http://www.openintro.org/redirect.php?go=textbook-noaa_1948_2018&referrer=ahss3_pdf
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7.20 High School and Beyond, Part I. The National Center of Education Statistics conducted a survey of
high school seniors, collecting test data on reading, writing, and several other subjects. Here we examine a
simple random sample of 200 students from this survey. Side-by-side box plots of reading and writing scores
as well as a histogram of the differences in scores are shown below.
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(a) Is there a clear difference in the average reading and writing scores?

(b) Are the reading and writing scores of each student independent of each other?

(c) Create hypotheses appropriate for the following research question: is there an evident difference in the
average scores of students in the reading and writing exam?

(d) Check the conditions required to complete this test.

(e) The average observed difference in scores is x̄read−write = −0.545, and the standard deviation of the
differences is 8.887 points. Do these data provide convincing evidence of a difference between the average
scores on the two exams?

(f) What type of error might we have made? Explain what the error means in the context of the application.

(g) Based on the results of this hypothesis test, would you expect a confidence interval for the average
difference between the reading and writing scores to include 0? Explain your reasoning.

7.21 Global warming, Part II. We considered the change in the number of days exceeding 90°F from 1948
and 2018 at 197 randomly sampled locations from the NOAA database in Exercise 7.19. The mean and
standard deviation of the reported differences are 2.9 days and 17.2 days. Calculate a 90% confidence
interval for the average difference between number of days exceeding 90°F between 1948 and 2018. Does the
confidence interval provide convincing evidence that there were more days exceeding 90°F in 2018 than in
1948 at NOAA stations? Include all steps of the Identify, Choose, Check, Calculate, Conclude framework.

7.22 High school and beyond, Part II. We considered the differences between the reading and writing
scores of a random sample of 200 students who took the High School and Beyond Survey in Exercise 7.20.
The mean and standard deviation of the differences are x̄read−write = −0.545 and 8.887 points.

(a) Calculate a 95% confidence interval for the average difference between the reading and writing scores of
all students.

(b) Interpret this interval in context.

(c) Does the confidence interval provide convincing evidence that there is a real difference in the average
scores? Explain.
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7.3 Inference for the difference of two means

Often times we wish to compare two groups to each other to answer questions such as the following:

• Does treatment using embryonic stem cells (ESCs) help improve heart function following a

heart attack?

• Is there convincing evidence that newborns from mothers who smoke have a different average

birth weight than newborns from mothers who don’t smoke?

• Is there statistically significant evidence that one variation of an exam is harder than another

variation?

• Are faculty willing to pay someone named “John” more than someone named “Jennifer”? If

so, how much more?

Learning objectives

1. Determine when it is appropriate to use a one-sample t-procedure versus a two-sample t-

procedure.

2. State and verify whether or not the conditions for inference on the difference of two means

using the t-distribution are met.

3. Be able to use a calculator or other software to find the degrees of freedom associated with a

two-sample t-procedure.

4. Carry out a complete confidence interval procedure for the difference of two means.

5. Carry out a complete hypothesis test for the difference of two means.
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7.3.1 Sampling distribution for the difference of two means (review)

In this section we are interested in comparing the means of two independent groups. We want
to estimate how far apart µ1 and µ2 are and test whether their difference is zero or not. Before
we perform inference for the difference of means, let’s review the sampling distribution for x̄1 − x̄2,
which will be used as the point estimate for µ1 − µ2. We know from Section 4.3 that when the
independence condition is satisfied, the sampling distribution for x̄1− x̄2 is centered on µ1−µ2 and
has standard deviation of

σx̄1−x̄2 =

√
σ2

1

n1
+
σ2

2

n2

When the individual population standard deviations are unknown, we estimate the standard devi-
ation of x̄1 − x̄2 using the Standard Error, abbreviated SE, by plugging in the sample standard
deviations as our best guesses of the population standard deviations:

SEx̄1−x̄2
=

√
s2

1

n1
+
s2

2

n2

The difference of two sample means x̄1 − x̄2 follows a nearly normal distribution when certain
conditions are met. First, the sampling distribution for each sample mean must be nearly normal,
and second, the observations must be independent, both within and between groups. Under these
two conditions, the sampling distribution for x̄1 − x̄2 may be well approximated using the normal
model.

7.3.2 Checking conditions for inference on a difference of means

When comparing two means, we carry out inference on a difference of means, µ1−µ2. We will
use the t-distribution just as we did when carrying out inference on a single mean. In order to use
the t-distribution, we need the sampling distribution for x̄1 − x̄2 to be nearly normal. We
check whether this assumption is reasonable by verifying the following conditions.

Independence. Observations can be considered independent when the data are collected from
two independent random samples or from a randomized experiment with two treatments.
Randomly assigning subjects to treatments is equivalent to randomly assigning treatments to
subjects. When sampling without replacement, the observations can be considered independent
when the sample size is less than 10% of the population size for both samples.

Sample size / nearly normal population. Each population distribution should be nearly nor-
mal or each sample size should be at least 30. As before, if the sample sizes are small and the
population distributions are not known to be nearly normal, we look at the data for excessive
skew or outliers. If we do not find excessive skew or outliers in either group, the assumption
that the populations are nearly normal to be reasonable is typically considered reasonable.
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7.3.3 Confidence intervals for a difference of means

What’s in a name? Are employers more likely to offer interviews or higher pay to prospective
employees when the name on a resume suggests the candidate is a man versus a woman? This is
a challenging question to tackle, because employers are influenced by many aspects of a resume.
Thinking back to Chapter 1 on data collection, we could imagine a host of confounding factors
associated with name and gender. How could we possibly isolate just the factor of name? We would
need an experiment in which name was the only variable and everything else was held constant.

Researchers at Yale carried out precisely this experiment. Their results were published in the
Proceedings of the National Academy of Sciences (PNAS). The researchers sent out resumes to
faculty at academic institutions for a lab manager position. The resumes were identical, except
that on half of them the applicant’s name was John and on the other half, the applicant’s name
was Jennifer. They wanted to see if faculty, specifically faculty trained in conducting scientifically
objective research, held implicit gender biases.

Unlike in the matched pairs scenario, each faculty member received only one resume. We
are interested in comparing the mean salary offered to John relative to the mean salary offered to
Jennifer. Instead of taking the average of a set of differences, we find the average of each group
separately and take their difference. Let

x̄1 : mean salary offered to John

x̄2 : mean salary offered to Jennifer

We will use x̄1 − x̄2 as our point estimate for µ1 − µ2. The data is given in the table below.

Name n x̄ s
John 63 $30,238 $5567
Jennifer 64 $26,508 $7247

We can calculate the difference as

x̄1 − x̄2 = 30, 238− 26, 508 = 3730.

EXAMPLE 7.28

Interpret the point estimate 3730. Why might we want to construct a confidence interval?

The average salary offered to John was $3,730 higher than the average salary offered to Jennifer.
Because there is randomness in which faculty ended up in the John group and which faculty ended
up in the Jennifer group, we want to see if the difference of $3,730 is beyond what could be expected
by random variation. In order to answer this, we will first want to calculate the SE for the difference
of sample means.

EXAMPLE 7.29

Calculate and interpret the SE for the difference of sample means.

SE =

√
s2

1

n1
+
s2

2

n2
=

√
(5567)2

63
+

(7247)2

64
= 1151

Using samples of size n1 = 63 and n2 = 64, the typical error when using x̄1− x̄2 to estimate µ1−µ2,
the real difference in mean salary that the faculty would offer John versus Jennifer, is $1151.

We see that the difference of sample means of $3,730 is more than 3 SE above 0, which makes
us think that the difference being 0 is unreasonable. We would like to construct a 95% confidence
interval for the theoretical difference in mean salary that would be offered to John versus Jennifer.
For this, we need the degrees of freedom associated with a two-sample t-interval.
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For the one-sample t-procedure, the degrees of freedom is given by the simple expression n− 1,
where n is the sample size. For the two-sample t-procedures, however, there is a complex formula
for calculating the degrees of freedom, which is based on the two sample sizes and the two sample
standard deviations. In practice, we find the degrees of freedom using software or a calculator (see
Section 7.3.4). If this is not possible, the alternative is to use the smaller of n1 − 1 and n2 − 1.

DEGREES OF FREEDOM FOR TWO-SAMPLE T-PROCEDURES

Use statistical software or a calculator to compute the degrees of freedom for two-sample
t-procedures. If this is not possible, use the smaller of n1 − 1 and n2 − 1.

EXAMPLE 7.30

Verify that conditions are met for a two-sample t-test. Then, construct the 95% confidence interval
for the difference of means.

We noted previously that this is an experiment and that the two treatments (name Jennifer and
name John) were randomly assigned. Also, both sample sizes are well over 30, so the distribution
of x̄1 − x̄2 is nearly normal. Using a calculator, we find that df = 118.1. Since 118.1 is not on the
t-table, we round the degrees of freedom down to 100.13 Using a t-table at row df = 100 with 95%
confidence, we get a t? = 1.984. We calculate the confidence interval as follows.

point estimate ± t? × SE of estimate

3730 ± 1.984× 1151

= 3730 ± 2284

= (1446, 6014)

Based on this interval, we are 95% confident that the true difference in mean salary that these
faculty would offer John versus Jennifer is between $1,495 and $6,055. That is, we are 95% confident
that the mean salary these faculty would offer John for a lab manager position is between $1,446
and $6,014 more than the mean salary they would offer Jennifer for the position.

The results of these studies and others like it are alarming and disturbing.14 One aspect that
makes this bias so difficult to address is that the experiment, as well-designed as it was, cannot
send us much signal about which faculty are discriminating. Each faculty member received only one
of the resumes. A faculty member that offered “Jennifer” a very low salary may have also offered
“John” a very low salary.

We might imagine an experiment in which each faculty received both resumes, so that we could
compare how much they would offer a Jennifer versus a John. However, the matched pairs scenario
is clearly not possible in this case, because what makes the experiment work is that the resumes are
exactly the same except for the name. An employer would notice something fishy if they received
two identical resumes. It is only possible to say that overall, the faculty were willing to offer John
more money for the lab manager position than Jennifer. Finding proof of bias for individual cases
is a persistent challenge in enforcing anti-discrimination laws.

13Using technology, we get a more precise interval, based on 118.1 df : (1461, 5999).
14A similar study sent out identical resumes with different names to investigate the importance of perceived race.

Resumes with a name commonly perceived to be for a White person (e.g. Emily) were 50% more likely to receive
a callback than the same resume with a name commonly perceived to be for a Black person (e.g. Lakisha). More
information is given in Appendix B – see the resume data set.



7.3. INFERENCE FOR THE DIFFERENCE OF TWO MEANS 399

CONSTRUCTING A CONFIDENCE INTERVAL FOR THE DIFFERENCE OF TWO MEANS

To carry out a complete confidence interval procedure to estimate the difference of two means
µ1 − µ2,

Identify: Identify the parameter and the confidence level, C%.

The parameter will be a difference of means, e.g. the true difference in mean cholesterol
reduction (mean treatment A − mean treatment B).

Choose: Choose the appropriate interval procedure and identify it by name.

To estimate the difference of means we use a 2-sample ttt-interval.

Check: Check conditions for the sampling distribution for x̄1 − x̄2 to be nearly normal.

1. Independence: Data come from 2 independent random samples or from a randomized

experiment with 2 treatments. When sampling without replacement, check that the

sample size is less than 10% of the population size for each sample.

2. Large samples or normal populations: n1 ≥ 30 and n2 ≥ 30 or both population

distributions are nearly normal.

- If the sample sizes are less than 30 and the population distributions are unknown,

check for strong skew or outliers in either data set. If neither is found, the condition

that both population distributions are nearly normal is considered reasonable.

Calculate: Calculate the confidence interval and record it in interval form.

point estimate ± t? × SE of estimate, df : use calculator or other technology

point estimate: the difference of sample means x̄1 − x̄2

SE of estimate:
√

s21
n1

+
s22
n2

t?: use a t-table at row df and confidence level C%

( , )

Conclude: Interpret the interval and, if applicable, draw a conclusion in context.

We are C% confident that the true difference in mean [...] is between and . If
applicable, draw a conclusion based on whether the interval is entirely above, is entirely
below, or contains the value 0.
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EXAMPLE 7.31

An instructor decided to run two slight variations of the same exam. Prior to passing out the
exams, she shuffled the exams together to ensure each student received a random version. Summary
statistics for how students performed on these two exams are shown in Figure 7.31. Anticipating
complaints from students who took Version B, she would like to evaluate whether the difference
observed in the groups is so large that it provides convincing evidence that Version B was more
difficult (on average) than Version A. Use a 95% confidence interval to estimate the difference in
average score: version A - version B.

Version n x̄ s min max
A 30 79.4 14 45 100
B 30 74.1 20 32 100

Identify: The parameter we want to estimate is µ1 − µ2, which is the true average score under
Version A − the true average score under Version B. We will estimate this parameter at the
95% confidence level.

Choose: Because we are comparing two means, we will use a 2-sample t-interval.

Check: The data was collected from a randomized experiment with two treatments: Version A
and Version B of test. The 10% condition does not need to be checked here since we are not
sampling from a population. There were 30 students in each group, so the condition that both
group sizes are at least 30 is met.

Calculate: We will calculate the confidence interval as follows.

point estimate ± t? × SE of estimate

The point estimate is the difference of sample means: x̄1 − x̄2 = 79.4− 74.1 = 5.3

The SE of a difference of sample means is:
√

s21
n1

+
s22
n2

=
√

142

30 + 202

30 = 4.46

In order to find the critical value t?, we must first find the degrees of freedom. Using a
calculator, we find df = 51.9. We round down to 50, and using a t-table at row df = 50 and
confidence level 95%, we get t? = 2.009.

The 95% confidence interval is given by:

(79.4− 74.1) ± 2.009×
√

142

30
+

202

30
df = 51.9

5.3 ± 2.009× 4.46

= (−3.66, 14.26)

Conclude: We are 95% confident that the true difference in average score between Version A and
Version B is between -3.66 and 14.26 points. Because the interval contains both positive and
negative values, the data do not convincingly show that one exam version is more difficult than
the other, and the teacher should not be convinced that she should add points to the Version
B exam scores.
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7.3.4 Technology: the 2-sample ttt-interval

TI-83/84: 2-SAMPLE T-INTERVAL

Use STAT, TESTS, 2-SampTInt.

1. Choose STAT.

2. Right arrow to TESTS.

3. Down arrow and choose 0:2-SampTTInt.

4. Choose Data if you have all the data or Stats if you have the means and standard
deviations.

• If you choose Data, let List1 be L1 or the list that contains sample 1 and let List2
be L2 or the list that contains sample 2 (don’t forget to enter the data!). Let Freq1
and Freq2 be 1.

• If you choose Stats, enter the mean, SD, and sample size for sample 1 and for sample
2.

5. Let C-Level be the desired confidence level and let Pooled be No.

6. Choose Calculate and hit ENTER, which returns:
( , ) the confidence interval Sx1 SD of sample 1
df degrees of freedom Sx2 SD of sample 2
x̄1 mean of sample 1 n1 size of sample 1
x̄2 mean of sample 2 n2 size of sample 2

CASIO FX-9750GII: 2-SAMPLE T-INTERVAL

1. Navigate to STAT (MENU button, then hit the 2 button or select STAT).

2. If necessary, enter the data into a list.

3. Choose the INTR option (F4 button).

4. Choose the t option (F2 button).

5. Choose the 2-S option (F2 button).

6. Choose either the Var option (F2) or enter the data in using the List option.

7. Specify the test details:

• Confidence level of interest for C-Level.

• If using the Var option, enter the summary statistics for each group. If using List,
specify the lists and leave Freq values at 1.

• Choose whether to pool the data or not.

8. Hit the EXE button, which returns

Left, Right ends of the confidence interval
df degrees of freedom
x̄1, x̄2 sample means
sx1, sx2 sample standard deviations
n1, n2 sample sizes

http://www.openintro.org/redirect.php?go=TI84_2_MEAN_CI&referrer=ahss3_pdf
http://www.openintro.org/redirect.php?go=CASIO_2_MEAN_INFERENCE&referrer=ahss3_pdf
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GUIDED PRACTICE 7.32

Use the data below and a calculator to find a 95% confidence interval for the difference in average
scores between Version A and Version B of the exam from the previous example.15

Version n x̄ s min max
A 30 79.4 14 45 100
B 30 74.1 20 32 100

7.3.5 Hypothesis testing for the difference of two means

Four cases from a data set called ncbirths, which represents mothers and their newborns in
North Carolina, are shown in Figure 7.15. We are particularly interested in two variables: weight

and smoke. The weight variable represents the weights of the newborns and the smoke variable
describes which mothers smoked during pregnancy. We would like to know, is there convincing
evidence that newborns from mothers who smoke have a different average birth weight than newborns
from mothers who don’t smoke? The smoking group includes a random sample of 50 cases and the
nonsmoking group contains a random sample of 100 cases, represented in Figure 7.16.

fAge mAge weeks weight sex smoke
1 NA 13 37 5.00 female nonsmoker
2 NA 14 36 5.88 female nonsmoker
3 19 15 41 8.13 male smoker
...

...
...

...
...

...
150 45 50 36 9.25 female nonsmoker

Figure 7.15: Four cases from the ncbirths data set. The value “NA”, shown for
the first two entries of the first variable, indicates pieces of data that are missing.

Newborn Weights (lbs) From Mothers Who Smoked
0 2 4 6 8 10

Newborn Weights (lbs) From Mothers Who Did Not Smoke
0 2 4 6 8 10

Figure 7.16: The top panel represents birth weights for infants whose mothers
smoked. The bottom panel represents the birth weights for infants whose mothers
who did not smoke. The distributions exhibit moderate-to-strong and strong skew,
respectively.

15Choose 2-SampTInt or equivalent. Because we have the summary statistics rather than all of the data, choose
Stats. Let x̄1=79.41, Sx1=14, n1=30, x̄2=74.1, Sx2 = 20, and n2 = 30. The interval is (−3.6, 14.2) with df = 51.9.
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EXAMPLE 7.33

Set up appropriate hypotheses to evaluate whether there is a relationship between a mother smoking
and average birth weight.

Let µ1 represent the mean for mothers that did smoke and µ2 represent the mean for mothers that
did not smoke. We will take the difference as: smoker − nonsmoker. The null hypothesis represents
the case of no difference between the groups.

H0: µ1 − µ2 = 0. There is no difference in average birth weight for newborns from mothers who
did and did not smoke.

HA: µ1 − µ2 6= 0. There is some difference in average newborn weights from mothers who did and
did not smoke.

We check the two conditions necessary to use the t-distribution to the difference in sample
means. (1) Because the data come from a sample, we need there to be two independent random
samples. In fact, there was only one random sample, but it is reasonable that the two groups here are
independent of each other, so we will consider the assumption of independence reasonable. (2) The
sample sizes of 50 and 100 are well over 30, so we do not worry about the distributions of the original
populations. Since both conditions are satisfied, the difference in sample means may be modeled
using a t-distribution.

smoker nonsmoker

mean 6.78 7.18
st. dev. 1.43 1.60
samp. size 50 100

Figure 7.17: Summary statistics for the ncbirths data set.

EXAMPLE 7.34

We will use the summary statistics in Figure 7.17 for this exercise.
(a) What is the point estimate of the population difference, µ1 − µ2?
(b) Compute the standard error of the point estimate from part (a).

(a) The point estimate is the difference of sample means: x̄1 − x̄2 = 6.78− 7.18 = −0.40 pounds.
(b) The standard error for a difference of sample means is calculated analogously to the standard
deviation for a difference of sample means.

SE =

√
s2

1

n1
+
s2

2

n2
=

√
1.432

50
+

1.602

100
= 0.26 pounds

EXAMPLE 7.35

Compute the test statistic.

We have already found the point estimate and the SE of estimate. The null hypothesis is that the
two means are equal, or that their difference equals 0. The null value for the difference, therefore
is 0. We now have everything we need to compute the test statistic.

T =
point estimate− null value

SE of estimate
=
−0.40− 0

0.26
= −1.54
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EXAMPLE 7.36

Draw a picture to represent the p-value for this hypothesis test, then calculate the p-value.

To depict the p-value, we draw the distribution of the point estimate as though H0 were true and
shade areas representing at least as much evidence against H0 as what was observed. Both tails are
shaded because it is a two-sided test.

µn − µs = 0 obs. diff

We saw previously that the degrees of freedom can be found using software or using the smaller of
n1 − 1 and n2 − 1. If we use 50− 1 = 49 degrees of freedom, we find that the area in the lower tail
is 0.065. The p-value is twice this, or 2× 0.065 = 0.130. See Section 7.3.6 for a shortcut to compute
the degrees of freedom and p-value on a calculator.

EXAMPLE 7.37

What can we conclude from this p-value? Use a significance level of α = 0.05.

This p-value of 0.130 is larger the significance level of 0.05, so we do not reject the null hypothesis.
There is not sufficient evidence to say there is a difference in average birth weight of newborns
from North Carolina mothers who did smoke during pregnancy and newborns from North Carolina
mothers who did not smoke during pregnancy.

EXAMPLE 7.38

Does the conclusion to Example 7.35 mean that smoking and average birth weight are unrelated?

Not necessarily. It is possible that there is some difference but that we did not detect it. The result
must be considered in light of other evidence and research. In fact, larger data sets do tend to show
that women who smoke during pregnancy have smaller newborns.

GUIDED PRACTICE 7.39

If we made an error in our conclusion, which type of error could we have made: Type I or Type II?16

GUIDED PRACTICE 7.40

If we made a Type II Error and there is a difference, what could we have done differently in data
collection to be more likely to detect the difference?17

16Since we did not reject H0, it is possible that we made a Type II Error. It is possible that there is some difference
but that we did not detect it.

17We could have collected more data. If the sample sizes are larger, we tend to have a better shot at finding a
difference if one exists. In other words, increasing the sample size increases the power of the test.
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HYPOTHESIS TEST FOR THE DIFFERENCE OF TWO MEANS

To carry out a complete hypothesis test to test the claim that two means µ1 and µ2 are equal
to each other,

Identify: Identify the hypotheses and the significance level, α.

H0: µ1 = µ2

HA: µ1 6= µ2; HA: µ1 > µ2; or HA: µ1 < µ2

Choose: Choose the appropriate test procedure and identify it by name.

To test hypotheses about the difference of means we use a 2-sample ttt-test.

Check: Check conditions for the sampling distribution for x̄1 − x̄2 to be nearly normal.

1. Independence: Data come from 2 independent random samples or from a randomized

experiment with 2 treatments. When sampling without replacement, check that the

sample size is less than 10% of the population size for each sample.

2. Large samples or normal populations: n1 ≥ 30 and n2 ≥ 30 or both population

distributions are nearly normal.

- If the sample sizes are less than 30 and the population distributions are unknown,

check for excessive skew or outliers in either data set. If neither is found, the condition

that both population distributions are nearly normal is considered reasonable.

Calculate: Calculate the t-statistic, df , and p-value.

T = point estimate − null value
SE of estimate df : use calculator or other technology

point estimate: the difference of sample means x̄1 − x̄2

SE of estimate:
√

s21
n1

+
s22
n2

p-value = (based on the t-statistic, the df , and the direction of HA)

Conclude: Compare the p-value to α, and draw a conclusion in context.

If the p-value is < α, reject H0; there is sufficient evidence that [HA in context].

If the p-value is > α, do not reject H0; there is not sufficient evidence that [HA in context].
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EXAMPLE 7.41

Do embryonic stem cells (ESCs) help improve heart function following a heart attack? The following
table and figure summarize results from an experiment to test ESCs in sheep that had a heart attack.

fr
eq

ue
nc

y

−10 −5 0 5 10 15

Embryonic stem cell transplant

Percent change in heart pumping function

0

1

2

3

fr
eq

ue
nc

y

−10 −5 0 5 10 15

0

1

2

3

Control (no treatment)

Percent change in heart pumping function

n x̄ s
ESCs 9 3.50 5.17
control 9 -4.33 2.76

Each of these sheep was randomly assigned to the ESC or control group, and the change in their
hearts’ pumping capacity was measured. A positive value generally corresponds to increased pump-
ing capacity, which suggests a stronger recovery. The sample data is also graphed. Use the given
information and an appropriate statistical test to answer the research question.

Identify: Let µ1 be the mean percent change for sheep that receive ESC and let µ2 be the mean
percent change for sheep in the control group. We will use an α = 0.05 significance level.
H0: µ1 − µ2 = 0. The stem cells do not improve heart pumping function.
HA: µ1 − µ2 > 0. The stem cells do improve heart pumping function.

Choose: Because we are hypothesizing about a difference of means we choose the 2-sample t-test.

Check: The data come from a randomized experiment with two treatment groups: ESC and control.
Because this is an experiment, we do not need to check the 10% condition. The group sizes are
small, but the data show no excessive skew or outliers, so the assumption that the population
distributions are nearly normal is reasonable.

Calculate: We will calculate the t-statistic and the p-value.

T =
point estimate − null value

SE of estimate

The point estimate is the difference of sample means: x̄1 − x̄2 = 3.50− (−4.33) = 7.83

The SE of a difference of sample means:
√

s21
n1

+
s22
n2

=
√

(5.17)2

9 + (2.76)2

9 = 1.95

T =
3.50− (−4.33)− 0√

(5.17)2

9 + (2.76)2

9

=
7.83− 0

1.95
= 4.01

Because HA is an upper tail test ( > ), the p-value corresponds to the area to the right of
t = 4.01 with the appropriate degrees of freedom. Using a calculator, we find get df = 12.2
and p-value = 8.4× 10−4 = 0.00084.

Conclude: The p-value is much less than 0.05, so we reject the null hypothesis. There is sufficient
evidence that embryonic stem cells improve the heart’s pumping function in sheep that have
suffered a heart attack.
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7.3.6 Technology: the 2-sample ttt-test

TI-83/84: 2-SAMPLE T-TEST

Use STAT, TESTS, 2-SampTTest.

1. Choose STAT.

2. Right arrow to TESTS.

3. Choose 4:2-SampTTest.

4. Choose Data if you have all the data or Stats if you have the means and standard
deviations.

• If you choose Data, let List1 be L1 or the list that contains sample 1 and let List2
be L2 or the list that contains sample 2 (don’t forget to enter the data!). Let Freq1
and Freq2 be 1.

• If you choose Stats, enter the mean, SD, and sample size for sample 1 and for sample
2

5. Choose 6=, <, or > to correspond to HA.

6. Let Pooled be NO.

7. Choose Calculate and hit ENTER, which returns:

t T-statistic Sx1 SD of sample 1
p p-value Sx2 SD of sample 2
df degrees of freedom n1 size of sample 1
x̄1 mean of sample 1 n2 size of sample 2
x̄2 mean of sample 2

CASIO FX-9750GII: 2-SAMPLE T-TEST

1. Navigate to STAT (MENU button, then hit the 2 button or select STAT).

2. If necessary, enter the data into a list.

3. Choose the TEST option (F3 button).

4. Choose the t option (F2 button).

5. Choose the 2-S option (F2 button).

6. Choose either the Var option (F2) or enter the data in using the List option.

7. Specify the test details:

• Specify the sidedness of the test using the F1, F2, and F3 keys.

• If using the Var option, enter the summary statistics for each group. If using List,
specify the lists and leave Freq values at 1.

• Choose whether to pool the data or not.

8. Hit the EXE button, which returns

µ1 µ2 alt. hypothesis x̄1, x̄2 sample means
t T-statistic sx1, sx2 sample standard deviations
p p-value n1, n2 sample sizes
df degrees of freedom

http://www.openintro.org/redirect.php?go=TI84_2_MEAN_HT&referrer=ahss3_pdf
http://www.openintro.org/redirect.php?go=CASIO_2_MEAN_INFERENCE&referrer=ahss3_pdf
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GUIDED PRACTICE 7.42

Use the data below and a calculator to find the test statistics and p-value for a one-sided test, testing
whether there is evidence that embryonic stem cells (ESCs) help improve heart function for sheep
that have experienced a heart attack.18

n x̄ s
ESCs 9 3.50 5.17
control 9 -4.33 2.76

18Choose 2-SampTTest or equivalent. Because we have the summary statistics rather than all of the data, choose
Stats. Let x̄1=3.50, Sx1=5.17, n1=9, x̄2=-4.33, Sx2 = 2.76, and n2 = 9. We get t = 4.01, and the p-value
p = 8.4× 10−4 = 0.00084. The degrees of freedom for the test is df = 12.2.
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Section summary

• This section introduced inference for a difference of means, which is distinct from inference
for a mean of differences. To calculate a difference of means, x̄1 − x̄2, we first calculate the
mean of each group, then we take the difference between those two numbers. To calculate a
mean of difference, x̄diff , we first calculate all of the differences, then we find the mean of those
differences.

• Inference for a difference of means is based on the t-distribution. The degrees of freedom is
complicated to calculate and we rely on a calculator or other software to calculate this.19

• When there are two samples or treatments and the parameter of interest is a difference of
means:

– Estimate µ1 − µ2 at the C% confidence level using a 2-sample ttt-interval.

– Test H0: µ1 − µ2 = 0 at the α significance level using a 2-sample ttt-test.

• The 2-sample t-test and t-interval require the sampling distribution for x̄1 − x̄2 to be nearly
normal. For this reason we must check that the following conditions are met.

1. Independence: The data should come from 2 independent random samples or from a
randomized experiment with 2 treatments. When sampling without replacement, check
that the sample size is less than 10% of the population size for each sample.

2. Large samples or normal populations: n1 ≥ 30 and n2 ≥ 30 or both population distribu-
tions are nearly normal.
- If the sample sizes are less than 30 and it is not known that both population distribu-
tions are nearly normal, check for excessive skew or outliers in the data. If neither exists,
the condition that both population distributions could be nearly normal is considered
reasonable.

• When the conditions are met, we calculate the confidence interval and the test statistic as
follows.

Confidence interval: point estimate ± t? × SE of estimate

Test statistic: T = point estimate − null value
SE of estimate

Here the point estimate is the difference of sample means: x̄1 − x̄2.

The SE of estimate is the SE of a difference of sample means:
√

s21
n1

+
s22
n2

.

Find and record the df using a calculator or other software.

19If this is not available, one can use df = min(n1 − 1, n2 − 1).
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Exercises

7.23 Diamonds, Part I. Prices of diamonds are determined by what is known as the 4 Cs: cut, clarity,
color, and carat weight. The prices of diamonds go up as the carat weight increases, but the increase is not
smooth. For example, the difference between the size of a 0.99 carat diamond and a 1 carat diamond is
undetectable to the naked human eye, but the price of a 1 carat diamond tends to be much higher than the
price of a 0.99 diamond. In this question we use two random samples of diamonds, 0.99 carats and 1 carat,
each sample of size 23, and compare the average prices of the diamonds. In order to be able to compare
equivalent units, we first divide the price for each diamond by 100 times its weight in carats. That is, for
a 0.99 carat diamond, we divide the price by 99. For a 1 carat diamond, we divide the price by 100. The
distributions and some sample statistics are shown below.20

Conduct a hypothesis test to evaluate if there is a difference be-
tween the average standardized prices of 0.99 and 1 carat dia-
monds. Include all steps of the Identify, Choose, Check, Calcu-
late, Conclude framework.

0.99 carats 1 carat

Mean $44.51 $56.81
SD $13.32 $16.13
n 23 23
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7.24 Diamonds, Part II. In Exercise 7.23, we discussed diamond prices (standardized by weight) for di-
amonds with weights 0. 99 carats and 1 carat. See the table for summary statistics, and then construct
a 95% confidence interval for the difference in means between the standardized prices of 0.99 and 1 carat
diamonds. Include all steps of the Identify, Choose, Check, Calculate, Conclude framework.

0.99 carats 1 carat

Mean $44.51 $56.81
SD $13.32 $16.13
n 23 23

7.25 Chicken diet and weight, Part I. Chicken farming is a multi-billion dollar industry, and any
methods that increase the growth rate of young chicks can reduce consumer costs while increasing company
profits, possibly by millions of dollars. An experiment was conducted to measure and compare the effec-
tiveness of various feed supplements on the growth rate of chickens. Newly hatched chicks were randomly
allocated into six groups, and each group was given a different feed supplement. Below are some summary
statistics from this data set along with box plots showing the distribution of weights by feed type.21
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Mean SD n
casein 323.58 64.43 12
horsebean 160.20 38.63 10
linseed 218.75 52.24 12
meatmeal 276.91 64.90 11
soybean 246.43 54.13 14
sunflower 328.92 48.84 12

(a) Describe the distributions of weights of chickens that were fed linseed and horsebean.

(b) Do these data provide strong evidence that the average weights of chickens that were fed linseed and
horsebean are different? Use a 5% significance level.

(c) What type of error might we have committed? Explain.

(d) Would your conclusion change if we used α = 0.01?

20H. Wickham. ggplot2: elegant graphics for data analysis. Springer New York, 2009.
21Chicken Weights by Feed Type, from the datasets package in R..

http://www.openintro.org/redirect.php?go=ahss_eoce_sol-chick_wts_linseed_horsebean&referrer=ahss3_pdf
http://www.openintro.org/redirect.php?go=textbook-ggplot2_book&referrer=ahss3_pdf
http://www.openintro.org/redirect.php?go=textbook-feed_and_chicken_weights&referrer=ahss3_pdf
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7.26 Fuel efficiency of manual and automatic cars, Part I. Each year the US Environmental Protection
Agency (EPA) releases fuel economy data on cars manufactured in that year. Below are summary statistics
on fuel efficiency (in miles/gallon) from random samples of cars with manual and automatic transmissions.
Do these data provide strong evidence of a difference between the average fuel efficiency of cars with manual
and automatic transmissions in terms of their average city mileage?22

City MPG

Automatic Manual
Mean 16.12 19.85
SD 3.58 4.51
n 26 26

City MPG

automatic manual

15

25

35

7.27 Chicken diet and weight, Part II. Casein is a common weight gain supplement for humans. Does it
have an effect on chickens? Using data provided in Exercise 7.25, test the hypothesis that the average weight
of chickens that were fed casein is different than the average weight of chickens that were fed soybean. If
your hypothesis test yields a statistically significant result, discuss whether or not the higher average weight
of chickens can be attributed to the casein diet. Conditions for inference were checked in Exercise 7.25.

7.28 Fuel efficiency of manual and automatic cars, Part II. The table provides summary statistics on
highway fuel economy of the same 52 cars from Exercise 7.26. Use these statistics to calculate a 98%
confidence interval for the difference between average highway mileage of manual and automatic cars, and
interpret this interval in the context of the data.23

Hwy MPG

Automatic Manual
Mean 22.92 27.88
SD 5.29 5.01
n 26 26

Hwy MPG

automatic manual

15

25

35

22U.S. Department of Energy, Fuel Economy Data, 2012 Datafile.
23U.S. Department of Energy, Fuel Economy Data, 2012 Datafile.

http://www.openintro.org/redirect.php?go=textbook-fuel_economy_data_2012&referrer=ahss3_pdf
http://www.openintro.org/redirect.php?go=textbook-fuel_economy_data_2012&referrer=ahss3_pdf
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7.29 Prison isolation experiment, Part I. Subjects from Central Prison in Raleigh, NC, volunteered for
an experiment involving an “isolation” experience. The goal of the experiment was to find a treatment
that reduces subjects’ psychopathic deviant T scores. This score measures a person’s need for control or
their rebellion against control, and it is part of a commonly used mental health test called the Minnesota
Multiphasic Personality Inventory (MMPI) test. The experiment had three treatment groups:

(1) Four hours of sensory restriction plus a 15 minute “therapeutic” tape advising that professional help is
available.

(2) Four hours of sensory restriction plus a 15 minute “emotionally neutral” tape on training hunting dogs.

(3) Four hours of sensory restriction but no taped message.

Forty-two subjects were randomly assigned to these treatment groups, and an MMPI test was administered
before and after the treatment. Distributions of the differences between pre and post treatment scores (pre
- post) are shown below, along with some sample statistics. Use this information to independently test the
effectiveness of each treatment. Make sure to clearly state your hypotheses, check conditions, and interpret
results in the context of the data.24

Treatment 1

0 20 40

0

2

4

6

Treatment 2

−20 −10 0 10 20

0

2

4

Treatment 3

−20 −10 0

0

2

4

Tr 1 Tr 2 Tr 3

Mean 6.21 2.86 -3.21
SD 12.3 7.94 8.57
n 14 14 14

7.30 True / False: comparing means. Determine if the following statements are true or false, and explain
your reasoning for statements you identify as false.

(a) As the degrees of freedom increases, the t-distribution approaches normality.

(b) We use a pooled standard error for calculating the standard error of the difference between means when
sample sizes of groups are equal to each other.

24Prison isolation experiment, stat.duke.edu/resources/datasets/prison-isolation.

http://www.openintro.org/redirect.php?go=textbook-prison_isolation_exp&referrer=ahss3_pdf
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Chapter highlights

We’ve reviewed a wide set of inference procedures over the last 3 chapters. Let’s revisit each and
discuss the similarities and differences among them. The following confidence intervals and tests are
structurally the same – they all involve inference on a population parameter, where that parameter
is a proportion, a difference of proportions, a mean, a mean of differences, or a difference of means.

• 1-proportion z-test/interval

• 2-proportion z-test/interval

• 1-sample t-test/interval

• 1-sample t-test/interval with paired data

• 2-sample t-test/interval

The above inferential procedures all involve a point estimate, a standard error of the estimate,
and an assumption about the shape of the sampling distribution for the point estimate.

From Chapter 6, the χ2 tests and their uses are as follows:

• χ2 goodness of fit - compares a categorical variable to a known/fixed distribution.

• χ2 test for homogeneity - compares a categorical variable across multiple groups.

• χ2 test for independence - looks for association between two categorical variables.

χ2 is a measure of overall deviation between observed values and expected values. These tests stand
apart from the others because when using χ2 there is not a parameter of interest. For this reason
there are no confidence intervals using χ2. Also, for χ2 tests, the hypotheses are usually written
in words, because they are about the distribution of one or more categorical variables, not about a
single parameter.

While formulas and conditions vary, all of these procedures follow the same basic logic and pro-
cess.

• For a confidence interval, identify the parameter to be estimated and the confidence level. For
a hypothesis test, identify the hypotheses to be tested and the significance level.

• Choose the correct procedure.

• Check that both conditions for its use are met.

• Calculate the confidence interval or the test statistic and p-value, as well as the df if applicable.

• Interpret the results and draw a conclusion based on the data.

For a summary of these hypothesis test and confidence interval procedures (including one more that
we will encounter in Section 8.4), see the Inference Guide in Appendix D.3.
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Chapter exercises

7.31 Gaming and distracted eating, Part I. A group of researchers are interested in the possible effects of
distracting stimuli during eating, such as an increase or decrease in the amount of food consumption. To test
this hypothesis, they monitored food intake for a group of 44 patients who were randomized into two equal
groups. The treatment group ate lunch while playing solitaire, and the control group ate lunch without any
added distractions. Patients in the treatment group ate 52.1 grams of biscuits, with a standard deviation of
45.1 grams, and patients in the control group ate 27.1 grams of biscuits, with a standard deviation of 26.4
grams. Do these data provide convincing evidence that the average food intake (measured in amount of
biscuits consumed) is different for the patients in the treatment group? Assume that conditions for inference
are satisfied.25

7.32 Gaming and distracted eating, Part II. The researchers from Exercise 7.31 also investigated the effects
of being distracted by a game on how much people eat. The 22 patients in the treatment group who ate
their lunch while playing solitaire were asked to do a serial-order recall of the food lunch items they ate.
The average number of items recalled by the patients in this group was 4. 9, with a standard deviation of
1.8. The average number of items recalled by the patients in the control group (no distraction) was 6.1, with
a standard deviation of 1.8. Do these data provide strong evidence that the average number of food items
recalled by the patients in the treatment and control groups are different?

7.33 Sample size and pairing. Determine if the following statement is true or false, and if false, explain
your reasoning: If comparing means of two groups with equal sample sizes, always use a paired test.

7.34 College credits. A college counselor is interested in estimating how many credits a student typically
enrolls in each semester. The counselor decides to randomly sample 100 students by using the registrar’s
database of students. The histogram below shows the distribution of the number of credits taken by these
students. Sample statistics for this distribution are also provided.

Number of credits
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Mean 13.65
SD 1.91
Q3 15
Max 18

(a) What is the point estimate for the average number of credits taken per semester by students at this
college? What about the median?

(b) What is the point estimate for the standard deviation of the number of credits taken per semester by
students at this college? What about the IQR?

(c) Is a load of 16 credits unusually high for this college? What about 18 credits? Explain your reasoning.

(d) The college counselor takes another random sample of 100 students and this time finds a sample mean
of 14.02 units. Should she be surprised that this sample statistic is slightly different than the one from
the original sample? Explain your reasoning.

(e) The sample means given above are point estimates for the mean number of credits taken by all students
at that college. What measures do we use to quantify the variability of this estimate? Compute this
quantity using the data from the original sample.

25R.E. Oldham-Cooper et al. “Playing a computer game during lunch affects fullness, memory for lunch, and later
snack intake”. In: The American Journal of Clinical Nutrition 93.2 (2011), p. 308.

http://www.openintro.org/redirect.php?go=textbook-playing_computer_games_2011&referrer=ahss3_pdf
http://www.openintro.org/redirect.php?go=textbook-playing_computer_games_2011&referrer=ahss3_pdf
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7.35 Hen eggs. The distribution of the number of eggs laid by a certain species of hen during their breeding
period has a mean of 35 eggs with a standard deviation of 18.2. Suppose a group of researchers randomly
samples 45 hens of this species, counts the number of eggs laid during their breeding period, and records
the sample mean. They repeat this 1,000 times, and build a distribution of sample means.

(a) What is this distribution called?

(b) Would you expect the shape of this distribution to be symmetric, right skewed, or left skewed? Explain
your reasoning.

(c) Calculate the variability of this distribution and state the appropriate term used to refer to this value.

(d) Suppose the researchers’ budget is reduced and they are only able to collect random samples of 10 hens.
The sample mean of the number of eggs is recorded, and we repeat this 1,000 times, and build a new
distribution of sample means. How will the variability of this new distribution compare to the variability
of the original distribution?

7.36 Forest management. Forest rangers wanted to better understand the rate of growth for younger trees
in the park. They took measurements of a random sample of 50 young trees in 2009 and again measured
those same trees in 2019. The data below summarize their measurements, where the heights are in feet:

2009 2019 Differences

x̄ 12.0 24.5 12.5
s 3.5 9.5 7.2
n 50 50 50

Construct a 99% confidence interval for the average growth of (what had been) younger trees in the park
over 2009-2019.

7.37 Exclusive relationships. A survey conducted on a reasonably random sample of 203 undergraduates
asked, among many other questions, about the number of exclusive relationships these students have been
in. The histogram below shows the distribution of the data from this sample. The sample average is 3.2
with a standard deviation of 1.97.
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Estimate the average number of exclusive relationships Duke students have been in using a 90% confidence
interval and interpret this interval in context. Check any conditions required for inference, and note any
assumptions you must make as you proceed with your calculations and conclusions.
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7.38 Age at first marriage, Part I. The National Survey of Family Growth conducted by the Centers
for Disease Control gathers information on family life, marriage and divorce, pregnancy, infertility, use of
contraception, and men’s and women’s health. One of the variables collected on this survey is the age at
first marriage. The histogram below shows the distribution of ages at first marriage of 5,534 randomly
sampled women between 2006 and 2010. The average age at first marriage among these women is 23.44 with
a standard deviation of 4.72.26
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Estimate the average age at first marriage of women using a 95% confidence interval, and interpret this
interval in context. Discuss any relevant assumptions.

7.39 Online communication. A study suggests that the average college student spends 10 hours per week
communicating with others online. You believe that this is an underestimate and decide to collect your own
sample for a hypothesis test. You randomly sample 60 students from your dorm and find that on average
they spent 13.5 hours a week communicating with others online. A friend of yours, who offers to help you
with the hypothesis test, comes up with the following set of hypotheses. Indicate any errors you see.

H0 : x̄ < 10 hours

HA : x̄ > 13.5 hours

7.40 Age at first marriage, Part II. Exercise 7.38 presents the results of a 2006 - 2010 survey showing that
the average age of women at first marriage is 23.44. Suppose a social scientist thinks this value has changed
since the survey was taken. Below is how she set up her hypotheses. Indicate any errors you see.

H0 : x̄ 6= 23.44 years old

HA : x̄ = 23.44 years old

26Centers for Disease Control and Prevention, National Survey of Family Growth, 2010.

http://www.openintro.org/redirect.php?go=textbook-ntnl_survey_family_growth_2010&referrer=ahss3_pdf
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7.41 Friday the 13th, Part I. In the early 1990’s, researchers in the UK collected data on traffic flow, number
of shoppers, and traffic accident related emergency room admissions on Friday the 13th and the previous
Friday, Friday the 6th. The histograms below show the distribution of number of cars passing by a specific
intersection on Friday the 6th and Friday the 13th for many such date pairs. Also given are some sample
statistics, where the difference is the number of cars on the 6th minus the number of cars on the 13th.27
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6th 13th Diff.

x̄ 128,385 126,550 1,835
s 7,259 7,664 1,176
n 10 10 10

(a) Are there any underlying structures in these data that should be considered in an analysis? Explain.

(b) What are the hypotheses for evaluating whether the number of people out on Friday the 6th is different
than the number out on Friday the 13th?

(c) Check conditions to carry out the hypothesis test from part (b).

(d) Calculate the test statistic and the p-value.

(e) What is the conclusion of the hypothesis test?

(f) Interpret the p-value in this context.

(g) What type of error might have been made in the conclusion of your test? Explain.

7.42 Friday the 13th, Part II. The Friday the 13th study reported in Exercise 7.41 also provides data
on traffic accident related emergency room admissions. The distributions of these counts from Friday the
6th and Friday the 13th are shown below for six such paired dates along with summary statistics. You may
assume that conditions for inference are met.
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6th 13th diff

Mean 7.5 10.83 -3.33
SD 3.33 3.6 3.01
n 6 6 6

(a) Conduct a hypothesis test to evaluate if there is a difference between the average numbers of traffic
accident related emergency room admissions between Friday the 6th and Friday the 13th.

(b) Calculate a 95% confidence interval for the difference between the average numbers of traffic accident
related emergency room admissions between Friday the 6th and Friday the 13th.

(c) The conclusion of the original study states, “Friday 13th is unlucky for some. The risk of hospital
admission as a result of a transport accident may be increased by as much as 52%. Staying at home is
recommended.” Do you agree with this statement? Explain your reasoning.

27T.J. Scanlon et al. “Is Friday the 13th Bad For Your Health?” In: BMJ 307 (1993), pp. 1584–1586.

http://www.openintro.org/redirect.php?go=friday_13_accident_solution&referrer=ahss3_pdf
http://www.openintro.org/redirect.php?go=textbook-Friday13_1993&referrer=ahss3_pdf
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Chapter 8
Introduction to linear
regression

8.1 Line fitting, residuals, and correlation

8.2 Fitting a line by least squares regression

8.3 Transformations for skewed data

8.4 Inference for the slope of a regression line
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Linear regression is a very powerful statistical technique. Many people have some

familiarity with regression just from reading the news, where graphs with straight

lines are overlaid on scatterplots. Linear models can be used to see trends and to

make predictions.

For videos, slides, and other resources, please visit

www.openintro.org/ahss

http://www.openintro.org/redirect.php?go=stat&referrer=ahss3_pdf
http://www.openintro.org/redirect.php?go=ahss&referrer=ahss3_pdf
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8.1 Line fitting, residuals, and correlation

In this section, we investigate bivariate data. We examine criteria for identifying a linear model and

introduce a new bivariate summary called correlation. We answer questions such as the following:

• How do we quantify the strength of the linear association between two numerical variables?

• What does it mean for two variables to have no association or to have a nonlinear association?

• Once we fit a model, how do we measure the error in the model’s predictions?

Learning objectives

1. Distinguish between the data point y and the predicted value ŷ based on a model.

2. Calculate a residual and draw a residual plot.

3. Interpret the standard deviation of the residuals.

4. Interpret the correlation coefficient and estimate it from a scatterplot.

5. Know and apply the properties of the correlation coefficient.

8.1.1 Fitting a line to data

Requests from twelve separate buyers were simultaneously placed with a trading company to
purchase Target Corporation stock (ticker TGT, April 26th, 2012). We let x be the number of stocks
to purchase and y be the total cost. Because the cost is computed using a linear formula, the linear
fit is perfect, and the equation for the line is: y = 5 + 57.49x. If we know the number of stocks
purchased, we can determine the cost based on this linear equation with no error. Additionally,
we can say that each additional share of the stock cost $57.49 and that there was a $5 fee for the
transaction.
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Figure 8.1: Total cost of a trade against number of shares purchased.
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Perfect linear relationships are unrealistic in almost any natural process. For example, if we
took family income (x), this value would provide some useful information about how much financial
support a college may offer a prospective student (y). However, the prediction would be far from
perfect, since other factors play a role in financial support beyond a family’s income.

It is rare for all of the data to fall perfectly on a straight line. Instead, it’s more common for
data to appear as a cloud of points, such as those shown in Figure 8.2. In each case, the data fall
around a straight line, even if none of the observations fall exactly on the line. The first plot shows
a relatively strong downward linear trend, where the remaining variability in the data around the
line is minor relative to the strength of the relationship between x and y. The second plot shows
an upward trend that, while evident, is not as strong as the first. The last plot shows a very weak
downward trend in the data, so slight we can hardly notice it.

In each of these examples, we can consider how to draw a “best fit line”. For instance, we
might wonder, should we move the line up or down a little, or should we tilt it more or less? As we
move forward in this chapter, we will learn different criteria for line-fitting, and we will also learn
about the uncertainty associated with estimates of model parameters.
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Figure 8.2: Three data sets where a linear model may be useful even though the
data do not all fall exactly on the line.

We will also see examples in this chapter where fitting a straight line to the data, even if there
is a clear relationship between the variables, is not helpful. One such case is shown in Figure 8.3
where there is a very strong relationship between the variables even though the trend is not linear.
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Figure 8.3: A linear model is not useful in this nonlinear case. These data are from
an introductory physics experiment.
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8.1.2 Using linear regression to predict possum head lengths

Brushtail possums are a marsupial that lives in Australia. A photo of one is shown in Figure 8.4.
Researchers captured 104 of these animals and took body measurements before releasing the animals
back into the wild. We consider two of these measurements: the total length of each possum, from
head to tail, and the length of each possum’s head.

Figure 8.5 shows a scatterplot for the head length and total length of the 104 possums. Each
point represents a single point from the data.

Figure 8.4: The common brushtail possum of Australia.
————————————
Photo by Peter Firminger on Flickr: http://flic.kr/p/6aPTn CC BY 2.0 license.
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Figure 8.5: A scatterplot showing head length against total length for 104 brushtail
possums. A point representing a possum with head length 94.1 mm and total length
89 cm is highlighted.
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The head and total length variables are associated: possums with an above average total length
also tend to have above average head lengths. While the relationship is not perfectly linear, it could
be helpful to partially explain the connection between these variables with a straight line.

We want to describe the relationship between the head length and total length variables in the
possum data set using a line. In this example, we will use the total length, x, to explain or predict a
possum’s head length, y. When we use x to predict y, we usually call x the explanatory variable
or predictor variable, and we call y the response variable. We could fit the linear relationship by
eye, as in Figure 8.6. The equation for this line is

ŷ = 41 + 0.59x

A “hat” on y is used to signify that this is a predicted value, not an observed value. We can use
this line to discuss properties of possums. For instance, the equation predicts a possum with a total
length of 80 cm will have a head length of

ŷ = 41 + 0.59(80)

= 88.2

The value ŷ may be viewed as an average: the equation predicts that possums with a total length of
80 cm will have an average head length of 88.2 mm. The value ŷ is also a prediction: absent further
information about an 80 cm possum, this is our best prediction for a the head length of a single
80 cm possum.
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8.1.3 Residuals

Residuals are the leftover variation in the response variable after fitting a model. Each obser-
vation will have a residual, and three of the residuals for the linear model we fit for the possum data
are shown in Figure 8.6. If an observation is above the regression line, then its residual, the vertical
distance from the observation to the line, is positive. Observations below the line have negative
residuals. One goal in picking the right linear model is for these residuals to be as small as possible.
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Figure 8.6: A reasonable linear model was fit to represent the relationship between
head length and total length.

Let’s look closer at the three residuals featured in Figure 8.6. The observation marked by an
“×” has a small, negative residual of about -1; the observation marked by “+” has a large residual
of about +7; and the observation marked by “4” has a moderate residual of about -4. The size of
a residual is usually discussed in terms of its absolute value. For example, the residual for “4” is
larger than that of “×” because | − 4| is larger than | − 1|.

RESIDUAL: DIFFERENCE BETWEEN OBSERVED AND EXPECTED

The residual for a particular observation (x, y) is the difference between the observed response
and the response we would predict based on the model:

residual = observed y − predicted y

= y − ŷ

We typically identify ŷ by plugging x into the model.
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EXAMPLE 8.1

The linear fit shown in Figure 8.6 is given as ŷ = 41 + 0.59x. Based on this line, compute and
interpret the residual of the observation (77.0, 85.3). This observation is denoted by “×” on the
plot. Recall that x is the total length measured in cm and y is head length measured in mm.

We first compute the predicted value based on the model:

ŷ = 41 + 0.59x

= 41 + 0.59(77.0)

= 86.4

Next we compute the difference of the actual head length and the predicted head length:

residual = y − ŷ
= 85.3− 86.4

= − 1.1

The residual for this point is -1.1 mm, which is very close to the visual estimate of -1 mm. For this
particular possum with total length of 77 cm, the model’s prediction for its head length was 1.1 mm
too high.

GUIDED PRACTICE 8.2

If a model underestimates an observation, will the residual be positive or negative? What about if
it overestimates the observation?1

GUIDED PRACTICE 8.3

Compute the residual for the observation (95.5, 94.0), denoted by “4” in the figure, using the linear
model: ŷ = 41 + 0.59x.2

Residuals are helpful in evaluating how well a linear model fits a data set. We often display the
residuals in a residual plot such as the one shown in Figure 8.7. Here, the residuals are calculated
for each x value, and plotted versus x. For instance, the point (85.0, 98.6) had a residual of 7.45,
so in the residual plot it is placed at (85.0, 7.45). Creating a residual plot is sort of like tipping the
scatterplot over so the regression line is horizontal.

From the residual plot, we can better estimate the standard deviation of the residuals,
often denoted by the letter s. The standard deviation of the residuals tells us typical size of the
residuals. As such, it is a measure of the typical deviation between the y values and the model
predictions. In other words, it tells us the typical prediction error using the model.3

1If a model underestimates an observation, then the model estimate is below the actual. The residual, which is
the actual observation value minus the model estimate, must then be positive. The opposite is true when the model
overestimates the observation: the residual is negative.

2First compute the predicted value based on the model, then compute the residual.

ŷ = 41 + 0.59x = 41 + 0.59(95.50) = 97.3

residual = y − ŷ = 94.0− 97.3 = −3.3

The residual is -3.3, so the model overpredicted the head length for this possum by 3.3 mm.

3The standard deviation of the residuals is calculated as: s =
√∑

(yi−ŷ)2

n−2
.
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EXAMPLE 8.4

Estimate the standard deviation of the residuals for predicting head length from total length using
the line: ŷ = 41 + 0.59x using Figure 8.7. Also, interpret the quantity in context.

To estimate this graphically, we use the residual plot. The approximate 68, 95 rule for standard
deviations applies. Approximately 2/3 of the points are within ± 2.5 and approximately 95% of the
points are within ± 5, so 2.5 is a good estimate for the standard deviation of the residuals. The
typical error when predicting head length using this model is about 2.5 mm.
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Figure 8.7: Left: Scatterplot of head length versus total length for 104 brushtail
possums. Three particular points have been highlighted. Right: Residual plot for
the model shown in left panel.

STANDARD DEVIATION OF THE RESIDUALS

The standard deviation of the residuals, often denoted by the letter s, tells us the typical error
in the predictions using the regression model. It can be estimated from a residual plot.
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EXAMPLE 8.5

One purpose of residual plots is to identify characteristics or patterns still apparent in data after
fitting a model. Figure 8.8 shows three scatterplots with linear models in the first row and residual
plots in the second row. Can you identify any patterns remaining in the residuals?

In the first data set (first column), the residuals show no obvious patterns. The residuals appear to
be scattered randomly around the dashed line that represents 0.

The second data set shows a pattern in the residuals. There is some curvature in the scatterplot,
which is more obvious in the residual plot. We should not use a straight line to model these data.
Instead, a more advanced technique should be used.

The last plot shows very little upwards trend, and the residuals also show no obvious patterns.
It is reasonable to try to fit a linear model to the data. However, it is unclear whether there is
statistically significant evidence that the slope parameter is different from zero. The slope of the
sample regression line is not zero, but we might wonder if this could be due to random variation.
We will address this sort of scenario in Section 8.4.
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Figure 8.8: Sample data with their best fitting lines (top row) and their corre-
sponding residual plots (bottom row).
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8.1.4 Describing linear relationships with correlation

When a linear relationship exists between two variables, we can quantify the strength and direc-
tion of the linear relation with the correlation coefficient, or just correlation for short. Figure 8.9
shows eight plots and their corresponding correlations.

r = 0.33
y

r = 0.69

y

r = 0.98

y

r = 1.00

r = −0.08

y

r = −0.64

y

r = −0.92

y

r = −1.00

Figure 8.9: Sample scatterplots and their correlations. The first row shows vari-
ables with a positive relationship, represented by the trend up and to the right.
The second row shows variables with a negative trend, where a large value in one
variable is associated with a low value in the other.

Only when the relationship is perfectly linear is the correlation either −1 or 1. If the linear
relationship is strong and positive, the correlation will be near +1. If it is strong and negative, it will
be near −1. If there is no apparent linear relationship between the variables, then the correlation
will be near zero.

CORRELATION MEASURES THE STRENGTH OF A LINEAR RELATIONSHIP

Correlation, which always takes values between -1 and 1, describes the direction and strength
of the linear relationship between two numerical variables. The strength can be strong, moder-
ate, or weak.

We compute the correlation using a formula, just as we did with the sample mean and standard
deviation. Formally, we can compute the correlation for observations (x1, y1), (x2, y2), ..., (xn, yn)
using the formula

r =
1

n− 1

∑(xi − x̄
sx

)(yi − ȳ
sy

)
where x̄, ȳ, sx, and sy are the sample means and standard deviations for each variable. This formula
is rather complex, and we generally perform the calculations on a computer or calculator. We can
note, though, that the computation involves taking, for each point, the product of the Z-scores that
correspond to the x and y values.
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EXAMPLE 8.6

Take a look at Figure 8.6 on page 424. How would the correlation between head length and total
body length of possums change if head length were measured in cm rather than mm? What if head
length were measured in inches rather than mm?

Here, changing the units of y corresponds to multiplying all the y values by a certain number. This
would change the mean and the standard deviation of y, but it would not change the correlation.
To see this, imagine dividing every number on the vertical axis by 10. The units of y are now in cm
rather than in mm, but the graph has remain exactly the same. The units of y have changed, by the
relative distance of the y values about the mean are the same; that is, the Z-scores corresponding
to the y values have remained the same.

CHANGING UNITS OFXXX AND YYY DOES NOT AFFECT THE CORRELATION

The correlation, r, between two variables is not dependent upon the units in which the variables
are recorded. Correlation itself has no units.

Correlation is intended to quantify the strength of a linear trend. Nonlinear trends, even when
strong, sometimes produce correlations that do not reflect the strength of the relationship; see three
such examples in Figure 8.10.

r = −0.23

y

r = 0.31

y

r = 0.50

Figure 8.10: Sample scatterplots and their correlations. In each case, there is a
strong relationship between the variables. However, the correlation is not very
strong, and the relationship is not linear.

GUIDED PRACTICE 8.7

It appears no straight line would fit any of the datasets represented in Figure 8.10. Try drawing
nonlinear curves on each plot. Once you create a curve for each, describe what is important in your
fit.4

4We’ll leave it to you to draw the lines. In general, the lines you draw should be close to most points and reflect
overall trends in the data.
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EXAMPLE 8.8

Consider the four scatterplots in Figure 8.11. In which scatterplot is the correlation between x and
y the strongest?

All four data sets have the exact same correlation of r = 0.816 as well as the same equation
for the best fit line! This group of four graphs, known as Anscombe’s Quartet, remind us that
knowing the value of the correlation does not tell us what the corresponding scatterplot looks
like. It is always important to first graph the data. Investigate Anscombe’s Quartet in Desmos:
https://www.desmos.com/calculator/paknt6oneh.

Figure 8.11: Four scatterplots from Desmos with best fit line drawn in.

http://www.openintro.org/redirect.php?go=desmos-anscombe&referrer=ahss3_pdf
http://www.openintro.org/redirect.php?go=desmos-anscombe&referrer=ahss3_pdf
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Section summary

• In Chapter 2 we introduced a bivariate display called a scatterplot, which shows the relation-
ship between two numerical variables. When we use x to predict y, we call x the explanatory
variable or predictor variable, and we call y the response variable.

• A linear model for bivariate numerical data can be useful for prediction when the association
between the variables follows a constant, linear trend. Linear models should not be used if the
trend between the variables is curved.

• When we write a linear model, we use ŷ to indicate that it is the model or the prediction. The
value ŷ can be understood as a prediction for y based on a given x, or as an average of the
y values for a given x.

• The residual is the error between the true value and the modeled value, computed as y − ŷ.
The order of the difference matters, and the sign of the residual will tell us if the model
overpredicted or underpredicted a particular data point.

• The symbol s in a linear model is used to denote the standard deviation of the residuals, and
it measures the typical prediction error by the model.

• A residual plot is a scatterplot with the residuals on the vertical axis. The residuals are often
plotted against x on the horizontal axis, but they can also be plotted against y, ŷ, or other
variables. Two important uses of a residual plot are the following.

– Residual plots help us see patterns in the data that may not have been apparent in the
scatterplot.

– The standard deviation of the residuals is easier to estimate from a residual plot than
from the original scatterplot.

• Correlation, denoted with the letter r, measures the strength and direction of a linear rela-
tionship. The following are some important facts about correlation.

– The value of r is always between −1 and 1, inclusive, with an r = −1 indicating a perfect
negative relationship (points fall exactly along a line that has negative slope) and an
r = 1 indicating a perfect positive relationship (points fall exactly along a line that has
positive slope).

– An r = 0 indicates no linear association between the variables, though there may well
exist a quadratic or other type of association.

– Just like Z-scores, the correlation has no units. Changing the units in which x or y are
measured does not affect the correlation.

– Correlation is sensitive to outliers. Adding or removing a single point can have a big
effect on the correlation.

– As we learned previously, correlation is not causation. Even a very strong correlation
cannot prove causation; only a well-designed, controlled, randomized experiment can
prove causation.
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Exercises

8.1 Visualize the residuals. The scatterplots shown below each have a superimposed regression line. If
we were to construct a residual plot (residuals versus x) for each, describe what those plots would look like.
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8.2 Trends in the residuals. Shown below are two plots of residuals remaining after fitting a linear model to
two different sets of data. Describe important features and determine if a linear model would be appropriate
for these data. Explain your reasoning.
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8.3 Identify relationships, Part I. For each of the six plots, identify the strength of the relationship (e.g.
weak, moderate, or strong) in the data and whether fitting a linear model would be reasonable.
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8.4 Identify relationships, Part II. For each of the six plots, identify the strength of the relationship (e.g.
weak, moderate, or strong) in the data and whether fitting a linear model would be reasonable.
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8.5 Exams and grades. The two scatterplots below show the relationship between final and mid-semester
exam grades recorded during several years for a Statistics course at a university.

(a) Based on these graphs, which of the two exams has the strongest correlation with the final exam grade?
Explain.

(b) Can you think of a reason why the correlation between the exam you chose in part (a) and the final
exam is higher?
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8.6 Spouses, Part I. The Great Britain Office of Population Census and Surveys once collected data on a
random sample of 170 married women in Britain, recording the age (in years) and heights (converted here to
inches) of the women and their spouses.5 The scatterplot on the left shows the spouse’s age plotted against
the woman’s age, and the plot on the right shows spouse’s height plotted against the woman’s height.

Woman's age (in years)

S
po

us
e'

s 
ag

e 
(in

 y
ea

rs
)

20

40

60

20 40 60
Woman's height (in inches)

S
po

us
e'

s 
he

ig
ht

 (
in

 in
ch

es
)

60

65

70

75

55 60 65 70

(a) Describe the relationship between the ages of women in the sample and their spouses’ ages.

(b) Describe the relationship between the heights of women in the sample and their spouses’ heights.

(c) Which plot shows a stronger correlation? Explain your reasoning.

(d) Data on heights were originally collected in centimeters, and then converted to inches. Does this con-
version affect the correlation between heights of women in the sample and their spouses’ heights?

8.7 Match the correlation, Part I. Match each correlation to the corresponding scatterplot.

(a) r = −0.7

(b) r = 0.45

(c) r = 0.06

(d) r = 0.92

(1) (2) (3) (4)

8.8 Match the correlation, Part II. Match each correlation to the corresponding scatterplot.

(a) r = 0.49

(b) r = −0.48

(c) r = −0.03

(d) r = −0.85

(1) (2) (3) (4)

8.9 Speed and height. 1,302 UCLA students were asked to fill out a survey where they were asked
about their height, fastest speed they have ever driven, and gender. The scatterplot on the left displays the
relationship between height and fastest speed, and the scatterplot on the right displays the breakdown by
gender in this relationship.
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(a) Describe the relationship between height and fastest speed.

(b) Why do you think these variables are positively associated?

(c) What role does gender play in the relationship between height and fastest driving speed?

5D.J. Hand. A handbook of small data sets. Chapman & Hall/CRC, 1994.
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8.10 Guess the correlation. Eduardo and Rosie are both collecting data on number of rainy days in a
year and the total rainfall for the year. Eduardo records rainfall in inches and Rosie in centimeters. How
will their correlation coefficients compare?

8.11 The Coast Starlight, Part I. The Coast Starlight Amtrak train runs from Seattle to Los Angeles. The
scatterplot below displays the distance between each stop (in miles) and the amount of time it takes to travel
from one stop to another (in minutes).

(a) Describe the relationship between
distance and travel time.

(b) How would the relationship change if
travel time was instead measured in
hours, and distance was instead
measured in kilometers?

(c) Correlation between travel time (in
miles) and distance (in minutes) is
r = 0.636. What is the correlation
between travel time (in kilometers)
and distance (in hours)?
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8.12 Crawling babies, Part I. A study conducted at the University of Denver investigated whether babies
take longer to learn to crawl in cold months, when they are often bundled in clothes that restrict their
movement, than in warmer months.6 Infants born during the study year were split into twelve groups, one
for each birth month. We consider the average crawling age of babies in each group against the average tem-
perature when the babies are six months old (that’s when babies often begin trying to crawl). Temperature
is measured in degrees Fahrenheit (◦F) and age is measured in weeks.

(a) Describe the relationship between
temperature and crawling age.

(b) How would the relationship change if
temperature was measured in degrees
Celsius (◦C) and age was measured in
months?

(c) The correlation between temperature
in ◦F and age in weeks was r = −0.70.
If we converted the temperature to ◦C
and age to months, what would the
correlation be?
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6J.B. Benson. “Season of birth and onset of locomotion: Theoretical and methodological implications”. In: Infant
behavior and development 16.1 (1993), pp. 69–81. issn: 0163-6383.

http://www.openintro.org/redirect.php?go=textbook-birth_season_locomotion_1993&referrer=ahss3_pdf
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8.13 Body measurements, Part I. Researchers studying anthropometry collected body girth measurements
and skeletal diameter measurements, as well as age, weight, height and gender for 507 physically active
individuals.7 The scatterplot below shows the relationship between height and shoulder girth (over deltoid
muscles), both measured in centimeters.

(a) Describe the relationship between
shoulder girth and height.

(b) How would the relationship change if
shoulder girth was measured in inches
while the units of height remained in
centimeters?

90 100 110 120 130

150

160

170

180

190

200

Shoulder girth (cm)

H
ei

gh
t (

cm
)

8.14 Body measurements, Part II. The scatterplot below shows the relationship between weight measured
in kilograms and hip girth measured in centimeters from the data described in Exercise 8.13.

(a) Describe the relationship between hip
girth and weight.

(b) How would the relationship change if
weight was measured in pounds while
the units for hip girth remained in
centimeters?

80 90 100 110 120 130
40

60

80

100

Hip girth (cm)

W
ei

gh
t (

kg
)

8.15 Correlation, Part I. What would be the correlation between the ages of a set of women and their
spouses if the set of women always married someone who was

(a) 3 years younger than themselves?

(b) 2 years older than themselves?

(c) half as old as themselves?

8.16 Correlation, Part II. What would be the correlation between the annual salaries of males and females
at a company if for a certain type of position men always made

(a) $5,000 more than women?

(b) 25% more than women?

(c) 15% less than women?

7G. Heinz et al. “Exploring relationships in body dimensions”. In: Journal of Statistics Education 11.2 (2003).

http://www.openintro.org/redirect.php?go=ahss_eoce_sol-corr_husband_wife_age&referrer=ahss3_pdf
http://www.openintro.org/redirect.php?go=textbook-body_dim_2003&referrer=ahss3_pdf
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8.2 Fitting a line by least squares regression

In this section, we answer the following questions:

• How well can we predict financial aid based on family income for a particular college?

• How does one find, interpret, and apply the least squares regression line?

• How do we measure the fit of a model and compare different models to each other?

• Why do models sometimes make predictions that are ridiculous or impossible?

Learning objectives

1. Calculate the slope and y-intercept of the least squares regression line using the relevant

summary statistics. Interpret these quantities in context.

2. Understand why the least squares regression line is called the least squares regression line.

3. Interpret the explained variance R2.

4. Understand the concept of extrapolation and why it is dangerous.

5. Identify outliers and influential points in a scatterplot.

8.2.1 An objective measure for finding the best line

Fitting linear models by eye is open to criticism since it is based on an individual preference.
In this section, we use least squares regression as a more rigorous approach.

This section considers family income and gift aid data from a random sample of fifty students
in the freshman class of Elmhurst College in Illinois. Gift aid is financial aid that does not need to
be paid back, as opposed to a loan. A scatterplot of the data is shown in Figure 8.12 along with two
linear fits. The lines follow a negative trend in the data; students who have higher family incomes
tended to have lower gift aid from the university.
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Figure 8.12: Gift aid and family income for a random sample of 50 freshman
students from Elmhurst College. Two lines are fit to the data, the solid line being
the least squares line.
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We begin by thinking about what we mean by “best”. Mathematically, we want a line that has
small residuals. Perhaps our criterion could minimize the sum of the residual magnitudes:

|y1 − ŷ1|+ |y2 − ŷ2|+ · · ·+ |yn − ŷn|

which we could accomplish with a computer program. The resulting dashed line shown in Figure 8.12
demonstrates this fit can be quite reasonable. However, a more common practice is to choose the
line that minimizes the sum of the squared residuals:

(y1 − ŷ1)2 + (y2 − ŷ2)2 + · · ·+ (yn − ŷn)2

The line that minimizes the sum of the squared residuals is represented as the solid line in Figure 8.12.
This is commonly called the least squares line.

Both lines seem reasonable, so why do data scientists prefer the least squares regression line?
One reason is that it is easier to compute by hand and in most statistical software. Another, and
more compelling, reason is that in many applications, a residual twice as large as another residual
is more than twice as bad. For example, being off by 4 is usually more than twice as bad as being
off by 2. Squaring the residuals accounts for this discrepancy.

In Figure 8.13, we imagine the squared error about a line as actual squares. The least squares
regression line minimizes the sum of the areas of these squared errors. In the figure, the sum of the
squared error is 4 + 1 + 1 = 6. There is no other line about which the sum of the squared error will
be smaller.

Figure 8.13: A visualization of least squares regression using Desmos. Try out this
and other interactive Desmos activities at openintro.org/ahss/desmos.

http://www.openintro.org/redirect.php?go=desmos-leastsquares&referrer=ahss3_pdf
http://www.openintro.org/redirect.php?go=openintro-ahss-desmos&referrer=ahss3_pdf
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8.2.2 Finding the least squares line

For the Elmhurst College data, we could fit a least squares regression line for predicting gift
aid based on a student’s family income and write the equation as:

âid = a+ b× family income

Here a is the y-intercept of the least squares regression line and b is the slope of the least squares
regression line. a and b are both statistics that can be calculated from the data. In the next section
we will consider the corresponding parameters that they statistics attempt to estimate.

We can enter all of the data into a statistical software package and easily find the values of a
and b. However, we can also calculate these values by hand, using only the summary statistics.

• The slope of the least squares line is given by

b = r
sy
sx

where r is the correlation between the variables x and y, and sx and sy are the sample standard
deviations of x, the explanatory variable, and y, the response variable.

• The point of averages (x̄, ȳ) is always on the least squares line. Plugging this point in for x
and y in the least squares equation and solving for a gives

ȳ = a+ bx̄ a = ȳ − bx̄

FINDING THE SLOPE AND INTERCEPT OF THE LEAST SQUARES REGRESSION LINE

The least squares regression line for predicting y based on x can be written as: ŷ = a+ bx.

b = r
sy
sx

ȳ = a+ bx̄

We first find b, the slope, and then we solve for a, the y-intercept.

GUIDED PRACTICE 8.9

Figure 8.14 shows the sample means for the family income and gift aid as $101,800 and $19,940,
respectively. Plot the point (101.8, 19.94) on Figure 8.12 to verify it falls on the least squares line
(the solid line).8

family income, in $1000s (“x”) gift aid, in $1000s (“y”)

mean x̄ = 101.8 ȳ = 19.94
sd sx = 63.2 sy = 5.46

r = −0.499

Figure 8.14: Summary statistics for family income and gift aid.

8If you need help finding this location, draw a straight line up from the x-value of 100 (or thereabout). Then draw
a horizontal line at 20 (or thereabout). These lines should intersect on the least squares line.



440 CHAPTER 8. INTRODUCTION TO LINEAR REGRESSION

EXAMPLE 8.10

Using the summary statistics in Figure 8.14, find the equation of the least squares regression line
for predicting gift aid based on family income.

b = r
sy
sx

= (−0.499)
5.46

63.2
= −0.0431

a = ȳ − bx̄ = 19.94− (−0.0431)(101.8) = 24.3

ŷ = 24.3− 0.0431x or âid = 24.3− 0.0431× family income

EXAMPLE 8.11

Say we wanted to predict a student’s family income based on the amount of gift aid that they
received. Would this least squares regression line be the following?

aid = 24.3− 0.0431× ̂family income

No. The equation we found was for predicting aid, not for predicting family income. We would have
to calculate a new regression line, letting y be family income and x be aid. This would give us:

b = r
sy
sx

= (−0.499)
63.2

5.46
= −5.776

a = ȳ − bx̄ = 19.94− (−5.776)(101.8) = 607.9

ŷ = 607.3− 5.776x or ̂family income = 607.3− 5.776× aid

We mentioned earlier that a computer is usually used to compute the least squares line. A
summary table based on computer output is shown in Figure 8.15 for the Elmhurst College data.
The first column of numbers provides estimates for b0 and b1, respectively. Compare these to the
result from Example 8.2.2.

Estimate Std. Error t value Pr(>|t|)
(Intercept) 24.3193 1.2915 18.83 0.0000
family income -0.0431 0.0108 -3.98 0.0002

Figure 8.15: Summary of least squares fit for the Elmhurst College data. Compare
the parameter estimates in the first column to the results of Guided Practice 8.2.2.

EXAMPLE 8.12

Examine the second, third, and fourth columns in Figure 8.15. Can you guess what they represent?

We’ll look at the second row, which corresponds to the slope. The first column, Estimate = -0.0431,
tells us our best estimate for the slope of the population regression line. We call this point estimate
b. The second column, Std. Error = 0.0108, is the standard error of this point estimate. The third
column, t value = -3.98, is the T test statistic for the null hypothesis that the slope of the population
regression line = 0. The last column, Pr(>|t|) = 0.0002, is the p-value for this two-sided T -test. We
will get into more of these details in Section 8.4.
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EXAMPLE 8.13

Suppose a high school senior is considering Elmhurst College. Can she simply use the linear equation
that we have found to calculate her financial aid from the university?

No. Using the equation will provide a prediction or estimate. However, as we see in the scatterplot,
there is a lot of variability around the line. While the linear equation is good at capturing the trend
in the data, there will be significant error in predicting an individual student’s aid. Additionally,
the data all come from one freshman class, and the way aid is determined by the university may
change from year to year.

8.2.3 Interpreting the coefficients of a regression line

Interpreting the coefficients in a regression model is often one of the most important steps in
the analysis.

EXAMPLE 8.14

The slope for the Elmhurst College data for predicting gift aid based on family income was calculated
as -0.0431. Intepret this quantity in the context of the problem.

You might recall from an algebra course that slope is change in y over change in x. Here, both x
and y are in thousands of dollars. So if x is one unit or one thousand dollars higher, the line will
predict that y will change by 0.0431 thousand dollars. In other words, for each additional thousand
dollars of family income, on average, students receive 0.0431 thousand, or $43.10 less in gift aid.
Note that a higher family income corresponds to less aid because the slope is negative.

EXAMPLE 8.15

The y-intercept for the Elmhurst College data for predicting gift aid based on family income was
calculated as 24.3. Intepret this quantity in the context of the problem.

The intercept a describes the predicted value of y when x = 0. The predicted gift aid is 24.3
thousand dollars if a student’s family has no income. The meaning of the intercept is relevant to
this application since the family income for some students at Elmhurst is $0. In other applications,
the intercept may have little or no practical value if there are no observations where x is near zero.
Here, it would be acceptable to say that the average gift aid is 24.3 thousand dollars among students
whose family have 0 dollars in income.

INTERPRETING COEFFICIENTS IN A LINEAR MODEL

• The slope, b, describes the average increase or decrease in the y variable if the explanatory
variable x is one unit larger.

• The y-intercept, a, describes the predicted outcome of y if x = 0. The linear model must
be valid all the way to x = 0 for this to make sense, which in many applications is not
the case.
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GUIDED PRACTICE 8.16

In the previous chapter, we encountered a data set that compared the price of new textbooks for
UCLA courses at the UCLA Bookstore and on Amazon. We fit a linear model for predicting price
at UCLA Bookstore from price on Amazon and we get:

ŷ = 1.86 + 1.03x

where x is the price on Amazon and y is the price at the UCLA bookstore. Interpret the coefficients
in this model and discuss whether the interpretations make sense in this context.9

GUIDED PRACTICE 8.17

Can we conclude that if Amazon raises the price of a textbook by 1 dollar, the UCLA Bookstore
will raise the price of the textbook by $1.03?10

EXERCISE CAUTION WHEN INTERPRETING COEFFICIENTS OF A LINEAR MODEL

• The slope tells us only the average change in y for each unit change in x; it does not
tell us how much y might change based on a change in x for any particular individual.
Moreover, in most cases, the slope cannot be interpreted in a causal way.

• When a value of x = 0 doesn’t make sense in an application, then the interpretation of
the y-intercept won’t have any practical meaning.

8.2.4 Extrapolation is treacherous

When those blizzards hit the East Coast this winter, it proved to my satisfaction that global warming

was a fraud. That snow was freezing cold. But in an alarming trend, temperatures this spring have risen.

Consider this: On February 6th it was 10 degrees. Today it hit almost 80. At this rate, by August it will be

220 degrees. So clearly folks the climate debate rages on.

Stephen Colbert
April 6th, 2010 11

Linear models can be used to approximate the relationship between two variables. However,
these models have real limitations. Linear regression is simply a modeling framework. The truth is
almost always much more complex than our simple line. For example, we do not know how the data
outside of our limited window will behave.

9The y-intercept is 1.86 and the units of y are in dollars. This tells us that when a textbook costs 0 dollars on
Amazon, the predicted price of the textbook at the UCLA Bookstore is 1.86 dollars. This does not make sense as
Amazon does not sell any $0 textbooks. The slope is 1.03, with units (dollars)/(dollars). On average, for every extra
dollar that a book costs on Amazon, it costs an extra 1.03 dollars at the UCLA Bookstore. This interpretation does
make sense in this context.

10No. The slope describes the overall trend. This is observational data; a causal conclusion cannot be drawn.
Remember, a causal relationship can only be concluded by a well-designed randomized, controlled experiment. Ad-
ditionally, there may be large variation in the points about the line. The slope does not tell us how much y might
change based on a change in x for a particular textbook.

11www.cc.com/video-clips/l4nkoq/

http://www.openintro.org/redirect.php?go=textbook-colbert_extrapolation&referrer=ahss3_pdf
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EXAMPLE 8.18

Use the model âid = 24.3− 0.0431× family income to estimate the aid of another freshman student
whose family had income of $1 million.

Recall that the units of family income are in $1000s, so we want to calculate the aid for
family income = 1000:

âid = 24.3− 0.0431× family income

âid = 24.3− 0.431(1000) = −18.8

The model predicts this student will have -$18,800 in aid (!). Elmhurst College cannot (or at least
does not) require any students to pay extra on top of tuition to attend.

Using a model to predict y-values for x-values outside the domain of the original data is called
extrapolation. Generally, a linear model is only an approximation of the real relationship between
two variables. If we extrapolate, we are making an unreliable bet that the approximate linear
relationship will be valid in places where it has not been analyzed.

8.2.5 Using R2R2R2 to describe the strength of a fit

We evaluated the strength of the linear relationship between two variables earlier using the
correlation, r. However, it is more common to explain the fit of a model using R2, called R-
squared or the explained variance. If provided with a linear model, we might like to describe
how closely the data cluster around the linear fit.

Family Income ($1000s)
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Figure 8.16: Gift aid and family income for a random sample of 50 freshman
students from Elmhurst College, shown with the least squares regression line (ŷ)
and the average line (ȳ).

We are interested in how well a model accounts for or explains the location of the y values.
The R2 of a linear model describes how much smaller the variance (in the y direction) about the
regression line is than the variance about the horizontal line ȳ. For example, consider the Elmhurst
College data, shown in Figure 8.16. The variance of the response variable, aid received, is s2

aid = 29.8.
However, if we apply our least squares line, then this model reduces our uncertainty in predicting
aid using a student’s family income. The variability in the residuals describes how much variation
remains after using the model: s2

RES
= 22.4. We could say that the reduction in the variance was:

s2
aid − s2

RES

s2
aid

=
29.8− 22.4

29.8
=

7.5

29.8
= 0.25
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If we used the simple standard deviation of the residuals, this would be exactly R2. However, the
standard way of computing the standard deviation of the residuals is slightly more sophisticated.12

To avoid any trouble, we can instead use a sum of squares method. If we call the sum of the squared
errors about the regression line SSRes and the sum of the squared errors about the mean SSM , we
can define R2 as follows:

R2 =
SSM − SSRes

SSM
= 1− SSRes

SSM

(a) (b)

Figure 8.17: (a) The regression line is equivalent to ȳ; R2 = 0. (b) The regression
line passes through all of the points; R2 = 1. Try out this and other interactive
Desmos activities at openintro.org/ahss/desmos.

GUIDED PRACTICE 8.19

Using the formula for R2, confirm that in Figure 8.17 (a), R2 = 0 and that in Figure 8.17 (b),
R2 = 1.13

R2R2R2 IS THE EXPLAINED VARIANCE

R2 is always between 0 and 1, inclusive. It tells us the proportion of variation in the y values
that is explained by a regression model. The higher the value of R2, the better the model
“explains” the response variable.

The value of R2 is, in fact, equal to r2, where r is the correlation. This means that r = ±
√
R2.

Use this fact to answer the next two practice problems.

GUIDED PRACTICE 8.20

If a linear model has a very strong negative relationship with a correlation of -0.97, how much of
the variation in the response variable is explained by the linear model?14

GUIDED PRACTICE 8.21

If a linear model has an R2 or explained variance of 0.94, what is the correlation?15

12In computing the standard deviation of the residuals, we divide by n− 2 rather than by n− 1 to account for the
n− 2 degrees of freedom.

13(a) SSRes = SSM = (−1)2 + (2)2 + (−1)2 = 6, so R2 = 1− 6
6

= 0. (b) R2 = 1− 0
8

.
14R2 = (−0.97)2 = 0.94 or 94%. 94% of the variation in y is explained by the linear model.
15We take the square root of R2 and get 0.97, but we must be careful, because r could be 0.97 or -0.97. Without

knowing the slope or seeing the scatterplot, we have no way of knowing if r is positive or negative.

http://www.openintro.org/redirect.php?go=desmos-rsquared&referrer=ahss3_pdf
http://www.openintro.org/redirect.php?go=openintro-ahss-desmos&referrer=ahss3_pdf
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8.2.6 Technology: linear correlation and regression

Get started quickly with this Desmos LinReg Calculator (available at openintro.org/ahss/desmos).

Calculator instructions

TI-84: FINDING aaa, bbb,R2R2R2, AND rrr FOR A LINEAR MODEL

Use STAT, CALC, LinReg(a + bx).

1. Choose STAT.

2. Right arrow to CALC.

3. Down arrow and choose 8:LinReg(a+bx).

• Caution: choosing 4:LinReg(ax+b) will reverse a and b.

4. Let Xlist be L1 and Ylist be L2 (don’t forget to enter the x and y values in L1 and L2

before doing this calculation).

5. Leave FreqList blank.

6. Leave Store RegEQ blank.

7. Choose Calculate and hit ENTER, which returns:

a a, the y-intercept of the best fit line
b b, the slope of the best fit line
r2 R2, the explained variance
r r, the correlation coefficient

TI-83: Do steps 1-3, then enter the x list and y list separated by a comma, e.g. LinReg(a+bx)
L1, L2, then hit ENTER.

http://www.openintro.org/redirect.php?go=desmos-linreg&referrer=ahss3_pdf
http://www.openintro.org/redirect.php?go=openintro-ahss-desmos&referrer=ahss3_pdf
http://www.openintro.org/redirect.php?go=desmos-linreg&referrer=ahss3_pdf
http://www.openintro.org/redirect.php?go=TI84_CALCULATING_REGRESSION_SUMMARY_STATISTICS&referrer=ahss3_pdf
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WHAT TO DO IFR2R2R2 AND rrr DO NOT SHOW UP ON A TI-83/84

If r2 and r do now show up when doing STAT, CALC, LinReg, the diagnostics must be turned
on. This only needs to be once and the diagnostics will remain on.

1. Hit 2ND 0 (i.e. CATALOG).

2. Scroll down until the arrow points at DiagnosticOn.

3. Hit ENTER and ENTER again. The screen should now say:

DiagnosticOn

Done

WHAT TO DO IF A TI-83/84 RETURNS: ERR: DIM MISMATCH

This error means that the lists, generally L1 and L2, do not have the same length.

1. Choose 1:Quit.

2. Choose STAT, Edit and make sure that the lists have the same number of entries.

CASIO FX-9750GII: FINDING aaa, bbb,R2R2R2, AND rrr FOR A LINEAR MODEL

1. Navigate to STAT (MENU button, then hit the 2 button or select STAT).

2. Enter the x and y data into 2 separate lists, e.g. x values in List 1 and y values in List

2. Observation ordering should be the same in the two lists. For example, if (5, 4) is the
second observation, then the second value in the x list should be 5 and the second value
in the y list should be 4.

3. Navigate to CALC (F2) and then SET (F6) to set the regression context.

• To change the 2Var XList, navigate to it, select List (F1), and enter the proper list
number. Similarly, set 2Var YList to the proper list.

4. Hit EXIT.

5. Select REG (F3), X (F1), and a+bx (F2), which returns:

a a, the y-intercept of the best fit line
b b, the slope of the best fit line
r r, the correlation coefficient
r2 R2, the explained variance
MSe Mean squared error, which you can ignore

If you select ax+b (F1), the a and b meanings will be reversed.

http://www.openintro.org/redirect.php?go=CASIO_CALCULATING_REGRESSION_SUMMARY_STATISTICS&referrer=ahss3_pdf
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GUIDED PRACTICE 8.22

The data set loan50, introduced in Chapter 1, contains information on randomly sampled loans
offered through Lending Club. A subset of the data matrix is shown in Figure 8.18. Use a calculator
to find the equation of the least squares regression line for predicting loan amount from total income
based on this subset.16

total income loan amount
1 59000 22000
2 60000 6000
3 75000 25000
4 75000 6000
5 254000 25000
6 67000 6400
7 28800 3000

Figure 8.18: Sample of data from loan50.

16a = 6497 and b = 0.0774, therefore ŷ = 6497 + 0.0774x.
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8.2.7 Types of outliers in linear regression

Outliers in regression are observations that fall far from the “cloud” of points. These points
are especially important because they can have a strong influence on the least squares line.

EXAMPLE 8.23

There are six plots shown in Figure 8.19 along with the least squares line and residual plots. For
each scatterplot and residual plot pair, identify any obvious outliers and note how they influence the
least squares line. Recall that an outlier is any point that doesn’t appear to belong with the vast
majority of the other points.

(1) There is one outlier far from the other points, though it only appears to slightly influence the
line.

(2) There is one outlier on the right, though it is quite close to the least squares line, which
suggests it wasn’t very influential.

(3) There is one point far away from the cloud, and this outlier appears to pull the least squares
line up on the right; examine how the line around the primary cloud doesn’t appear to fit very
well.

(4) There is a primary cloud and then a small secondary cloud of four outliers. The secondary
cloud appears to be influencing the line somewhat strongly, making the least squares line fit
poorly almost everywhere. There might be an interesting explanation for the dual clouds,
which is something that could be investigated.

(5) There is no obvious trend in the main cloud of points and the outlier on the right appears to
largely control the slope of the least squares line.

(6) There is one outlier far from the cloud, however, it falls quite close to the least squares line
and does not appear to be very influential.

Examine the residual plots in Figure 8.19. You will probably find that there is some trend in
the main clouds of (3) and (4). In these cases, the outliers influenced the slope of the least squares
lines. In (5), data with no clear trend were assigned a line with a large trend simply due to one
outlier (!).

LEVERAGE

Points that fall horizontally away from the center of the cloud tend to pull harder on the line,
so we call them points with high leverage.

Points that fall horizontally far from the line are points of high leverage; these points can
strongly influence the slope of the least squares line. If one of these high leverage points does appear
to actually invoke its influence on the slope of the line – as in cases (3), (4), and (5) of Example 8.23
– then we call it an influential point. Usually we can say a point is influential if, had we fitted the
line without it, the influential point would have been unusually far from the least squares line.

It is tempting to remove outliers. Don’t do this without a very good reason. Models that ignore
exceptional (and interesting) cases often perform poorly. For instance, if a financial firm ignored the
largest market swings – the “outliers” – they would soon go bankrupt by making poorly thought-out
investments.

DON’T IGNORE OUTLIERS WHEN FITTING A FINAL MODEL

If there are outliers in the data, they should not be removed or ignored without a good reason.
Whatever final model is fit to the data would not be very helpful if it ignores the most exceptional
cases.
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(1) (2) (3)

(4) (5) (6)

Figure 8.19: Six plots, each with a least squares line and residual plot. All data
sets have at least one outlier.
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8.2.8 Categorical predictors with two levels (special topic)

Categorical variables are also useful in predicting outcomes. Here we consider a categorical
predictor with two levels (recall that a level is the same as a category). We’ll consider eBay auctions
for a video game, Mario Kart for the Nintendo Wii, where both the total price of the auction and the
condition of the game were recorded. Here we want to predict total price based on game condition,
which takes values used and new. A plot of the auction data is shown in Figure 8.20.
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Figure 8.20: Total auction prices for the game Mario Kart, divided into used (x =
0) and new (x = 1) condition games with the least squares regression line shown.

To incorporate the game condition variable into a regression equation, we must convert the
categories into a numerical form. We will do so using an indicator variable called cond new,
which takes value 1 when the game is new and 0 when the game is used. Using this indicator
variable, the linear model may be written as

p̂rice = α+ β × cond new

The fitted model is summarized in Figure 8.21, and the model with its parameter estimates is given as

p̂rice = 42.87 + 10.90× cond new

For categorical predictors with two levels, the linearity assumption will always be satisfied. However,
we must evaluate whether the residuals in each group are approximately normal with equal variance.
Based on Figure 8.20, both of these conditions are reasonably satisfied.

Estimate Std. Error t value Pr(>|t|)
(Intercept) 42.87 0.81 52.67 0.0000
cond new 10.90 1.26 8.66 0.0000

Figure 8.21: Least squares regression summary for the Mario Kart data.

EXAMPLE 8.24

Interpret the two parameters estimated in the model for the price of Mario Kart in eBay auctions.

The intercept is the estimated price when cond new takes value 0, i.e. when the game is in used
condition. That is, the average selling price of a used version of the game is $42.87.

The slope indicates that, on average, new games sell for about $10.90 more than used games.

INTERPRETING MODEL ESTIMATES FOR CATEGORICAL PREDICTORS.

The estimated intercept is the value of the response variable for the first category (i.e. the
category corresponding to an indicator value of 0). The estimated slope is the average change
in the response variable between the two categories.
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Section summary

• We define the best fit line as the line that minimizes the sum of the squared residuals (errors)
about the line. That is, we find the line that minimizes (y1−ŷ1)2+(y2−ŷ2)2+· · ·+(yn−ŷn)2 =∑

(yi − ŷi)2. We call this line the least squares regression line.

• We write the least squares regression line in the form: ŷ = a+ bx, and we can calculate a and
b based on the summary statistics as follows:

b = r
sy
sx

and a = ȳ − bx̄.

• Interpreting the slope and y-intercept of a linear model

– The slope, b, describes the average increase or decrease in the y variable if the explanatory
variable x is one unit larger.

– The y-intercept, a, describes the average or predicted outcome of y if x = 0. The linear
model must be valid all the way to x = 0 for this to make sense, which in many applications
is not the case.

• Two important considerations about the regression line

– The regression line provides estimates or predictions, not actual values. It is important
to know how large s, the standard deviation of the residuals, is in order to know about
how much error to expect in these predictions.

– The regression line estimates are only reasonable within the domain of the data. Predict-
ing y for x values that are outside the domain, known as extrapolation, is unreliable
and may produce ridiculous results.

• Using R2 to assess the fit of the model

– R2, called R-squared or the explained variance, is a measure of how well the model
explains or fits the data. R2 is always between 0 and 1, inclusive, or between 0% and
100%, inclusive. The higher the value of R2, the better the model “fits” the data.

– The R2 for a linear model describes the proportion of variation in the y variable that is
explained by the regression line.

– R2 applies to any type of model, not just a linear model, and can be used to compare the
fit among various models.

– The correlation r = −
√
R2 or r =

√
R2. The value of R2 is always positive and cannot

tell us the direction of the association. If finding r based on R2, make sure to use either
the scatterplot or the slope of the regression line to determine the sign of r.

• When a residual plot of the data appears as a random cloud of points, a linear model is
generally appropriate. If a residual plot of the data has any type of pattern or curvature, such
as a ∪-shape, a linear model is not appropriate.

• Outliers in regression are observations that fall far from the “cloud” of points.

• An influential point is a point that has a big effect or pull on the slope of the regression line.
Points that are outliers in the x direction will have more pull on the slope of the regression
line and are more likely to be influential points.
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Exercises

8.17 Units of regression. Consider a regression predicting weight (kg) from height (cm) for a sample of
adult males. What are the units of the correlation coefficient, the intercept, and the slope?

8.18 Which is higher? Determine if I or II is higher or if they are equal. Explain your reasoning. For a
regression line, the uncertainty associated with the slope estimate, b, is higher when

I. there is a lot of scatter around the regression line or

II. there is very little scatter around the regression line

8.19 Over-under, Part I. Suppose we fit a regression line to predict the shelf life of an apple based on its
weight. For a particular apple, we predict the shelf life to be 4.6 days. The apple’s residual is -0.6 days. Did
we over or under estimate the shelf-life of the apple? Explain your reasoning.

8.20 Over-under, Part II. Suppose we fit a regression line to predict the number of incidents of skin cancer
per 1,000 people from the number of sunny days in a year. For a particular year, we predict the incidence of
skin cancer to be 1.5 per 1,000 people, and the residual for this year is 0.5. Did we over or under estimate
the incidence of skin cancer? Explain your reasoning.

8.21 Tourism spending. The Association of Turkish Travel Agencies reports the number of foreign tourists
visiting Turkey and tourist spending by year.17 Three plots are provided: scatterplot showing the relationship
between these two variables along with the least squares fit, residuals plot, and histogram of residuals.
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(a) Describe the relationship between number of tourists and spending.

(b) What are the explanatory and response variables?

(c) Why might we want to fit a regression line to these data?

(d) Do the data meet the conditions required for fitting a least squares line? In addition to the scatterplot,
use the residual plot and histogram to answer this question.

17Association of Turkish Travel Agencies, Foreign Visitors Figure & Tourist Spendings By Years.

http://www.openintro.org/redirect.php?go=textbook-turkey_tourist_spending&referrer=ahss3_pdf


8.2. FITTING A LINE BY LEAST SQUARES REGRESSION 453

8.22 Nutrition at Starbucks, Part I. The scatterplot below shows the relationship between the number of
calories and amount of carbohydrates (in grams) Starbucks food menu items contain.18 Since Starbucks only
lists the number of calories on the display items, we are interested in predicting the amount of carbs a menu
item has based on its calorie content.
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(a) Describe the relationship between number of calories and amount of carbohydrates (in grams) that
Starbucks food menu items contain.

(b) In this scenario, what are the explanatory and response variables?

(c) Why might we want to fit a regression line to these data?

(d) Do these data meet the conditions required for fitting a least squares line?

8.23 The Coast Starlight, Part II. Exercise 8.11 introduces data on the Coast Starlight Amtrak train
that runs from Seattle to Los Angeles. The mean travel time from one stop to the next on the Coast Starlight
is 129 mins, with a standard deviation of 113 minutes. The mean distance traveled from one stop to the
next is 108 miles with a standard deviation of 99 miles. The correlation between travel time and distance is
0.636.

(a) Write the equation of the regression line for predicting travel time.

(b) Interpret the slope and the intercept in this context.

(c) Calculate R2 of the regression line for predicting travel time from distance traveled for the Coast
Starlight, and interpret R2 in the context of the application.

(d) The distance between Santa Barbara and Los Angeles is 103 miles. Use the model to estimate the time
it takes for the Starlight to travel between these two cities.

(e) It actually takes the Coast Starlight about 168 mins to travel from Santa Barbara to Los Angeles.
Calculate the residual and explain the meaning of this residual value.

(f) Suppose Amtrak is considering adding a stop to the Coast Starlight 500 miles away from Los Angeles.
Would it be appropriate to use this linear model to predict the travel time from Los Angeles to this
point?

8.24 Body measurements, Part III. Exercise 8.13 introduces data on shoulder girth and height of a group
of individuals. The mean shoulder girth is 107.20 cm with a standard deviation of 10.37 cm. The mean
height is 171.14 cm with a standard deviation of 9.41 cm. The correlation between height and shoulder girth
is 0.67.

(a) Write the equation of the regression line for predicting height.

(b) Interpret the slope and the intercept in this context.

(c) Calculate R2 of the regression line for predicting height from shoulder girth, and interpret it in the
context of the application.

(d) A randomly selected student from your class has a shoulder girth of 100 cm. Predict the height of this
student using the model.

(e) The student from part (d) is 160 cm tall. Calculate the residual, and explain what this residual means.

(f) A one year old has a shoulder girth of 56 cm. Would it be appropriate to use this linear model to predict
the height of this child?

18Source: Starbucks.com, collected on March 10, 2011,
www.starbucks.com/menu/nutrition.

http://www.openintro.org/redirect.php?go=tableau-starbucks-p1&referrer=ahss3_pdf
http://www.openintro.org/redirect.php?go=tableau-starbucks-p1&referrer=ahss3_pdf
http://www.openintro.org/redirect.php?go=ahss_eoce_sol-coast_starlight_reg&referrer=ahss3_pdf
http://www.openintro.org/redirect.php?go=textbook-starbucks_com_menu_nutrition&referrer=ahss3_pdf
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8.25 Murders and poverty, Part I. The following regression output is for predicting annual murders
per million from percentage living in poverty in a random sample of 20 metropolitan areas.

Estimate Std. Error t value Pr(>|t|)
(Intercept) -29.901 7.789 -3.839 0.001

poverty% 2.559 0.390 6.562 0.000
s =

5.512 R2 = 70.52% R2
adj = 68.89%

(a) Write out the linear model.

(b) Interpret the intercept.

(c) Interpret the slope.

(d) Interpret R2.

(e) Calculate the correlation coefficient.
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8.26 Cats, Part I. The following regression output is for predicting the heart weight (in g) of cats from
their body weight (in kg). The coefficients are estimated using a dataset of 144 domestic cats.

Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.357 0.692 -0.515 0.607

body wt 4.034 0.250 16.119 0.000
s =

1.452 R2 = 64.66% R2
adj = 64.41%

(a) Write out the linear model.

(b) Interpret the intercept.

(c) Interpret the slope.

(d) Interpret R2.

(e) Calculate the correlation coefficient.
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8.27 Outliers, Part I. Identify the outliers in the scatterplots shown below, and determine what type of
outliers they are. Explain your reasoning.

(a) (b) (c)

http://www.openintro.org/redirect.php?go=ahss_eoce_sol-murders_poverty_reg&referrer=ahss3_pdf
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8.28 Outliers, Part II. Identify the outliers in the scatterplots shown below and determine what type of
outliers they are. Explain your reasoning.

(a) (b) (c)

8.29 Urban homeowners, Part I. The scatterplot below shows the percent of families who own their home
vs. the percent of the population living in urban areas.19 There are 52 observations, each corresponding to
a state in the US. Puerto Rico and District of Columbia are also included.

(a) Describe the relationship between the percent of
families who own their home and the percent of
the population living in urban areas.

(b) The outlier at the bottom right corner is District
of Columbia, where 100% of the population is con-
sidered urban. What type of an outlier is this ob-
servation?
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8.30 Crawling babies, Part II. Exercise 8.12 introduces data on the average monthly temperature during
the month babies first try to crawl (about 6 months after birth) and the average first crawling age for babies
born in a given month. A scatterplot of these two variables reveals a potential outlying month when the
average temperature is about 53◦F and average crawling age is about 28.5 weeks. Does this point have high
leverage? Is it an influential point?

19United States Census Bureau, 2010 Census Urban and Rural Classification and Urban Area Criteria and Housing
Characteristics: 2010.

http://www.openintro.org/redirect.php?go=textbook-census_urban_rural_2010&referrer=ahss3_pdf
http://www.openintro.org/redirect.php?go=textbook-housing_char_2010&referrer=ahss3_pdf
http://www.openintro.org/redirect.php?go=textbook-housing_char_2010&referrer=ahss3_pdf
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8.3 Transformations for skewed data

County population size among the counties in the US is very strongly right skewed. Can we apply a

transformation to make the distribution more symmetric? How would such a transformation affect

the scatterplot and residual plot when another variable is graphed against this variable? In this

section, we will see the power of transformations for very skewed data.

Learning objectives

1. See how a log transformation can bring symmetry to an extremely skewed variable.

2. Recognize that data can often be transformed to produce a linear relationship, and that this

transformation often involves log of the y-values and sometimes log of the x-values.

3. Use residual plots to assess whether a linear model for transformed data is reasonable.

8.3.1 Introduction to transformations

EXAMPLE 8.25

Consider the histogram of county populations shown in Figure 8.22(a), which shows extreme skew.
What isn’t useful about this plot?

Nearly all of the data fall into the left-most bin, and the extreme skew obscures many of the
potentially interesting details in the data.

There are some standard transformations that may be useful for strongly right skewed data
where much of the data is positive but clustered near zero. A transformation is a rescaling of
the data using a function. For instance, a plot of the logarithm (base 10) of county populations
results in the new histogram in Figure 8.22(b). This data is symmetric, and any potential outliers
appear much less extreme than in the original data set. By reigning in the outliers and extreme
skew, transformations like this often make it easier to build statistical models against the data.

Transformations can also be applied to one or both variables in a scatterplot. A scatterplot of
the population change from 2010 to 2017 against the population in 2010 is shown in Figure 8.23(a).
In this first scatterplot, it’s hard to decipher any interesting patterns because the population variable
is so strongly skewed. However, if we apply a log10 transformation to the population variable, as
shown in Figure 8.23(b), a positive association between the variables is revealed. While fitting a line
to predict population change (2010 to 2017) from population (in 2010) does not seem reasonable,
fitting a line to predict population from log10(population) does seem reasonable.

Transformations other than the logarithm can be useful, too. For instance, the square root
(
√

original observation) and inverse ( 1
original observation ) are commonly used by data scientists. Com-

mon goals in transforming data are to see the data structure differently, reduce skew, assist in
modeling, or straighten a nonlinear relationship in a scatterplot.
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Figure 8.22: (a) A histogram of the populations of all US counties. (b) A histogram
of log10-transformed county populations. For this plot, the x-value corresponds to
the power of 10, e.g. “4” on the x-axis corresponds to 104 = 10,000.
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Figure 8.23: (a) Scatterplot of population change against the population before
the change. (b) A scatterplot of the same data but where the population size has
been log-transformed.
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8.3.2 Transformations to achieve linearity
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Figure 8.24: Variable y is plotted against x. A nonlinear relationship is evident
by the ∪-pattern shown in the residual plot. The curvature is also visible in the
original plot.

EXAMPLE 8.26

Consider the scatterplot and residual plot in Figure 8.24. The regression output is also provided.
Is the linear model ŷ = −52.3564 + 2.7842x a good model for the data?

The regression equation is

y = -52.3564 + 2.7842 x

Predictor Coef SE Coef T P

Constant -52.3564 7.2757 -7.196 3e-08

x 2.7842 0.1768 15.752 < 2e-16

S = 13.76 R-Sq = 88.26% R-Sq(adj) = 87.91%

We can note the R2 value is fairly large. However, this alone does not mean that the model is good.
Another model might be much better. When assessing the appropriateness of a linear model, we
should look at the residual plot. The ∪-pattern in the residual plot tells us the original data is
curved. If we inspect the two plots, we can see that for small and large values of x we systematically
underestimate y, whereas for middle values of x, we systematically overestimate y. The curved trend
can also be seen in the original scatterplot. Because of this, the linear model is not appropriate, and
it would not be appropriate to perform a t-test for the slope because the conditions for inference are
not met. However, we might be able to use a transformation to linearize the data.

Regression analysis is easier to perform on linear data. When data are nonlinear, we sometimes
transform the data in a way that makes the resulting relationship linear. The most common
transformation is log of the y values. Sometimes we also apply a transformation to the x values.
We generally use the residuals as a way to evaluate whether the transformed data are more linear.
If so, we can say that a better model has been found.
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EXAMPLE 8.27

Using the regression output for the transformed data, write the new linear regression equation.

The regression equation is

log(y) = 1.722540 + 0.052985 x

Predictor Coef SE Coef T P

Constant 1.722540 0.056731 30.36 < 2e-16

x 0.052985 0.001378 38.45 < 2e-16

S = 0.1073 R-Sq = 97.82% R-Sq(adj) = 97.75%

The linear regression equation can be written as: ̂log(y) = 1.723 + 0.053x
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Figure 8.25: A plot of log(y) against x. The residuals don’t show any evident
patterns, which suggests the transformed data is well-fit by a linear model.

GUIDED PRACTICE 8.28

Which of the following statements are true? There may be more than one.20

(a) There is an apparent linear relationship between x and y.

(b) There is an apparent linear relationship between x and ̂log(y).

(c) The model provided by Regression I (ŷ = −52.3564 + 2.7842x) yields a better fit.

(d) The model provided by Regression II ( ̂log(y) = 1.723 + 0.053x) yields a better fit.

20Part (a) is false since there is a nonlinear (curved) trend in the data. Part (b) is true. Since the transformed
data shows a stronger linear trend, it is a better fit, i.e. Part (c) is false, and Part (d) is true.
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Section summary

• A transformation is a rescaling of the data using a function. When data are very skewed, a
log transformation often results in more symmetric data.

• Regression analysis is easier to perform on linear data. When data are nonlinear, we some-
times transform the data in a way that results in a linear relationship. The most common
transformation is log of the y-values. Sometimes we also apply a transformation to the x-values.

• To assess the model, we look at the residual plot of the transformed data. If the residual
plot of the original data has a pattern, but the residual plot of the transformed data has no
pattern, a linear model for the transformed data is reasonable, and the transformed model
provides a better fit than the simple linear model.
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Exercises

8.31 Used trucks. The scatterplot below shows the relationship between year and price (in thousands of
$) of a random sample of 42 pickup trucks. Also shown is a residuals plot for the linear model for predicting
price from year.
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(a) Describe the relationship between these two variables and comment on whether a linear model is appro-
priate for modeling the relationship between year and price.

(b) The scatterplot below shows the relationship between logged (natural log) price and year of these trucks,
as well as the residuals plot for modeling these data. Comment on which model (linear model from earlier
or logged model presented here) is a better fit for these data.
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(c) The output for the logged model is given below. Interpret the slope in context of the data.

Estimate Std. Error t value Pr(>|t|)
(Intercept) -271.981 25.042 -10.861 0.000

Year 0.137 0.013 10.937 0.000

http://www.openintro.org/redirect.php?go=tableau-usedtrucks&referrer=ahss3_pdf
http://www.openintro.org/redirect.php?go=tableau-usedtrucks&referrer=ahss3_pdf
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8.32 Income and hours worked. The scatterplot below shows the relationship between income and years
worked for a random sample of 787 Americans. Also shown is a residuals plot for the linear model for
predicting income from hours worked. The data come from the 2012 American Community Survey.21
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(a) Describe the relationship between these two variables and comment on whether a linear model is appro-
priate for modeling the relationship between year and price.

(b) The scatterplot below shows the relationship between logged (natural log) income and hours worked, as
well as the residuals plot for modeling these data. Comment on which model (linear model from earlier
or logged model presented here) is a better fit for these data.
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(c) The output for the logged model is given below. Interpret the slope in context of the data.

Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.017 0.113 9.000 0.000

hrs work 0.058 0.003 21.086 0.000

21United States Census Bureau. Summary File. 2012 American Community Survey. U.S. Census Bureau’s
American Community Survey Office, 2013. Web.

http://www.openintro.org/redirect.php?go=tableau_income_hours_worked&referrer=ahss3_pdf
http://www.openintro.org/redirect.php?go=tableau_income_hours_worked&referrer=ahss3_pdf
http://www.openintro.org/redirect.php?go=textbook-ACS_2012&referrer=ahss3_pdf


8.4. INFERENCE FOR THE SLOPE OF A REGRESSION LINE 463

8.4 Inference for the slope of a regression line

Here we encounter our last confidence interval and hypothesis test procedures, this time for making

inferences about the slope of the population regression line. We can use this to answer questions

such as the following:

• Is the unemployment rate a significant linear predictor for the loss of the President’s party in

the House of Representatives?

• On average, how much less in college gift aid do students receive when their parents earn an

additional $1000 in income?

Learning objectives

1. Recognize that the slope of the sample regression line is a point estimate and has an associated

standard error.

2. Be able to read the results of computer regression output and identify the quantities needed

for inference for the slope of the regression line, specifically the slope of the sample regression

line, the SE of the slope, and the degrees of freedom.

3. State and verify whether or not the conditions are met for inference on the slope of the

regression line based using the t-distribution.

4. Carry out a complete confidence interval procedure for the slope of the regression line.

5. Carry out a complete hypothesis test for the slope of the regression line.

6. Distinguish between when to use the t-test for the slope of a regression line and when to use

the 1-sample t-test for a mean of differences.

8.4.1 The role of inference for regression parameters

Previously, we found the equation of the regression line for predicting gift aid from family
income at Elmhurst College. The slope, b, was equal to −0.0431. This is the slope for our sample
data. However, the sample was taken from a larger population. We would like to use the slope
computed from our sample data to estimate the slope of the population regression line.

The equation for the population regression line can be written as

µy = α+ βx

Here, α and β represent two model parameters, namely the y-intercept and the slope of the true
or population regression line. (This use of α and β have nothing to do with the α and β we used
previously to represent the probability of a Type I Error and Type II Error!) The parameters α and
β are estimated using data. We can look at the equation of the regression line calculated from a
particular data set:

ŷ =a+ bx

and see that a and b are point estimates for α and β, respectively. If we plug in the values of a and
b, the regression equation for predicting gift aid based on family income is:

ŷ = 24.3193− 0.0431x
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The slope of the sample regression line, −0.0431, is our best estimate for the slope of the population
regression line, but there is variability in this estimate since it is based on a sample. A different
sample would produce a somewhat different estimate of the slope. The standard error of the slope
tells us the typical variation in the slope of the sample regression line and the typical error in using
this slope to estimate the slope of the population regression line.

We would like to construct a 95% confidence interval for β, the slope of the population regression
line. As with means, inference for the slope of a regression line is based on the t-distribution.

INFERENCE FOR THE SLOPE OF A REGRESSION LINE

Inference for the slope of a regression line is based on the t-distribution with n − 2 degrees of
freedom, where n is the number of paired observations.

Once we verify that conditions for using the t-distribution are met, we will be able to construct
the confidence interval for the slope using a critical value t? based on n− 2 degrees of freedom. We
will use a table of the regression summary to find the point estimate and standard error for the
slope.

8.4.2 Conditions for the least squares line

Conditions for inference in the context of regression can be more complicated than when dealing
with means or proportions.

Inference for parameters of a regression line involves the following assumptions:

Linearity. The true relationship between the two variables follows a linear trend. We check whether
this is reasonable by examining whether the data follows a linear trend. If there is a nonlinear
trend (e.g. left panel of Figure 8.26), an advanced regression method from another book or
later course should be applied.

Nearly normal residuals. For each x-value, the residuals should be nearly normal. When this
assumption is found to be unreasonable, it is usually because of outliers or concerns about
influential points. An example which suggestions non-normal residuals is shown in the second
panel of Figure 8.26. If the sample size n ≥ 30, then this assumption is not necessary.

Constant variability. The variability of points around the true least squares line is constant for all
values of x. An example of non-constant variability is shown in the third panel of Figure 8.26.

Independent. The observations are independent of one other. The observations can be considered
independent when they are collected from a random sample or randomized experiment. Be
careful of data collected sequentially in what is called a time series. An example of data
collected in such a fashion is shown in the fourth panel of Figure 8.26.

We see in Figure 8.26, that patterns in the residual plots suggest that the assumptions for
regression inference are not met in those four examples. In fact, identifying nonlinear trends in the
data, outliers, and non-constant variability in the residuals are often easier to detect in a residual
plot than in a scatterplot.

We note that the second assumption regarding nearly normal residuals is particularly difficult
to assess when the sample size is small. We can make a graph, such as a histogram, of the residuals,
but we cannot expect a small data set to be nearly normal. All we can do is to look for excessive
skew or outliers. Outliers and influential points in the data can be seen from the residual plot as
well as from a histogram of the residuals.

CONDITIONS FOR INFERENCE ON THE SLOPE OF A REGRESSION LINE

1. The data is collected from a random sample or randomized experiment.

2. The residual plot appears as a random cloud of points and does not have any patterns or
significant outliers that would suggest that the linearity, nearly normal residuals, constant
variability, or independence assumptions are unreasonable.
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Figure 8.26: Four examples showing when the inference methods in this chapter
are insufficient to apply to the data. In the left panel, a straight line does not fit the
data. In the second panel, there are outliers; two points on the left are relatively
distant from the rest of the data, and one of these points is very far away from
the line. In the third panel, the variability of the data around the line increases
with larger values of x. In the last panel, a time series data set is shown, where
successive observations are highly correlated.
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Figure 8.27: Left: Scatterplot of gift aid versus family income for 50 freshmen at
Elmhurst college. Right: Residual plot for the model shown in left panel.

8.4.3 Constructing a confidence interval for the slope of a regression line

We would like to construct a confidence interval for the slope of the regression line for predicting
gift aid based on family income for all freshmen at Elmhurst college.

Do conditions seem to be satisfied? We recall that the 50 freshmen in the sample were randomly
chosen, so the observations are independent. Next, we need to look carefully at the scatterplot and
the residual plot.

ALWAYS CHECK CONDITIONS

Do not blindly apply formulas or rely on regression output; always first look at a scatterplot or
a residual plot. If conditions for fitting the regression line are not met, the methods presented
here should not be applied.

The scatterplot seems to show a linear trend, which matches the fact that there is no curved
trend apparent in the residual plot. Also, the standard deviation of the residuals is mostly constant
for different x values and there are no outliers or influential points. There are no patterns in
the residual plot that would suggest that a linear model is not appropriate, so the conditions are
reasonably met. We are now ready to calculate the 95% confidence interval.
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Estimate Std. Error t value Pr(>|t|)
(Intercept) 24.3193 1.2915 18.83 0.0000
family income -0.0431 0.0108 -3.98 0.0002

Figure 8.28: Summary of least squares fit for the Elmhurst College data, where we
are predicting gift aid by the university based on the family income of students.

EXAMPLE 8.29

Construct a 95% confidence interval for the slope of the regression line for predicting gift aid from
family income at Elmhurst college.

As usual, the confidence interval will take the form:

point estimate± critical value× SE of estimate

The point estimate for the slope of the population regression line is the slope of the sample regression
line: −0.0431. The standard error of the slope can be read from the table as 0.0108. Note that we
do not need to divide 0.0108 by the square root of n or do any further calculations on 0.0108; 0.0108
is the SE of the slope. Note that the value of t given in the table refers to the test statistic, not
to the critical value t?. To find t? we can use a t-table. Here n = 50, so df = 50 − 2 = 48. Using
a t-table, we round down to row df = 40 and we estimate the critical value t? = 2.021 for a 95%
confidence level. The confidence interval is calculated as:

−0.0431 ± 2.021× 0.0108

= (−0.065,−0.021)

Note: t? using exactly 48 degrees of freedom is equal to 2.01 and gives the same interval of
(−0.065, −0.021).

EXAMPLE 8.30

Intepret the confidence interval in context. What can we conclude?

We are 95% confident that the slope of the population regression line, the true average change in gift
aid for each additional $1000 in family income, is between −$0.065 thousand dollars and −$0.021
thousand dollars. That is, we are 95% confident that, on average, when family income is $1000
higher, gift aid is between $21 and $65 lower.

Because the entire interval is negative, we have evidence that the slope of the population regression
line is less than 0. In other words, we have evidence that there is a significant negative linear
relationship between gift aid and family income.
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CONSTRUCTING A CONFIDENCE INTERVAL FOR THE SLOPE OF REGRESSION LINE

To carry out a complete confidence interval procedure to estimate the slope of the population
regression line β,

Identify: Identify the parameter and the confidence level, C%.

The parameter will be a slope of the population regression line, e.g. the slope of the
population regression line relating air quality index to average rainfall per year for each
city in the United States.

Choose: Choose the correct interval procedure and identify it by name.

To estimate the slope of a regression model we use a ttt-interval for the slope.

Check: Check conditions for using a t-interval for the slope.

1. Independence: Data should come from a random sample or randomized experiment. If

sampling without replacement, check that the sample size is less than 10% of the

population size.

2. Linearity: Check that the scatterplot does not show a curved trend and that the

residual plot shows no ∪-shape pattern.

3. Constant variability: Use the residual plot to check that the standard deviation of the

residuals is constant across all x-values.

4. Normality: The population of residuals is nearly normal or the sample size is ≥ 30. If

the sample size is less than 30 check for strong skew or outliers in the sample residuals.

If neither is found, then the condition that the population of residuals is nearly normal

is considered reasonable.

Calculate: Calculate the confidence interval and record it in interval form.

point estimate ± t? × SE of estimate, df = n− 2

point estimate: the slope b of the sample regression line

SE of estimate: SE of slope (find using computer output)

t?: use a t-distribution with df = n− 2 and confidence level C%

( , )

Conclude: Interpret the interval and, if applicable, draw a conclusion in context.

We are C% confident that the true slope of the regression line, the average change in [y]
for each unit increase in [x], is between and . If applicable, draw a conclusion
based on whether the interval is entirely above, is entirely below, or contains the value 0.
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Figure 8.29: Left: Scatterplot of head length versus total length for 104 brushtail
possums. Right: Residual plot for the model shown in left panel.

EXAMPLE 8.31

The regression summary below shows statistical software output from fitting the least squares
regression line for predicting head length from total length for 104 brushtail possums. The
scatterplot and residual plot are shown above.

Predictor Coef SE Coef T P

Constant 42.70979 5.17281 8.257 5.66e-13

total length 0.57290 0.05933 9.657 4.68e-16

S = 2.595 R-Sq = 47.76% R-Sq(adj) = 47.25%

Construct a 95% confidence interval for the slope of the regression line. Is there convincing
evidence that there is a positive, linear relationship between head length and total length?

Identify: The parameter of interest is the slope of the population regression line for predicting head
length from body length. We want to estimate this at the 95% confidence level.

Choose: Because the parameter to be estimated is the slope of a regression line, we will use the
t-interval for the slope.

Check: These data come from a random sample. The residual plot shows no pattern so a linear
model seems reasonable. The residual plot also shows that the residuals have constant standard
deviation. Finally, n = 104 ≥ 30 so we do not have to check for skew in the residuals. All four
conditions are met.

Calculate: We will calculate the interval: point estimate ± t? × SE of estimate

We read the slope of the sample regression line and the corresponding SE from the table.
The point estimate is b = 0.57290. The SE of the slope is 0.05933, which can be found next
to the slope of 0.57290. The degrees of freedom is df = n − 2 = 104 − 2 = 102. As before,
we find the critical value t? using a t-table (the t? value is not the same as the T -statistic for
the hypothesis test). Using the t-table at row df = 100 (round down since 102 is not on the
table) and confidence level 95%, we get t? = 1.984.

So the 95% confidence interval is given by:

0.57290 ± 1.984× 0.05933

(0.456, 0.691)

Conclude: We are 95% confident that the slope of the population regression line is between 0.456
and 0.691. That is, we are 95% confident that the true average increase in head length for
each additional cm in total length is between 0.456 mm and 0.691 mm. Because the interval is
entirely above 0, we do have evidence of a positive linear association between the head length
and body length for brushtail possums.
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8.4.4 Midterm elections and unemployment

Elections for members of the United States House of Representatives occur every two years,
coinciding every four years with the U.S. Presidential election. The set of House elections occurring
during the middle of a Presidential term are called midterm elections. In America’s two-party
system, one political theory suggests the higher the unemployment rate, the worse the President’s
party will do in the midterm elections.

To assess the validity of this claim, we can compile historical data and look for a connection.
We consider every midterm election from 1898 to 2018, with the exception of those elections during
the Great Depression. Figure 8.30 shows these data and the least-squares regression line:

% change in House seats for President’s party

= −7.36− 0.89× (unemployment rate)

We consider the percent change in the number of seats of the President’s party (e.g. percent change
in the number of seats for Republicans in 2018) against the unemployment rate.

Examining the data, there are no clear deviations from linearity, the constant variance condi-
tion, or the normality of residuals. While the data are collected sequentially, a separate analysis was
used to check for any apparent correlation between successive observations; no such correlation was
found.
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Figure 8.30: The percent change in House seats for the President’s party in each
election from 1898 to 2018 plotted against the unemployment rate. The two points
for the Great Depression have been removed, and a least squares regression line
has been fit to the data. Explore this data set on Tableau Public .

http://www.openintro.org/redirect.php?go=tableau-scatter-changeinseats-unemployment&referrer=ahss3_pdf
http://www.openintro.org/redirect.php?go=tableau-scatter-changeinseats-unemployment&referrer=ahss3_pdf
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GUIDED PRACTICE 8.32

The data for the Great Depression (1934 and 1938) were removed because the unemployment rate
was 21% and 18%, respectively. Do you agree that they should be removed for this investigation?
Why or why not?22

There is a negative slope in the line shown in Figure 8.30. However, this slope (and the y-
intercept) are only estimates of the parameter values. We might wonder, is this convincing evidence
that the “true” linear model has a negative slope? That is, do the data provide strong evidence that
the political theory is accurate? We can frame this investigation as a statistical hypothesis test:

H0: β = 0. The true linear model has slope zero.

HA: β < 0. The true linear model has a slope less than zero. The higher the unemployment, the
greater the loss for the President’s party in the House of Representatives.

We would reject H0 in favor of HA if the data provide strong evidence that the slope of the population
regression line is less than zero. To assess the hypotheses, we identify a standard error for the
estimate, compute an appropriate test statistic, and identify the p-value. Before we calculate these
quantities, how good are we at visually determining from a scatterplot when a slope is significantly
less than or greater than 0? And why do we tend to use a 0.05 significance level as our cutoff? Try
out the following activity which will help answer these questions.

TESTING FOR THE SLOPE USING A CUTOFF OF 0.05

What does it mean to say that the slope of the population regression line is significantly greater
than 0? And why do we tend to use a cutoff of α = 0.05? This 5-minute interactive task will
explain:

www.openintro.org/why05

22We will provide two considerations. Each of these points would have very high leverage on any least-squares
regression line, and years with such high unemployment may not help us understand what would happen in other
years where the unemployment is only modestly high. On the other hand, these are exceptional cases, and we would
be discarding important information if we exclude them from a final analysis.

http://www.openintro.org/redirect.php?go=textbook-why05&referrer=ahss3_pdf
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8.4.5 Understanding regression output from software

The residual plot shown in Figure 8.31 shows no pattern that would indicate that a linear model
is inappropriate. Therefore we can carry out a test on the population slope using the sample slope
as our point estimate. Just as for other point estimates we have seen before, we can compute a
standard error and test statistic for b. The test statistic T follows a t-distribution with n−2 degrees
of freedom.
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Figure 8.31: The residual plot shows no pattern that would indicate that a linear
model is inappropriate. Explore this data set on Tableau Public .

HYPOTHESIS TESTS ON THE SLOPE OF THE REGRESSION LINE

Use a t-test with n− 2 degrees of freedom when performing a hypothesis test on the slope of a
regression line.

We will rely on statistical software to compute the standard error and leave the explanation
of how this standard error is determined to a second or third statistics course. Figure 8.32 shows
software output for the least squares regression line in Figure 8.30. The row labeled unemp represents
the information for the slope, which is the coefficient of the unemployment variable.

Estimate Std. Error t value Pr(>|t|)
(Intercept) -7.3644 5.1553 -1.43 0.1646

unemp -0.8897 0.8350 -1.07 0.2961

Figure 8.32: Least squares regression summary for the percent change in seats of
president’s party in House of Reprepsentatives based on percent unemployment.

http://www.openintro.org/redirect.php?go=tableau-residuals-changeinsets-unemployment&referrer=ahss3_pdf
http://www.openintro.org/redirect.php?go=tableau-residuals-changeinsets-unemployment&referrer=ahss3_pdf
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−2.62 −1.74 −0.87 0 0.87 1.74 2.62

Figure 8.33: The distribution shown here is the sampling distribution for b, if the
null hypothesis was true. The shaded tail represents the p-value for the hypothesis
test evaluating whether there is convincing evidence that higher unemployment
corresponds to a greater loss of House seats for the President’s party during a
midterm election.

EXAMPLE 8.33

What do the first column of numbers in the regression summary represent?

The entries in the first column represent the least squares estimates for the y-intercept and slope,
a and b respectively. Using this information, we could write the equation for the least squares
regression line as

ŷ = −7.3644− 0.8897x

where y in this case represents the percent change in the number of seats for the president’s party,
and x represents the unemployment rate.

We previously used a test statistic T for hypothesis testing in the context of means. Regression
is very similar. Here, the point estimate is b = −0.8897. The SE of the estimate is 0.8350, which
is given in the second column, next to the estimate of b. This SE represents the typical error when
using the slope of the sample regression line to estimate the slope of the population regression line.

The null value for the slope is 0, so we now have everything we need to compute the test
statistic. We have:

T =
point estimate− null value

SE of estimate
=
−0.8897− 0

0.8350
= −1.07

This value corresponds to the T -score reported in the regression output in the third column along
the unemp row.

EXAMPLE 8.34

In this example, the sample size n = 27. Identify the degrees of freedom and p-value for the
hypothesis test.

The degrees of freedom for this test is n − 2, or df = 27 − 2 = 25. We could use a table or a
calculator to find the probability of a value less than -1.07 under the t-distribution with 25 degrees
of freedom. However, the two-side p-value is given in Figure 8.32, next to the corresponding t-
statistic. Because we have a one-sided alternative hypothesis, we take half of this. The p-value for
the test is 0.2961

2 = 0.148.
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Because the p-value is so large, we do not reject the null hypothesis. That is, the data do not
provide convincing evidence that a higher unemployment rate is associated with a larger loss for the
President’s party in the House of Representatives in midterm elections.

DON’T CARELESSLY USE THE P-VALUE FROM REGRESSION OUTPUT

The last column in regression output often lists p-values for one particular hypothesis: a two-
sided test where the null value is zero. If your test is one-sided and the point estimate is in the
direction of HA, then you can halve the software’s p-value to get the one-tail area. If neither
of these scenarios match your hypothesis test, be cautious about using the software output to
obtain the p-value.

HYPOTHESIS TEST FOR THE SLOPE OF REGRESSION LINE

To carry out a complete hypothesis test for the claim that there is no linear relationship
between two numerical variables, i.e. that β = 0,

Identify: Identify the hypotheses and the significance level, α.

H0: β = 0

HA: β 6= 0; HA: β > 0; or HA: β < 0

Choose: Choose the correct test procedure and identify it by name.

To test hypotheses about the slope of a regression model we use a ttt-test for the slope.

Check: Check conditions for using a t-test for the slope.

1. Independence: Data should come from a random sample or randomized experiment. If

sampling without replacement, check that the sample size is less than 10% of the

population size.

2. Linearity: Check that the scatterplot does not show a curved trend and that the

residual plot shows no ∪-shape pattern.

3. Constant variability: Use the residual plot to check that the standard deviation of the

residuals is constant across all x-values.

4. Normality: The population of residuals is nearly normal or the sample size is ≥ 30. If

the sample size is less than 30 check for strong skew or outliers in the sample residuals.

If neither is found, then the condition that the population of residuals is nearly normal

is considered reasonable.

Calculate: Calculate the t-statistic, df , and p-value.

T = point estimate − null value
SE of estimate , df = n− 2

point estimate: the slope b of the sample regression line

SE of estimate: SE of slope (find using computer output)

null value: 0

p-value = (based on the t-statistic, the df , and the direction of HA)

Conclude: Compare the p-value to α, and draw a conclusion in context.

If the p-value is < α, reject H0; there is sufficient evidence that [HA in context].

If the p-value is > α, do not reject H0; there is not sufficient evidence that [HA in context].
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EXAMPLE 8.35

The regression summary below shows statistical software output from fitting the least squares
regression line for predicting gift aid based on family income for 50 randomly selected freshman
students at Elmhurst College. The scatterplot and residual plot were shown in Figure 8.27.

Predictor Coef SE Coef T P

Constant 24.31933 1.29145 18.831 < 2e-16

family income -0.04307 0.01081 -3.985 0.000229

S = 4.783 R-Sq = 24.86% R-Sq(adj) = 23.29%

Do these data provide convincing evidence that there is a negative, linear relationship be-
tween family income and gift aid? Carry out a complete hypothesis test at the 0.05 significance
level. Use the five step framework to organize your work.

Identify: We will test the following hypotheses at the α = 0.05 significance level.
H0: β = 0. There is no linear relationship.
HA: β < 0. There is a negative linear relationship.

Here, β is the slope of the population regression line for predicting gift aid from family
income at Elmhurst College.

Choose: Because the hypotheses are about the slope of a regression line, we choose the t-test for a
slope.

Check: The data come from a random sample of less than 10% of the total population of freshman
students at Elmhurst College. The lack of any pattern in the residual plot indicates that a
linear model is reasonable. Also, the residual plot shows that the residuals have constant
variance. Finally, n = 50 ≥ 30 so we do not have to worry too much about any skew in the
residuals. All four conditions are met.

Calculate: We will calculate the t-statistic, degrees of freedom, and the p-value.

T =
point estimate − null value

SE of estimate

We read the slope of the sample regression line and the corresponding SE from the table.
The point estimate is: b = −0.04307.
The SE of the slope is: SE = 0.01081.

T =
−0.04307− 0

0.01081
= −3.985

Because HA uses a less than sign (<), meaning that it is a lower-tail test, the p-value is the
area to the left of t = −3.985 under the t-distribution with 50 − 2 = 48 degrees of freedom.
The p-value = 1

2 (0.000229) ≈ 0.0001.

Conclude: The p-value of 0.0001 is < 0.05, so we reject H0; there is sufficient evidence that there
is a negative linear relationship between family income and gift aid at Elmhurst College.

⊙
Guided Practice 8.36

In context, interpret the p-value from the previous example.23

23Assuming that the probability model is true and assuming that the null hypothesis is true, i.e. there really is no
linear relationship between family income and gift aid at Elmhurst College, there is only a 0.0001 chance of getting
a test statistic this small or smaller (HA uses a <, so the p-value represents the area in the left tail). Because this
value is so small, we reject the null hypothesis.
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8.4.6 Technology: the ttt-test/interval for the slope

We generally rely on regression output from statistical software programs to provide us with the
necessary quantities: b and SE of b. However we can also find the test statistic, p-value, and confi-
dence interval using Desmos or a handheld calculator.

Get started quickly with this Desmos T-Test/Interval Calculator (available at openintro.org/ahss/desmos).

For instructions on implementing the T-Test/Interval on the TI or Casio, see the Graphing Cal-
culator Guides at openintro.org/ahss.

8.4.7 Which inference procedure to use for paired data?

In Section 7.2.4, we looked at a set of paired data involving the price of textbooks for UCLA
courses at the UCLA Bookstore and on Amazon. The left panel of Figure 8.34 shows the difference
in price (UCLA Bookstore − Amazon) for each book. Because we have two data points on each
textbook, it also makes sense to construct a scatterplot, as seen in the right panel of Figure 8.34.
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Figure 8.34: Left: histogram of the difference (UCLA Bookstore price - Amazon
price) for each book sampled. Right: scatterplot of Amazon Price versus UCLA
Bookstore price.

EXAMPLE 8.37

What additional information does the scatterplot provide about the price of textbooks at UCLA
Bookstore and on Amazon?

With a scatterplot, we see the relationship between the variables. We can see that when UCLA
Bookstore price is larger, Amazon price also tends to be larger. We can consider the strength of the
correlation and we can draw the linear regression equation for predicting Amazon price from UCLA
Bookstore price.

http://www.openintro.org/redirect.php?go=desmos-linregtest&referrer=ahss3_pdf
http://www.openintro.org/redirect.php?go=openintro-ahss-desmos&referrer=ahss3_pdf
http://www.openintro.org/redirect.php?go=ahss&referrer=ahss3_pdf
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EXAMPLE 8.38

Which test should we do if we want to check whether:

1. prices for textbooks for UCLA courses are higher at the UCLA Bookstore than on Amazon

2. there is a significant, positive linear relationship between UCLA Bookstore price and Amazon
price?

In the first case, we are interested in whether the differences (UCLA Bookstore − Amazon) for all
UCLA textbooks are, on average, greater than 0, so we would do a 1-sample t-test for a mean of
differences. In the second case, we are interested in whether the slope of the regression line for
predicting Amazon price from UCLA Bookstore price is significantly greater than 0, so we would do
a t-test for the slope of a regression line.

Likewise, a 1-sample t-interval for a mean of differences would provide an interval of reasonable
values for the mean of differences in textbook price between UCLA Bookstore and Amazon (for all
UCLA textbooks), while a t-interval for the slope would provide an interval of reasonable values
for the slope of the regression line for predicting Amazon price from UCLA Bookstore price (for all
UCLA textbooks).

INFERENCE FOR PAIRED DATA

A 1-sample t-interval or t-test for a mean of differences only makes sense when we are asking
whether, on average, one variable is greater than, less than or different from another (think
histogram of the differences). A t-interval or t-test for the slope of a regression line makes sense
when we are interested in the linear relationship between them (think scatterplot).

EXAMPLE 8.39

Previously, we looked at the relationship betweeen body length and head length for bushtail possums.
We also looked at the relationship between gift aid and family income for freshmen at Elmhurst
College. Could we do a 1-sample t-test in either of these scenarios?

We have to ask ourselves, does it make sense to ask whether, on average, body length is greater
than head length? Similarly, does it make sense to ask whether, on average, gift aid is greater than
family income? These don’t seem to be meaningful research questions; a 1-sample t-test for a mean
of differences would not be useful here.

GUIDED PRACTICE 8.40

A teacher gives her class a pretest and a posttest. Does this result in paired data? If so, which
hypothesis test should she use?24

24Yes, there are two observations for each individual, so there is paired data. The appropriate test depends upon
the question she wants to ask. If she is interested in whether, on average, students do better on the posttest than
the pretest, should use a 1-sample t-test for a mean of differences. If she is interested in whether pretest score is a
significant linear predictor of posttest score, she should do a t-test for the slope. In this situation, both tests could
be useful, but which one should be used is dependent on the teacher’s research question.
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Section summary

In Chapter 6, we used a χ2 test for independence to test for association between two categorical
variables. In this section, we test for association/correlation between two numerical variables.

• We use the slope b as a point estimate for the slope β of the population regression line. The
slope of the population regression line is the true increase/decrease in y for each unit increase
in x. If the slope of the population regression line is 0, there is no linear relationship between
the two variables.

• Under certain assumptions, the sampling distribution for b is normal and the distribution of
the standardized test statistic using the standard error of the slope follows a ttt-distribution
with n− 2 degrees of freedom.

• When there is (x, y) data and the parameter of interest is the slope of the population regression
line, e.g. the slope of the population regression line relating air quality index to average rainfall
per year for each city in the United States:

– Estimate β at the C% confidence level using a ttt-interval for the slope.

– Test H0: β = 0 at the α significance level using a ttt-test for the slope.

• The conditions for the t-interval and t-test for the slope of a regression line are the same.

1. Independence: Data come from a random sample or randomized experiment. If sampling
without replacement, check that the sample size is less than 10% of the population size.

2. Linearity: Check that the scatterplot does not show a curved trend and that the residual
plot shows no ∪-shape pattern.

3. Constant variability: Use the residual plot to check that the standard deviation of the
residuals is constant across all x-values.

3. Normality: The population of residuals is nearly normal or the sample size is ≥ 30. If
the sample size is less than 30 check for strong skew or outliers in the sample residuals.
If neither is found, then the condition that the population of residuals is nearly normal
is considered reasonable.

• The confidence interval and test statistic are calculated as follows:

Confidence interval: point estimate ± t? × SE of estimate, or

Test statistic: T = point estimate − null value
SE of estimate and p-value

point estimate: the slope b of the sample regression line

SE of estimate: SE of slope (find using computer output)

df = n− 2

• The confidence interval for the slope of the population regression line estimates the true average
increase in the y-variable for each unit increase in the x-variable.

• The t-test for the slope and the 1-sample t-test for a mean of differences both involve paired,
numerical data. However, the t-test for the slope asks if the two variables have a linear
relationship, specifically if the slope of the population regression line is different from 0. The
1-sample t-test for a mean of differences, on the other hand, asks if the two variables are, on
average, different, specifically if the mean of the population differences is not equal to 0.
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Exercises

8.33 Body measurements, Part IV. The scatterplot and least squares summary below show the relation-
ship between weight measured in kilograms and height measured in centimeters of 507 physically active
individuals.

Height (cm)

W
ei

gh
t (

kg
)

150 175 200

50

70

90

110

Estimate Std. Error t value Pr(>|t|)
(Intercept) -105.0113 7.5394 -13.93 0.0000

height 1.0176 0.0440 23.13 0.0000

(a) Describe the relationship between height and weight.

(b) Write the equation of the regression line. Interpret the slope and intercept in context.

(c) Do the data provide strong evidence that an increase in height is associated with an increase in weight?
State the null and alternative hypotheses, report the p-value, and state your conclusion.

(d) The correlation coefficient for height and weight is 0.72. Calculate R2 and interpret it in context.

8.34 MCU, predict US theater sales. The Marvel Comic Universe movies were an international movie
sensation, containing 23 movies at the time of this writing. Here we consider a model predicting an MCU
film’s gross theater sales in the US based on the first weekend sales performance in the US. The data are
presented below in both a scatterplot and the model in a regression table. Scientific notation is used below,
e.g. 42.5e6 corresponds to 42.5× 106.

Estimate Std. Error t value Pr(>|t|)
(Intercept) 42.5e6 26.6e6 1.60 0.1251

opening weekend us 2.4361 0.1739 14.01 0.0000

(a) Describe the relationship between gross theater
sales in the US and first weekend sales in the US.

(b) Write the equation of the regression line. Inter-
pret the slope and intercept in context.

(c) Do the data provide strong evidence that higher
opening weekend sale is associated with higher
gross theater sales? State the null and alterna-
tive hypotheses, report the p-value, and state
your conclusion.

(d) The correlation coefficient for gross sales and
first weekend sales is 0.950. Calculate R2 and
interpret it in context.

(e) Suppose we consider a set of all films ever re-
leased. Do you think the relationship between
opening weekend sales and total sales would
have as strong of a relationship as what we see
with the MCU films?
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8.35 Spouses, Part II. The scatterplot below summarizes womens’ heights and their spouses’ heights for a
random sample of 170 married women in Britain, where both partners’ ages are below 65 years. Summary
output of the least squares fit for predicting spouse’s height from the woman’s height is also provided in the
table.

Woman's height (in inches)
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Estimate Std. Error t value Pr(>|t|)
(Intercept) 43.5755 4.6842 9.30 0.0000

height spouse 0.2863 0.0686 4.17 0.0000

(a) Is there strong evidence in this sample that taller women have taller spouses? State the hypotheses and
include any information used to conduct the test.

(b) Write the equation of the regression line for predicting the height of a woman’s spouse based on the
woman’s height.

(c) Interpret the slope and intercept in the context of the application.

(d) Given that R2 = 0.09, what is the correlation of heights in this data set?

(e) You meet a married woman from Britain who is 5’9” (69 inches). What would you predict her spouse’s
height to be? How reliable is this prediction?

(f) You meet another married woman from Britain who is 6’7” (79 inches). Would it be wise to use the
same linear model to predict her spouse’s height? Why or why not?

8.36 Urban homeowners, Part II. Exercise 8.29 gives a scatterplot displaying the relationship between the
percent of families that own their home and the percent of the population living in urban areas. Below is a
similar scatterplot, excluding District of Columbia, as well as the residuals plot. There were 51 cases.

(a) For these data, R2 = 0.28. What is the
correlation? How can you tell if it is
positive or negative?

(b) Examine the residual plot. What do you
observe? Is a simple least squares fit
appropriate for these data?
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8.37 Murders and poverty, Part II. Exercise 8.25 presents regression output from a model for predicting
annual murders per million from percentage living in poverty based on a random sample of 20 metropolitan
areas. The model output is also provided below.

Estimate Std. Error t value Pr(>|t|)
(Intercept) -29.901 7.789 -3.839 0.001

poverty% 2.559 0.390 6.562 0.000

s = 5.512 R2 = 70.52% R2
adj = 68.89%

(a) What are the hypotheses for evaluating whether poverty percentage is a significant predictor of murder
rate?

(b) State the conclusion of the hypothesis test from part (a) in context of the data.

(c) Calculate a 95% confidence interval for the slope of poverty percentage, and interpret it in context of
the data.

(d) Do your results from the hypothesis test and the confidence interval agree? Explain.

8.38 Babies. Is the gestational age (time between conception and birth) of a low birth-weight baby useful
in predicting head circumference at birth? Twenty-five low birth-weight babies were studied at a Harvard
teaching hospital; the investigators calculated the regression of head circumference (measured in centimeters)
against gestational age (measured in weeks). The estimated regression line is

̂head circumference = 3.91 + 0.78× gestational age

The standard error for the coefficient of gestational age is 0.35. Is there significance evidence that gestational
age has a positive linear association with head circumference? Use the Identify, Choose, Check, Calculate,
Conclude framework and make sure to identify any assumptions used in the test.

http://www.openintro.org/redirect.php?go=ahss_eoce_sol-murders_poverty_inf&referrer=ahss3_pdf


8.4. INFERENCE FOR THE SLOPE OF A REGRESSION LINE 481

Chapter highlights

This chapter focused on describing the linear association between two numerical variables and fitting
a linear model.

• The correlation coefficient, r, measures the strength and direction of the linear association
between two variables. However, r alone cannot tell us whether data follow a linear trend or
whether a linear model is appropriate.

• The explained variance, R2, measures the proportion of variation in the y values explained
by a given model. Like r, R2 alone cannot tell us whether data follow a linear trend or whether
a linear model is appropriate.

• Every analysis should begin with graphing the data using a scatterplot in order to see the
association and any deviations from the trend (outliers or influential values). A residual plot
helps us better see patterns in the data.

• When the data show a linear trend, we fit a least squares regression line of the form:
ŷ = a+ bx, where a is the y-intercept and b is the slope. It is important to be able to calculate
a and b using the summary statistics and to interpret them in the context of the data.

• A residual, y − ŷ, measures the error for an individual point. The standard deviation of
the residuals, s, measures the typical size of the residuals.

• ŷ = a + bx provides the best fit line for the observed data. To estimate or hypothesize about
the slope of the population regression line, first confirm that the residual plot has no pattern
and that a linear model is reasonable, then use a ttt-interval for the slope or a ttt-test for the
slope with n− 2 degrees of freedom.

In this chapter we focused on simple linear models with one explanatory variable. More complex
methods of prediction, such as multiple regression (more than one explanatory variable) and non-
linear regression can be studied in a future course.
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Chapter exercises

8.39 True / False. Determine if the following statements are true or false. If false, explain why.

(a) A correlation coefficient of -0.90 indicates a stronger linear relationship than a correlation of 0.5.

(b) Correlation is a measure of the association between any two variables.

8.40 Cats, Part II. Exercise 8.26 presents regression output from a model for predicting the heart weight
(in g) of cats from their body weight (in kg). The coefficients are estimated using a dataset of 144 domestic
cat. The model output is also provided below. Assume that conditions for inference on the slope are met.

Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.357 0.692 -0.515 0.607

body wt 4.034 0.250 16.119 0.000

s = 1.452 R2 = 64.66% R2
adj = 64.41%

(a) What are the hypotheses for evaluating whether body weight is associated with heart weight in cats?

(b) State the conclusion of the hypothesis test from part (a) in context of the data.

(c) Calculate a 95% confidence interval for the slope of body weight, and interpret it in context of the data.

(d) Do your results from the hypothesis test and the confidence interval agree? Explain.

8.41 Nutrition at Starbucks, Part II. Exercise 8.22 introduced a data set on nutrition information on
Starbucks food menu items. Based on the scatterplot and the residual plot provided, describe the relationship
between the protein content and calories of these menu items, and determine if a simple linear model is
appropriate to predict amount of protein from the number of calories.
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8.42 Helmets and lunches. The scatterplot shows the relationship between socioeconomic status measured
as the percentage of children in a neighborhood receiving reduced-fee lunches at school (lunch) and the
percentage of bike riders in the neighborhood wearing helmets (helmet). The average percentage of children
receiving reduced-fee lunches is 30.8% with a standard deviation of 26.7% and the average percentage of
bike riders wearing helmets is 38.8% with a standard deviation of 16.9%.

(a) If the R2 for the least-squares regression line for
these data is 72%, what is the correlation
between lunch and helmet?

(b) Calculate the slope and intercept for the
least-squares regression line for these data.

(c) Interpret the intercept of the least-squares
regression line in the context of the application.

(d) Interpret the slope of the least-squares regression
line in the context of the application.

(e) What would the value of the residual be for a
neighborhood where 40% of the children receive
reduced-fee lunches and 40% of the bike riders
wear helmets? Interpret the meaning of this
residual in the context of the application.
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http://www.openintro.org/redirect.php?go=tableau-starbucks-p2&referrer=ahss3_pdf
http://www.openintro.org/redirect.php?go=tableau-starbucks-p2&referrer=ahss3_pdf
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8.43 Match the correlation, Part III. Match each correlation to the corresponding scatterplot.

(a) r = −0.72

(b) r = 0.07

(c) r = 0.86

(d) r = 0.99

(1) (2) (3) (4)

8.44 Rate my professor. Many college courses conclude by giving students the opportunity to evaluate
the course and the instructor anonymously. However, the use of these student evaluations as an indicator of
course quality and teaching effectiveness is often criticized because these measures may reflect the influence
of non-teaching related characteristics, such as the physical appearance of the instructor. Researchers at
University of Texas, Austin collected data on teaching evaluation score (higher score means better) and
standardized beauty score (a score of 0 means average, negative score means below average, and a positive
score means above average) for a sample of 463 professors.25 The scatterplot below shows the relationship
between these variables, and regression output is provided for predicting teaching evaluation score from
beauty score.

Estimate Std. Error t value Pr(>|t|)
(Intercept) 4.010 0.0255 157.21 0.0000

beauty Cell 1 0.0322 4.13 0.0000

(a) Given that the average standardized beauty
score is -0.0883 and average teaching
evaluation score is 3.9983, calculate the
slope. Alternatively, the slope may be
computed using just the information
provided in the model summary table.

(b) Do these data provide convincing evidence
that the slope of the relationship between
teaching evaluation and beauty is positive?
Explain your reasoning.

(c) List the conditions required for linear
regression and check if each one is satisfied
for this model based on the following
diagnostic plots.
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25Daniel S Hamermesh and Amy Parker. “Beauty in the classroom: Instructors’ pulchritude and putative peda-
gogical productivity”. In: Economics of Education Review 24.4 (2005), pp. 369–376.

http://www.openintro.org/redirect.php?go=tableau-teaching-eval-beauty&referrer=ahss3_pdf
http://www.openintro.org/redirect.php?go=tableau-teaching-eval-beauty&referrer=ahss3_pdf
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8.45 Trees. The scatterplots below show the relationship between height, diameter, and volume of timber
in 31 felled black cherry trees. The diameter of the tree is measured 4.5 feet above the ground.26
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(a) Describe the relationship between volume and height of these trees.

(b) Describe the relationship between volume and diameter of these trees.

(c) Suppose you have height and diameter measurements for another black cherry tree. Which of these
variables would be preferable to use to predict the volume of timber in this tree using a simple linear
regression model? Explain your reasoning.

26Source: R Dataset, stat.ethz.ch/R-manual/R-patched/library/datasets/html/trees.html.

http://www.openintro.org/redirect.php?go=textbook-R_datasets_trees&referrer=ahss3_pdf
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Appendix A

Exercise solutions

1 Data collection

1.1 (a) Treatment: 10/43 = 0.23 → 23%. (b) Con-

trol: 2/46 = 0.04 → 4%. (c) A higher percentage

of patients in the treatment group were pain free 24

hours after receiving acupuncture. (c) It is possible

that the observed difference between the two group

percentages is due to chance.

1.3 (a) “Is there an association between air pol-

lution exposure and preterm births?” (b) 143,196

births in Southern California between 1989 and 1993.

(c) Measurements of carbon monoxide, nitrogen diox-

ide, ozone, and particulate matter less than 10µg/m3

(PM10) collected at air-quality-monitoring stations

as well as length of gestation. Continous numerical

variables.

1.5 (a) “Does explicitly telling children not to cheat

affect their likelihood to cheat?”. (b) 160 children

between the ages of 5 and 15. (c) Four variables: (1)

age (numerical, continuous), (2) sex (categorical), (3)

whether they were an only child or not (categorical),

(4) whether they cheated or not (categorical).

1.7 Explanatory: acupuncture or not. Response: if

the patient was pain free or not.

1.9 (a) 50×3 = 150. (b) Four continuous numerical

variables: sepal length, sepal width, petal length, and

petal width. (c) One categorical variable, species,

with three levels: setosa, versicolor, and virginica.

1.11 (a) Airport ownership status (public/private),

airport usage status (public/private), latitude, and

longitude. (b) Airport ownership status: categori-

cal, not ordinal. Airport usage status: categorical,

not ordinal. Latitude: numerical, continuous. Lon-

gitude: numerical, continuous.

1.13 (a) Population: all births, sample: 143,196

births between 1989 and 1993 in Southern Califor-

nia. (b) If births in this time span at the geography

can be considered to be representative of all births,

then the results are generalizable to the population

of Southern California. However, since the study is

observational the findings cannot be used to establish

causal relationships.

1.15 (a) Population: all asthma patients aged 18-69

who rely on medication for asthma treatment. Sam-

ple: 600 such patients. (b) If the patients in this

sample, who are likely not randomly sampled, can be

considered to be representative of all asthma patients

aged 18-69 who rely on medication for asthma treat-

ment, then the results are generalizable to the pop-

ulation defined above. Additionally, since the study

is experimental, the findings can be used to establish

causal relationships.

1.17 (a) Observation. (b) Variable. (c) Sample

statistic (mean). (d) Population parameter (mean).

1.19 (a) Observational. (b) Use stratified sampling

to randomly sample a fixed number of students, say

10, from each section for a total sample size of 40

students.

1.21 (a) Positive, non-linear, somewhat strong.

Countries in which a higher percentage of the popu-

lation have access to the internet also tend to have

higher average life expectancies, however rise in life

expectancy trails off before around 80 years old.

(b) Observational. (c) Wealth: countries with indi-

viduals who can widely afford the internet can prob-

ably also afford basic medical care. (Note: Answers

may vary.)

1.23 (a) Simple random sampling is okay. In fact,

it’s rare for simple random sampling to not be a

reasonable sampling method! (b) The student opin-

ions may vary by field of study, so the stratifying by

this variable makes sense and would be reasonable.

(c) Students of similar ages are probably going to

have more similar opinions, and we want clusters to

be diverse with respect to the outcome of interest,

so this would not be a good approach. (Additional

thought: the clusters in this case may also have very

different numbers of people, which can also create

unexpected sample sizes.)
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1.25 (a) The cases are 200 randomly sampled men

and women. (b) The response variable is attitude to-

wards a fictional microwave oven. (c) The explana-

tory variable is dispositional attitude. (d) Yes, the

cases are sampled randomly. (e) This is an observa-

tional study since there is no random assignment to

treatments. (f) No, we cannot establish a causal link

between the explanatory and response variables since

the study is observational. (g) Yes, the results of the

study can be generalized to the population at large

since the sample is random.

1.27 (a) Simple random sample. Non-response bias,

if only those people who have strong opinions about

the survey responds his sample may not be repre-

sentative of the population. (b) Convenience sample.

Under coverage bias, his sample may not be represen-

tative of the population since it consists only of his

friends. It is also possible that the study will have

non-response bias if some choose to not bring back

the survey. (c) Convenience sample. This will have

a similar issues to handing out surveys to friends.

(d) Multi-stage sampling. If the classes are similar

to each other with respect to student composition

this approach should not introduce bias, other than

potential non-response bias.

1.29 (a) Exam performance. (b) Light level: fluo-

rescent overhead lighting, yellow overhead lighting,

no overhead lighting (only desk lamps). (c) Sex:

man, woman.

1.31 (a) Experiment. (b) Light level (overhead

lighting, yellow overhead lighting, no overhead light-

ing) and noise level (no noise, construction noise, and

human chatter noise). (c) Since the researchers want

to ensure equal representation of graduate and under-

graduate students, program type will be a blocking

variable.

1.33 Need randomization and blinding. One possi-

ble outline:

(1) Prepare two cups for each participant, one con-

taining regular Coke and the other containing Diet

Coke. Make sure the cups are identical and contain

equal amounts of soda. Label the cups A (regular)

and B (diet). (Be sure to randomize A and B for each

trial!)

(2) Give each participant the two cups, one cup at

a time, in random order, and ask the participant to

record a value that indicates how much she liked the

beverage. Be sure that neither the participant nor

the person handing out the cups knows the identity

of the beverage to make this a double-blind experi-

ment.

(Answers may vary.)

1.35 (a) Observational study. (b) Dog: Lucy. Cat:

Luna. (c) Oliver and Lily. (d) Positive, as the popu-

larity of a name for dogs increases, so does the pop-

ularity of that name for cats.

1.37 (a) Experiment. (b) Treatment: 25 grams of

chia seeds twice a day, control: placebo. (c) Yes,

gender. (d) Yes, single blind since the patients were

blinded to the treatment they received. (e) Since this

is an experiment, we can make a causal statement.

However, since the sample is not random, the causal

statement cannot be generalized to the population at

large.

1.39 (a) Non-responders may have a different re-

sponse to this question, e.g. parents who returned

the surveys likely don’t have difficulty spending time

with their children. (b) It is unlikely that the women

who were reached at the same address 3 years later

are a random sample. These missing responders are

probably renters (as opposed to homeowners) which

means that they might have a lower socio-economic

status than the respondents. (c) There is no control

group in this study, this is an observational study,

and there may be confounding variables, e.g. these

people may go running because they are generally

healthier and/or do other exercises.

1.41 (a) Randomized controlled experiment.

(b) Explanatory: treatment group (categorical, with

3 levels). Response variable: Psychological well-

being. (c) No, because the participants were volun-

teers. (d) Yes, because it was an experiment. (e) The

statement should say “evidence” instead of “proof”.

1.43 (a) County, state, driver’s race, whether the

car was searched or not, and whether the driver was

arrested or not. (b) All categorical, non-ordinal.

(c) Response: whether the car was searched or not.

Explanatory: race of the driver.



487

2 Summarizing data

2.1 (a) There is a weak and positive relationship be-

tween age and income. With so few points it is diffi-

cult to tell the form of the relationship (linear or not)

however the relationship does look somewhat curved.
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(c) For males as age increases so does income, how-

ever this pattern is not apparent for females.

2.3 (a)
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(d) 40% (Note: if using only rel. freq. histogram, you

can only get an estimate because 7 is in the middle

of the bin. Use the dot plot to get a more accurate

answer.)

2.5 (a) Positive association: mammals with longer

gestation periods tend to live longer as well. (b) As-

sociation would still be positive. (c) No, they are not

independent. See part (a).

2.7 Both distributions are right skewed and bimodal

with modes at 10 and 20 cigarettes; note that peo-

ple may be rounding their answers to half a pack

or a whole pack. The median of each distribution

is between 10 and 15 cigarettes. The middle 50%

of the data (the IQR) appears to be spread equally

in each group and have a width of about 10 to 15.

There are potential outliers above 40 cigarettes per

day. It appears that respondents who smoke only a

few cigarettes (0 to 5) smoke more on the weekdays

than on weekends.

2.9 (a) x̄amtWeekends = 20, x̄amtWeekdays = 16.

(b) samtWeekends = 0, samtWeekdays = 4.18. In this

very small sample, higher on weekdays.

2.11 Any 10 employees whose average number of

days off is between the minimum and the mean num-

ber of days off for the entire workforce at this plant.

2.13 (a) Dist 2 has a higher mean since 20 > 13, and

a higher standard deviation since 20 is further from

the rest of the data than 13. (b) Dist 1 has a higher

mean since −20 > −40, and Dist 2 has a higher

standard deviation since -40 is farther away from the

rest of the data than -20. (c) Dist 2 has a higher

mean since all values in this distribution are higher

than those in Dist 1, but both distribution have the

same standard deviation since they are equally vari-

able around their respective means. (d) Both dis-

tributions have the same mean since they’re both

centered at 300, but Dist 2 has a higher standard

deviation since the observations are farther from the

mean than in Dist 1.
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2.15 (a) About 30. (b) Since the distribution is

right skewed the mean is higher than the median.

(c) Q1: between 15 and 20, Q3: between 35 and 40,

IQR: about 20. (d) Values that are considered to be

unusually low or high lie more than 1.5×IQR away

from the quartiles. Upper fence: Q3 + 1.5 × IQR =

37.5 + 1.5× 20 = 67.5; Lower fence: Q1 - 1.5 × IQR

= 17.5 + 1.5× 20 = −12.5; The lowest AQI recorded

is not lower than 5 and the highest AQI recorded is

not higher than 65, which are both within the fences.

Therefore none of the days in this sample would be

considered to have an unusually low or high AQI.

2.17 The histogram shows that the distribution is

bimodal, which is not apparent in the box plot. The

box plot makes it easy to identify more precise values

of observations outside of the whiskers.

2.19 (a) The distribution of number of pets per

household is likely right skewed as there is a natural

boundary at 0 and only a few people have many pets.

Therefore the center would be best described by the

median, and variability would be best described by

the IQR. (b) The distribution of number of distance

to work is likely right skewed as there is a natural

boundary at 0 and only a few people live a very long

distance from work. Therefore the center would be

best described by the median, and variability would

be best described by the IQR. (c) The distribution

of heights of males is likely symmetric. Therefore

the center would be best described by the mean, and

variability would be best described by the standard

deviation.

2.21 (a) The median is a much better measure of

the typical amount earned by these 42 people. The

mean is much higher than the income of 40 of the

42 people. This is because the mean is an arithmetic

average and gets affected by the two extreme obser-

vations. The median does not get effected as much

since it is robust to outliers. (b) The IQR is a much

better measure of variability in the amounts earned

by nearly all of the 42 people. The standard devi-

ation gets affected greatly by the two high salaries,

but the IQR is robust to these extreme observations.

2.23 (a) The distribution is unimodal and symmet-

ric with a mean of about 25 minutes and a standard

deviation of about 5 minutes. There does not ap-

pear to be any counties with unusually high or low

mean travel times. (b) Answers will vary. There

are pockets of longer travel time around DC, South-

eastern NY, Chicago, Minneapolis, Los Angeles, and

many other big cities. There is also a large section

of shorter average commute times that overlap with

farmland in the Midwest. Many farmers’ homes are

adjacent to their farmland, so their commute would

be brief, which may explain why the average com-

mute time for these counties is relatively low.

2.25 (a) 8.85%. (b) 6.94%. (c) 58.86%. (d) 4.56%.

(a)
−1.35 0

(b)
0 1.48

(c)
0

(d)
−2 0 2

2.27 (a) ZV R = 1.29, ZQR = 0.52.

VR

Z = 1.29

QR

Z = 0.52

(b) She scored 1.29 standard deviations above the

mean on the Verbal Reasoning section and 0.52 stan-

dard deviations above the mean on the Quantita-

tive Reasoning section. (c) She did better on the

Verbal Reasoning section since her Z-score on that

section was higher. (d) PercV R = 0.9007 ≈ 90%,

PercQR = 0.6990 ≈ 70%. (e) 100%−90% = 10% did

better than her on VR, and 100%− 70% = 30% did

better than her on QR. (f) We cannot compare the

raw scores since they are on different scales. Com-

paring her percentile scores is more appropriate when

comparing her performance to others. (g) Answer to

part (b) would not change as Z-scores can be calcu-

lated for distributions that are not normal. However,

we could not answer parts (c)-(e) since we cannot use

the normal probability table to calculate probabilities

and percentiles without a normal model.

2.29 (a) Z = 0.84, which corresponds to approxi-

mately 159 on QR. (b) Z = −0.52, which corresponds

to approximately 147 on VR.

2.31 (a) Z = 1.2, P (Z > 1.2) = 0.1151.

(b) Z = −1.28→ 70.6◦F or colder.

2.33 (a) Z = 1.08, P (Z > 1.08) = 0.1401. (b) The

answers are very close because only the units were

changed. (The only reason why they differ at all be-

cause 28◦C is 82.4◦F, not precisely 83◦F.) (c) Since

IQR = Q3 − Q1, we first need to find Q3 and Q1

and take the difference between the two. Remember

that Q3 is the 75th and Q1 is the 25th percentile of

a distribution. Q1 = 23.13, Q3 = 26.86, IQR = 26.

86 - 23.13 = 3.73.
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2.35 14/20 = 70% are within 1 SD. Within 2 SD:

19/20 = 95%. Within 3 SD: 20/20 = 100%. They

follow this rule closely.

2.37 (a) We see the order of the categories and the

relative frequencies in the bar plot. (b) There are no

features that are apparent in the pie chart but not

in the bar plot. (c) We usually prefer to use a bar

plot as we can also see the relative frequencies of the

categories in this graph.

2.39 The vertical locations at which the ideologi-

cal groups break into the Yes, No, and Not Sure

categories differ, which indicates that likelihood of

supporting the DREAM act varies by political ide-

ology. This suggests that the two variables may be

dependent.

2.41 (a) (i) False. Instead of comparing counts, we

should compare percentages of people in each group

who suffered cardiovascular problems. (ii) True.

(iii) False. Association does not imply causation. We

cannot infer a causal relationship based on an obser-

vational study. The difference from part (ii) is subtle.

(iv) True.

(b) Proportion of all patients who had cardiovascular

problems: 7,979
227,571

≈ 0.035

(c) The expected number of heart attacks in the

rosiglitazone group, if having cardiovascular prob-

lems and treatment were independent, can be cal-

culated as the number of patients in that group mul-

tiplied by the overall cardiovascular problem rate in

the study: 67, 593 ∗ 7,979
227,571

≈ 2370.

(d) (i) H0: The treatment and cardiovascular prob-

lems are independent. They have no relation-

ship, and the difference in incidence rates between

the rosiglitazone and pioglitazone groups is due to

chance. HA: The treatment and cardiovascular prob-

lems are not independent. The difference in the in-

cidence rates between the rosiglitazone and pioglita-

zone groups is not due to chance and rosiglitazone

is associated with an increased risk of serious car-

diovascular problems. (ii) A higher number of pa-

tients with cardiovascular problems than expected

under the assumption of independence would provide

support for the alternative hypothesis as this would

suggest that rosiglitazone increases the risk of such

problems. (iii) In the actual study, we observed 2,593

cardiovascular events in the rosiglitazone group. In

the 1,000 simulations under the independence model,

we observed somewhat less than 2,593 in every single

simulation, which suggests that the actual results did

not come from the independence model. That is, the

variables do not appear to be independent, and we

reject the independence model in favor of the alterna-

tive. The study’s results provide convincing evidence

that rosiglitazone is associated with an increased risk

of cardiovascular problems.

2.43 (a) Decrease: the new score is smaller than

the mean of the 24 previous scores. (b) Calculate a

weighted mean. Use a weight of 24 for the old mean

and 1 for the new mean: (24×74+1×64)/(24+1) =

73.6. (c) The new score is more than 1 standard de-

viation away from the previous mean, so increase.

2.45 No, we would expect this distribution to be

right skewed. There are two reasons for this:

(1) there is a natural boundary at 0 (it is not possible

to watch less than 0 hours of TV), (2) the standard

deviation of the distribution is very large compared

to the mean.

2.47 The distribution of ages of best actress winners

are right skewed with a median around 30 years. The

distribution of ages of best actress winners is also

right skewed, though less so, with a median around

40 years. The difference between the peaks of these

distributions suggest that best actress winners are

typically younger than best actor winners. The ages

of best actress winners are more variable than the

ages of best actor winners. There are potential out-

liers on the higher end of both of the distributions.

2.49

●

60 70 80 90
Scores

2.51 (a) Z = 5.5−7.44
1.33

= −1.49;P (Z < −1.49) =

0.068. Approximately 6.8% of the newborns were of

low birth weight. (b) Z = 10−7.44
1.33

= 1.925. Us-

ing a lower bound of 2 and an upper bound of 5,

we get P (Z > 1.925) = 0.027. Approximately 2.7%

of the newborns weighed over 10 pounds. (c) Ap-

proximately 2.7% of the newborns weighed over 10

pounds. Because there were 23,419 of them, about

0.027×23419 ≈ 632 weighed greater than 10 pounds.

(d) Because we have the percentile, this is the inverse

problem. To get the Z-score, use the inverse normal

option with 0.90 to get Z = 1.28. Then solve for x

in 1.28 = x−7.44
1.33

to get x = 9.15. To be at the 90th

percentile among this group, a newborn would have

to weigh 9.15 pounds.

2.53 (a) 93.94%. (b) 93.53%. (c) 80.49 miles/hour.

(d) 70.54%.
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3 Probability

3.1 (a) False. These are independent trials.

(b) False. There are red face cards. (c) True. A

card cannot be both a face card and an ace.

3.3 (a) 10 tosses. Fewer tosses mean more variabil-

ity in the sample fraction of heads, meaning there’s a

better chance of getting at least 60% heads. (b) 100

tosses. More flips means the observed proportion

of heads would often be closer to the average, 0.50,

and therefore also above 0.40. (c) 100 tosses. With

more flips, the observed proportion of heads would

often be closer to the average, 0.50. (d) 10 tosses.

Fewer flips would increase variability in the fraction

of tosses that are heads.

3.5 (a) 0.510 = 0.00098. (b) 0.510 = 0.00098.

(c) P (at least one tails) = 1 − P (no tails) = 1 −
(0.510) ≈ 1− 0.001 = 0.999.

3.7 (a) No, there are voters who are both indepen-

dent and swing voters.

(b)

24 11 12

Independent

Swing

(c) Each Independent voter is either a swing voter or

not. Since 35% of voters are Independents and 11%

are both Independent and swing voters, the other

24% must not be swing voters. (d) 0.47. (e) 0.53.

(f) P(Independent) × P(swing) = 0.35×0.23 = 0.08,

which does not equal P(Independent and swing) =

0.11, so the events are dependent.

3.9 (a) If the class is not graded on a curve, they

are independent. If graded on a curve, then neither

independent nor disjoint – unless the instructor will

only give one A, which is a situation we will ignore

in parts (b) and (c). (b) They are probably not in-

dependent: if you study together, your study habits

would be related, which suggests your course perfor-

mances are also related. (c) No. See the answer to

part (a) when the course is not graded on a curve.

More generally: if two things are unrelated (indepen-

dent), then one occurring does not preclude the other

from occurring.

3.11 (a) 280/792 = 0.354. (b) 445/792 = 0.562.

(c) 231/792 = 0.292, (d) 0.354 × 0.562 = 0.199 6=
0.292. The events are not independent, so you can-

not just multiply the unconditional probabilities.

3.13 (a) No, but we could if A and B are indepen-

dent. (b-i) 0.21. (b-ii) 0.79. (b-iii) 0.3. (c) No, be-

cause 0.1 6= 0.21, where 0.21 was the value computed

under independence from part (a). (d) 0.143.

3.15 (a) No, 0.18 of respondents fall into this combi-

nation. (b) 0.60+0.20−0.18 = 0.62. (c) 0.18/0.20 =

0.9. (d) 0.11/0.33 ≈ 0.33. (e) No, otherwise

the answers to (c) and (d) would be the same.

(f) 0.06/0.34 ≈ 0.18.

3.17 (a) 0.3. (b) 0.3. (c) 0.3. (d) 0.3 × 0.3 = 0.09.

(e) Yes, the population that is being sampled from is

identical in each draw.

3.19 (a) 2/9 ≈ 0.22. (b) 3/9 ≈ 0.33. (c) 3
10
× 2

9
≈

0.067. (d) No, e.g. in this exercise, removing one chip

meaningfully changes the probability of what might

be drawn next.

3.21 P (1leggings, 2jeans, 3jeans) = 5
24
× 7

23
× 6

22
=

0.0173. However, the person with leggings could have

come 2nd or 3rd, and these each have this same prob-

ability, so 3× 0.0173 = 0.0519.

3.23 (a)
Can construct

box plots?
Passed?

yes,  0.8

Yes,  0.86
0.8*0.86 = 0.688

No,  0.14
0.8*0.14 = 0.112

no,  0.2

Yes,  0.65
0.2*0.65 = 0.13

No,  0.35
0.2*0.35 = 0.07

(b) 0.84

3.25 0.0714. Even when a patient tests positive for
lupus, there is only a 7.14% chance that he actually
has lupus. House may be right.

Lupus? Result

yes,  0.02

positive,  0.98
0.02*0.98 = 0.0196

negative,  0.02
0.02*0.02 = 0.0004

no,  0.98

positive,  0.26
0.98*0.26 = 0.2548

negative,  0.74
0.98*0.74 = 0.7252

3.27 (a) P(pass) = 0.5, but it should be 0.16.

(b) P(pass) = 0.2, instead of 0.16. (c) P(pass) =

0.17, instead of 0.16.
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3.29 (a) Starting at row 3 of the random number ta-

ble, we will read across the table two digits at a time.

If the random number is between 00-15, the car will

fail the pollution test. If the number is between 16-

99, the car will pass the test. (Answers may vary.)

(b) Fleet 1: 18-52-97-32-85-95-29 → P-P-P-P-P-P-P

→ fleet passes

Fleet 2: 14-96-06-67-17-49-59 → F-P-F-P-P-P-P →
fleet fails

Fleet 3: 05-33-67-97-58-11-81 → F-P-P-P-P-F-P →
fleet fails

Fleet 4: 23-81-83-21-71-08-50 → P-P-P-P-P-F-P →
fleet fails

Fleet 5: 82-84-39-31-83-14-34 → P-P-P-P-P-F-P →
fleet fails

estimate: 4 / 5 = 0.80 (c) P(at least one car

fails in a fleet of seven) = 1 - P(no cars fail) =

1− (0.84)7 = 0.705.

3.31 (a) Mean: $3∗0.5 + $5∗0.3 + $10∗0.15 + $25∗
0.05 = $5.75. (b) To compute the SD, it is easier to

first compute the variance: (3 − 5.75)2 ∗ 0.5 + (5 −
5.75)2 ∗0.3+(10−5.75)2 ∗0.15+(25−5.75)2 ∗0.05 =

25.1875. The SD is then the square root of this value:

$5.02.

3.33 (a) E(X) = 3.59. SD(X) = 9.64. (b) E(X) =

-1.41. SD(X) = 9.64. (c) No, the expected net profit

is negative, so on average you expect to lose money.

3.35 5% increase in value.

3.37 E = -0.0526. SD = 0.9986.

3.39 (a) Let X represent the amount of lemonade in

the pitcher, Y represent the amount of lemonade in

a glass, and W represent the amount left over after.

Then, µW = E(X − Y ) = 64 − 12 = 52 (b) σW =√
SD(X)2 + SD(Y )2 =

√
1.7322 + 12 ≈

√
4 = 2

(c) P (W > 50) = P
(
Z > 50−52

2

)
= P (Z > −1) =

1− 0.1587 = 0.8413

3.41 (a) The combined scores follow a normal distri-

bution with µcombined = 304 and σcombined = 10.38.

Then, P(combined score > 320) is approximately

0.06. (b) Z=1.28 (using calculator or table). Then

we set 1.28 = x−304
10.38

and find x ≈ 317.

3.43 (a) No. The cards are not independent. For

example, if the first card is an ace of clubs, that im-

plies the second card cannot be an ace of clubs. Ad-

ditionally, there are many possible categories, which

would need to be simplified. (b) No. There are six

events under consideration. The Bernoulli distribu-

tion allows for only two events or categories. Note

that rolling a die could be a Bernoulli trial if we sim-

plify to two events, e.g. rolling a 6 and not rolling a

6, though specifying such details would be necessary.

3.45 (a) 0.8752×0.125 = 0.096. (b) µ = 8, σ = 7.48.

3.47 If p is the probability of a success, then the

mean of a Bernoulli random variable X is given by

µ = E[X] = P (X = 0)× 0 + P (X = 1)× 1

= (1− p)× 0 + p× 1 = 0 + p = p

3.49 (a)
(

5
1

)
= 5. (b)

(
5
4

)
= 5. (c)

(
5
3

)
= 10.

(d)
(

5
3

)
+
(

5
4

)
+
(

5
5

)
= 10 + 5 + 1 = 16.

3.51 (a) Binomial conditions are met: (1) Indepen-

dent trials: In a random sample, whether or not one

18-20 year old has consumed alcohol does not de-

pend on whether or not another one has. (2) Fixed

number of trials: n = 10. (3) Only two outcomes

at each trial: Consumed or did not consume alcohol.

(4) Probability of a success is the same for each trial:

p = 0.697. (b) 0.203. (c) 0.203. (d) 0.167. (e) 0.997.

3.53 (a) 1− 0.753 = 0.5781. (b) 0.1406. (c) 0.4219.

(d) 1− 0.253 = 0.9844.

3.55 (a) µ = 35, σ = 3.24 (b) Z = 45−35
3.24

= 3.09.

45 is more than 3 standard deviations away from the

mean, we can assume that it is an unusual observa-

tion. Therefore yes, we would be surprised. (c) Using

the normal approximation, 0.0010. With 0.5 correc-

tion, 0.0017.

3.57 (a) Invalid. Sum is greater than 1. (b) Valid.

Probabilities are between 0 and 1, and they sum to

1. In this class, every student gets a C. (c) Invalid.

Sum is less than 1. (d) Invalid. There is a negative

probability. (e) Valid. Probabilities are between 0

and 1, and they sum to 1. (f) Invalid. There is a

negative probability.

3.59 0.8247.
HIV? Result

yes,  0.259

positive,  0.997
0.259*0.997  =  0.2582

negative,  0.003
0.259*0.003  =  0.0008

no,  0.741

positive,  0.074
0.741*0.074  =  0.0548

negative,  0.926
0.741*0.926  =  0.6862

3.61 (a) E = $3.90. SD = $0.34.

(b) E = $27.30. SD = $0.89.

3.63 (a) 13. (b) No, these 27 students are not a ran-

dom sample from the university’s student population.

For example, it might be argued that the proportion

of smokers among students who go to the gym at 9

am on a Saturday morning would be lower than the

proportion of smokers in the university as a whole.

3.65 0 wins (-$3): 0.1458. 1 win (-$1): 0.3936. 2

wins (+$1): 0.3543. 3 wins (+$3): 0.1063.
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4 Distributions of random variables

4.1 (a) Each observation in each of the distributions

represents the sample proportion (p̂) from samples of

size n = 20, n = 100, and n = 500, respectively.

(b) The centers for all three distributions are at 0.95,

the true population parameter. When n is small, the

distribution is skewed to the left and not smooth. As

n increases, the variability of the distribution (stan-

dard deviation) decreases, and the shape of the dis-

tribution becomes more unimodal and symmetric.

4.3 (a) False. Doesn’t satisfy success-failure condi-

tion. (b) True. The success-failure condition is not

satisfied. In most samples we would expect p̂ to be

close to 0.08, the true population proportion. While

p̂ can be much above 0.08, it is bound below by 0,

suggesting it would take on a right skewed shape.

Plotting the sampling distribution would confirm this

suspicion. (c) False. SEp̂ = 0.0243, and p̂ = 0.12 is

only 0.12−0.08
0.0243

= 1.65 SEs away from the mean, which

would not be considered unusual. (d) True. p̂ = 0.12

is 2.32 standard errors away from the mean, which

is often considered unusual. (e) False. Decreases the

SE by a factor of 1/
√

2.

4.5 (a) SDp̂ =
√
p(1− p)/n = 0.0707. This de-

scribes the typical distance that the sample propor-

tion will deviate from the true proportion, p = 0.5.

(b) p̂ approximately follows N(0.5, 0.0707). Z =

(0.55 − 0.50)/0.0707 ≈ 0.71. This corresponds to an

upper tail of about 0.2389. That is, P (p̂ > 0.55) ≈
0.24.

4.7 (a) First we need to check that the necessary

conditions are met. There are 200 × 0.08 = 16 ex-

pected successes and 200 × (1 − 0.08) = 184 ex-

pected failures, therefore the success-failure condi-

tion is met. Then the binomial distribution can be

approximated by N(µ = 16, σ = 3.84). P (X <

12) = P (Z < −1.04) = 0.1492. (b) Since the success-

failure condition is met the sampling distribution for

p̂ ∼ N(µ = 0.08, σ = 0.0192). P (p̂ < 0.06) = P (Z <

−1.04) = 0.1492. (c) As expected, the two answers

are the same.

4.9 The sampling distribution is the distribution of

sample proportions from samples of the same size

randomly sampled from the same population. As the

same size increases, the shape of the sampling dis-

tribution (when p = 0.1) will go from being right-

skewed to being more symmetric and resembling the

normal distribution. With larger sample sizes, the

spread of the sampling distribution gets smaller. Re-

gardless of the sample size, the center of the sampling

distribution is equal to the true mean of that popu-

lation, provided the sampling isn’t biased.

4.11 (a) The distribution is unimodal and strongly

right skewed with a median between 5 and 10 years

old. Ages range from 0 to slightly over 50 years old,

and the middle 50% of the distribution is roughly

between 5 and 15 years old. There are potential out-

liers on the higher end. (b) When the sample size is

small, the sampling distribution is right skewed, just

like the population distribution. As the sample size

increases, the sampling distribution gets more uni-

modal, symmetric, and approaches normality. The

variability also decreases. This is consistent with the

Central Limit Theorem.

4.13 (a) Right skewed. There is a long tail on the

higher end of the distribution but a much shorter

tail on the lower end. (b) Less than, as the median

would be less than the mean in a right skewed distri-

bution. (c) We should not. (d) Even though the pop-

ulation distribution is not normal, the conditions for

inference are reasonably satisfied, with the possible

exception of skew. If the skew isn’t very strong (we

should ask to see the data), then we can use the Cen-

tral Limit Theorem to estimate this probability. For

now, we’ll assume the skew isn’t very strong, though

the description suggests it is at least moderate to

strong. Use N(1.3, SDx̄ = 0.3/
√

60): Z = 2.58 →
0.0049. (e) It would decrease it by a factor of 1/

√
2.

4.15 The centers are the same in each plot, and each

data set is from a nearly normal distribution, though

the histograms may not look very normal since each

represents only 100 data points. The only way to tell

which plot corresponds to which scenario is to exam-

ine the variability of each distribution. Plot B is the

most variable, followed by Plot A, then Plot C. This

means Plot B will correspond to the original data,

Plot A to the sample means with size 5, and Plot C

to the sample means with size 25.

4.17 (a) Z = −3.33 → 0.0004. (b) The population
SD is known and the data are nearly normal, so the
sample mean will be nearly normal with distribution
N(µ, σ/

√
n), i.e. N(2.5, 0.0095). (c) Z = −10.54 →

≈ 0. (d) See below:

2.41 2.44 2.47 2.50 2.53 2.56 2.59

Population
Sampling (n = 10)

(e) We could not estimate (a) without a nearly nor-

mal population distribution. We also could not esti-

mate (c) since the sample size is not sufficient to yield

a nearly normal sampling distribution if the popula-

tion distribution is not nearly normal.
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4.19 (a) We cannot use the normal model for this

calculation, but we can use the histogram. About

500 songs are shown to be longer than 5 minutes, so

the probability is about 500/3000 = 0.167. (b) Two

different answers are reasonable. Option 1Since the

population distribution is only slightly skewed to the

right, even a small sample size will yield a nearly

normal sampling distribution. We also know that

the songs are sampled randomly and the sample size

is less than 10% of the population, so the length of

one song in the sample is independent of another. We

are looking for the probability that the total length of

15 songs is more than 60 minutes, which means that

the average song should last at least 60/15 = 4 min-

utes. Using SDx̄ = 1.63/
√

15, Z = 1.31 → 0.0951.
Option 2Since the population distribution is not nor-

mal, a small sample size may not be sufficient to yield

a nearly normal sampling distribution. Therefore, we

cannot estimate the probability using the tools we

have learned so far. (c) We can now be confident

that the conditions are satisfied. Z = 0.92→ 0.1788.

4.21 (a) SDx̄ = 25√
75

= 2.89. (b) Z = 1.73, which

indicates that the two values are not unusually dis-

tant from each other when accounting for the uncer-

tainty in John’s point estimate.

4.23 (a) µp̂NE = 0.01. σp̂NE = 0.0031. (b) µp̂NY =
0.06. σp̂NY = 0.0075. (c) µp̂NY −p̂NB = 0.06− 0.01 =
0.05. σp̂NY −p̂NB = 0.0081. (d) We can think of p̂NE
and p̂NY as being random variables, and we are con-
sidering the standard deviation of the difference of
these two random variables, so we square each stan-
dard deviation, add them together, and then take the
square root of the sum:

SDp̂NY −p̂NE =
√
SD2

p̂NY
+ SD2

p̂NE

4.25 (a) µx̄1 = 15, σx̄1 = 20/
√

50 = 2.8284.
(b) µx̄2 = 20, σx̄1 = 10/

√
30 = 1.8257. (c) µx̄2−x̄1 =

20 − 15 = 5, σx̄2−x̄1 =

√(
20/
√

50
)2

+
(
10/
√

30
)2

=

3.3665. (d) Think of x̄1 and x̄2 as being random vari-
ables, and we are considering the standard deviation
of the difference of these two random variables, so we
square each standard deviation, add them together,
and then take the square root of the sum:

SDx̄2−x̄1 =
√
SD2

x̄2
+ SD2

x̄1

4.27 Want to find the probability that there will

be 1,787 or more enrollees. Using the normal ap-

proximation, with µ = np = 2, 500 × 0.7 = 1750

and σ =
√
np(1− p) =

√
2, 500× 0.7× 0.3 ≈ 23,

Z = 1.61, and P (Z > 1.61) = 0.0537. With a 0.5

correction: 0.0559.

4.29 Z = 1.56, P (Z > 1.56) = 0.0594, i.e. 6%.

4.31 This is the same as checking that the aver-

age bag weight of the 10 bags is greater than 46

lbs. SDx̄ = 3.2√
10

= 1.012; z = 46−45
1.012

= 0.988;

P (z > 0.988) = 0.162 = 16.2%.

4.33 First we need to check that the necessary con-

ditions are met. There are 100 × 0.360 = 36.0 ex-

pected successes and 100×(1−0.360) = 64.0 expected

failures, therefore the success-failure condition is met.

Calculate using either (1) the normal approximation

to the binomial distribution or (2) the sampling dis-

tribution of p̂. (1) The binomial distribution can be

approximated by N(µ = 0.360, σ = 4.8). P (X ≥
35) = P (Z > −0.208) = 0.5823. (2) The sam-

pling distribution of p̂ ∼ N(µ = 0.360, σ = 0.048).

P (p̂ > 0.35) = P (Z > −0.208) = 0.5823.

5 Foundations for inference

5.1 (a) Mean. Each student reports a numerical

value: a number of hours. (b) Mean. Each student

reports a number, which is a percentage, and we can

average over these percentages. (c) Proportion. Each

student reports Yes or No, so this is a categorical

variable and we use a proportion. (d) Mean. Each

student reports a number, which is a percentage like

in part (b). (e) Proportion. Each student reports

whether or not s/he expects to get a job, so this is a

categorical variable and we use a proportion.

5.3 (a) The sample is from all computer chips manu-

factured at the factory during the week of production.

We might be tempted to generalize the population to

represent all weeks, but we should exercise caution

here since the rate of defects may change over time.

(b) The fraction of computer chips manufactured at

the factory during the week of production that had

defects. (c) Estimate the parameter using the data:

p̂ = 27
212

= 0.127. (d) Standard error (or SE).

(e) Compute the SE using p̂ = 0.127 in place of p:

SE ≈
√

p̂(1−p̂)
n

=
√

0.127(1−0.127)
212

= 0.023. (f) The

standard error is the standard deviation of p̂. A value

of 0.10 would be about one standard error away from

the observed value, which would not represent a very

uncommon deviation. (Usually beyond about 2 stan-

dard errors is a good rule of thumb.) The engineer

should not be surprised. (g) Recomputed standard

error using p = 0.1: SE =
√

0.1(1−0.1)
212

= 0.021. This

value isn’t very different, which is typical when the

standard error is computed using relatively similar

proportions (and even sometimes when those propor-

tions are quite different!).
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5.5 (a) Sampling distribution. (b) If the population

proportion is in the 5-30% range, the success-failure

condition would be satisfied and the sampling distri-

bution would be symmetric. (c) We use the standard

error to describe the variability: SE =
√

p(1−p)
n

=√
0.08(1−0.08)

800
= 0.0096. (d) Standard error. (e) The

distribution will tend to be more variable when we

have fewer observations per sample.

5.7 Recall that the general formula is

point estimate ± z? × SE. First, identify the

three different values. The point estimate is

45%, z? = 1.96 for a 95% confidence level, and

SE = 1.2%. Then, plug the values into the formula:

45% ± 1.96 × 1.2% → (42.6%, 47.4%) We are

95% confident that the proportion of US adults who

live with one or more chronic conditions is between

42.6% and 47.4%.

5.9 (a) False. Inference is made on the population

parameter, not the point estimate. The point esti-

mate is always in the confidence interval. (b) True.

(c) False. The confidence interval is not about a

sample mean. (d) False. To be more confident that

we capture the parameter, we need a wider interval.

Think about needing a bigger net to be more sure of

catching a fish in a murky lake. (e) True. Optional

explanation: This is true since the normal model was

used to model the sample mean. The margin of er-

ror is half the width of the interval, and the sample

mean is the midpoint of the interval. (f) False. In

the calculation of the standard error, we divide the

standard deviation by the square root of the sample

size. To cut the SE (or margin of error) in half, we

would need to sample 22 = 4 times the number of

people in the initial sample.

5.11 (a) This claim is reasonable, since the entire in-

terval lies above 50%. (b) The value of 70% lies out-

side of the interval, so we have convincing evidence

that the researcher’s conjecture is wrong. (c) A 90%

confidence interval will be narrower than a 95% confi-

dence interval. Even without calculating the interval,

we can tell that 70% would not fall in the interval,

and we would reject the researcher’s conjecture based

on a 90% confidence level as well.

5.13 (a) H0 : p = 0.5 (Neither a majority nor mi-

nority of students’ grades improved) HA : p 6= 0.5

(Either a majority or a minority of students’ grades

improved)

(b) H0 : µ = 15 (The average amount of company

time each employee spends not working is 15 min-

utes for March Madness.) HA : µ 6= 15 (The aver-

age amount of company time each employee spends

not working is different than 15 minutes for March

Madness.)

5.15 (1) The hypotheses should be about the pop-

ulation proportion (p), not the sample proportion.

(2) The null hypothesis should have an equal sign.

(3) The alternative hypothesis should have a not-

equals sign, and (4) it should reference the null

value, p0 = 0.6, not the observed sample propor-

tion. The correct way to set up these hypotheses

is: H0 : p = 0.6 and HA : p 6= 0.6.

5.17 (a) H0 : punemp = punderemp: The propor-

tions of unemployed and underemployed people who

are having relationship problems are equal. HA :

punemp 6= punderemp: The proportions of unem-

ployed and underemployed people who are having re-

lationship problems are different. (b) If in fact the

two population proportions are equal, the probabil-

ity of observing at least a 2% difference between the

sample proportions is approximately 0.35. Since this

is a high probability we fail to reject the null hypoth-

esis. The data do not provide convincing evidence

that the proportion of of unemployed and underem-

ployed people who are having relationship problems

are different.

5.19 (a) H0: Anti-depressants do not affect the

symptoms of Fibromyalgia. HA: Anti-depressants do

affect the symptoms of Fibromyalgia (either helping

or harming). (b) Concluding that anti-depressants

either help or worsen Fibromyalgia symptoms when

they actually do neither. (c) Concluding that anti-

depressants do not affect Fibromyalgia symptoms

when they actually do.

5.21 (a) False. Confidence intervals provide a range

of plausible values, and sometimes the truth is

missed. A 95% confidence interval “misses” about

5% of the time. (b) True. Notice that the description

focuses on the true population value. (c) True. The

95% confidence interval is given by: (42.6%, 47.4%),

and we can see that 50% is outside of this interval.

This means that in a hypothesis test, we would re-

ject the null hypothesis that the proportion is 0.5.

(d) False. The standard error describes the uncer-

tainty in the overall estimate from natural fluctua-

tions due to randomness, not the uncertainty corre-

sponding to individuals’ responses.
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5.23 (a) H0: The restaurant meets food safety and

sanitation regulations. HA: The restaurant does not

meet food safety and sanitation regulations. (b) The

food safety inspector concludes that the restaurant

does not meet food safety and sanitation regulations

and shuts down the restaurant when the restaurant is

actually safe. (c) The food safety inspector concludes

that the restaurant meets food safety and sanitation

regulations and the restaurant stays open when the

restaurant is actually not safe. (d) A Type 1 Error

may be more problematic for the restaurant owner

since his restaurant gets shut down even though it

meets the food safety and sanitation regulations.

(e) A Type 2 Error may be more problematic for

diners since the restaurant deemed safe by the in-

spector is actually not. (f) Strong evidence. Diners

would rather a restaurant that meet the regulations

get shut down than a restaurant that doesn’t meet

the regulations not get shut down.

5.25 True. If the sample size gets ever larger, then

the standard error will become ever smaller. Even-

tually, when the sample size is large enough and the

standard error is tiny, we can find statistically sig-

nificant yet very small differences between the null

value and point estimate (assuming they are not ex-

actly equal).

6 Inference for categorical data

6.1 (a) True. See the reasoning of 6.1(b). (b) True.

We take the square root of the sample size in the SE

formula. (c) True. The independence and success-

failure conditions are satisfied. (d) True. The inde-

pendence and success-failure conditions are satisfied.

6.3 (a) False. A confidence interval is constructed to

estimate the population proportion, not the sample

proportion. (b) True. 95% CI: 82% ± 2%. (c) True.

By the definition of the confidence level. (d) True.

Quadrupling the sample size decreases the SE and

ME by a factor of 1/
√

4. (e) True. The 95% CI is

entirely above 50%.

6.5 With a random sample, independence is satis-

fied. The success-failure condition is also satisfied.

ME = z?
√

p̂(1−p̂)
n

= 1.96
√

0.56×0.44
600

= 0.0397 ≈ 4%

6.7 (a) No. The sample only represents students

who took the SAT, and this was also an online sur-

vey. (b) (0.5289, 0.5711). We are 90% confident

that 53% to 57% of high school seniors who took the

SAT are fairly certain that they will participate in

a study abroad program in college. (c) 90% of such

random samples would produce a 90% confidence in-

terval that includes the true proportion. (d) Yes.

The interval lies entirely above 50%.

6.9 (a) We want to check for a majority (or minor-
ity), so we use the following hypotheses:

H0 : p = 0.5 HA : p 6= 0.5

We have a sample proportion of p̂ = 0.55 and a sam-
ple size of n = 617 independents.
Since this is a random sample, independence is sat-
isfied. The success-failure condition is also satisfied:
617× 0.5 and 617× (1− 0.5) are both at least 10 (we
use the null proportion p0 = 0.5 for this check in a
one-proportion hypothesis test).
Therefore, we can model p̂ using a normal distribu-
tion with a standard error of

SE =

√
p(1− p)

n
= 0.02

(We use the null proportion p0 = 0.5 to compute the

standard error for a one-proportion hypothesis test.)
Next, we compute the test statistic:

Z =
0.55− 0.5

0.02
= 2.5

This yields a one-tail area of 0.0062, and a p-value of

2× 0.0062 = 0.0124.

Because the p-value is smaller than 0.05, we reject

the null hypothesis. We have strong evidence that

the support is different from 0.5, and since the data

provide a point estimate above 0.5, we have strong

evidence to support this claim by the TV pundit.

(b) No. Generally we expect a hypothesis test and

a confidence interval to align, so we would expect

the confidence interval to show a range of plausible

values entirely above 0.5. However, if the confidence

level is misaligned (e.g. a 99% confidence level and

a α = 0.05 significance level), then this is no longer

generally true.

6.11 (a) Identify: H0: p = 0.5. HA: p > 0.5.

α = 0.05. Choose: 1-proportion Z-test. Check: In-

dependence (random sample, < 10% of population)

is satisfied, as is the success-failure conditions (using

p0 = 0.5, we expect 40 successes and 40 failures).

Calculate: Z = 2.91 → p- value = 0.0018. Conclude:

Since the p-value < 0.05, we reject the null hypothe-

sis. The data provide strong evidence that the rate of

correctly identifying a soda for these people is signifi-

cantly better than just by random guessing. (b) The

p-value represents the following conditional probabil-

ity: P (p̂ > 0.6625 | p = 0.5). If in fact people can-

not tell the difference between diet and regular soda

and they randomly guess, the probability of getting

a random sample of 80 people where 66.25% (53/80)

or higher identify a soda correctly would be 0.0018.
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6.13 Because a sample proportion (p̂ = 0.55) is
available, we use this for the sample size calculations.
The margin of error for a 90% confidence interval is

1.6449 × SE = 1.6449 ×
√

p(1−p)
n

. We want this to

be less than 0.01, where we use p̂ in place of p:

1.6449×
√

0.55(1− 0.55)

n
≤ 0.01

1.64492 0.55(1− 0.55)

0.012
≤ n

From this, we get that n must be at least 6697.

6.15 This is not a randomized experiment, and it

is unclear whether people would be affected by the

behavior of their peers. That is, independence may

not hold. Additionally, there are only 5 interven-

tions under the provocative scenario, so the success-

failure condition does not hold. Even if we consider

a hypothesis test where we pool the proportions, the

success-failure condition will not be satisfied. Since

one condition is questionable and the other is not sat-

isfied, the difference in sample proportions will not

follow a nearly normal distribution.

6.17 (a) False. The entire confidence interval is

above 0. (b) True. (c) True. (d) True. (e) False. It

is simply the negated and reordered values: (-0.06,-

0.02).

6.19 (a) Standard error:

SE =

√
0.79(1− 0.79)

347
+

0.55(1− 0.55)

617
= 0.03

Using z? = 1.96, we get:

0.79− 0.55± 1.96× 0.03→ (0.181, 0.299)

We are 95% confident that the proportion of

Democrats who support the plan is 18.1% to 29.9%

higher than the proportion of Independents who sup-

port the plan. (b) True.

6.21 Identify: Subscript C means control group.

Subscript T means truck drivers. H0 : pC = pT .

HA : pC 6= pT . α = 0.05. Choose: 2-proportion Z-

test. Check: Independence is satisfied (random sam-

ples that are independent), as is the success-failure

condition, which we check using the pooled propor-

tion (p̂pool = 70/495 = 0.141). Calculate: Z = −1.65

→ p-value = 0.0989. Conclude: Since the p-value

is > α, we fail to reject H0. The data do not pro-

vide strong evidence that the rates of sleep depriva-

tion are different for non-transportation workers and

truck drivers.

6.23 (a) Subscript V means vitamin group. Sub-

script NV means no vitamin group. H0 : pV = pNV .

H0 : pV 6= pNV . Independence is satisfied (ran-

dom samples, < 10% of the population), as is the

success-failure condition, which we would check us-

ing the pooled proportion (p̂pool = 254/483 = 0.53).

Z = 2.99 → p-value = 0.0028. Since the p-value is

low, we reject H0. There is strong evidence of a dif-

ference in the rates of autism of children of mothers

who did and did not use prenatal vitamins during the

first three months before pregnancy. (b) The title of

this newspaper article makes it sound like using pre-

natal vitamins can prevent autism, which is a causal

statement. Since this is an observational study, we

cannot make causal statements based on the findings

of the study. A more accurate title would be “Moth-

ers who use prenatal vitamins before pregnancy are

found to have children with a lower rate of autism”

6.25 (a) False. The chi-square distribution has

one parameter called degrees of freedom. (b) True.

(c) True. (d) False. As the degrees of freedom in-

creases, the shape of the chi-square distribution be-

comes more symmetric.

6.27 (a) H0: The distribution of the format of

the book used by the students follows the profes-

sor’s predictions. HA: The distribution of the for-

mat of the book used by the students does not fol-

low the professor’s predictions. (b) Ehard copy =

126 × 0.60 = 75.6. Eprint = 126 × 0.25 = 31.5.

Eonline = 126× 0.15 = 18.9. (c) Independence: The

sample is not random. However, if the professor has

reason to believe that the proportions are stable from

one term to the next and students are not affecting

each other’s study habits, independence could be rea-

sonable. Sample size: All expected counts are at least

5. (d) χ2 = 2.32, df = 2, p-value = 0.313. (e) Since

the p-value is large, we fail to reject H0. The data do

not provide strong evidence indicating the professor’s

predictions were statistically inaccurate.

6.29 (a) Two-way table:

Quit
Treatment Yes No Total
Patch + support group 40 110 150
Only patch 30 120 150
Total 70 230 300

(b-i) Erow1,col1 = (row 1 total)×(col 1 total)
table total

= 35. This

is lower than the observed value.

(b-ii) Erow2,col2 = (row 2 total)×(col 2 total)
table total

= 115.

This is lower than the observed value.
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6.31 Identify: H0: Opinions regarding offshore
drilling for oil and having a college degree are in-
dependent. HA: Opinions regarding offshore drilling
for oil and having a college degree are dependent.
α = 0.05. Choose: chi-square test for independence
Check:

Erow 1,col 1 = 151.5 Erow 1,col 2 = 134.5

Erow 2,col 1 = 162.1 Erow 2,col 2 = 143.9

Erow 3,col 1 = 124.5 Erow 3,col 2 = 110.5

Independence: The sample is random, and from less

than 10% of the population, so independence between

observations is reasonable. Expected counts: All ex-

pected counts are at least 5. Calculate: χ2 = 11.47,

df = 2 → p-value = 0.003. Conclude: Since the p-

value < α, we reject H0. There is strong evidence

that there is an association between support for off-

shore drilling and having a college degree.

6.33 No. The samples at the beginning and at the

end of the semester are not independent since the

survey is conducted on the same students.

6.35 (a) H0: The age of Los Angeles residents is

independent of shipping carrier preference variable.

HA: The age of Los Angeles residents is associ-

ated with the shipping carrier preference variable.

(b) The conditions are not satisfied since some ex-

pected counts are below 5.

6.37 (a) Independence is satisfied (random sample),

as is the success-failure condition (40 smokers, 160

non-smokers). The 95% CI: (0.145, 0.255). We are

95% confident that 14.5% to 25.5% of all students at

this university smoke. (b) We want z?SE to be no

larger than 0.02 for a 95% confidence level. We use

z? = 1.96 and plug in the point estimate p̂ = 0.2

within the SE formula: 1.96
√

0.2(1− 0.2)/n ≤ 0.02.

The sample size n should be at least 1,537.

6.39 (a) Proportion of graduates from this univer-

sity who found a job within one year of graduating.

p̂ = 348/400 = 0.87. (b) This is a random sample,

so the observations are independent. Success-failure

condition is satisfied: 348 successes, 52 failures, both

well above 10. (c) (0.8371, 0.9029). We are 95%

confident that approximately 84% to 90% of gradu-

ates from this university found a job within one year

of completing their undergraduate degree. (d) 95%

of such random samples would produce a 95% con-

fidence interval that includes the true proportion of

students at this university who found a job within one

year of graduating from college. (e) (0.8267, 0.9133).

Similar interpretation as before. (f) 99% CI is wider,

as we are more confident that the true proportion

is within the interval and so need to cover a wider

range.

6.41 Use a chi-square goodness of fit test. H0: Each

option is equally likely. HA: Some options are pre-

ferred over others. Total sample size: 99. Expected

counts: (1/3) * 99 = 33 for each option. These are all

above 5, so conditions are satisfied. df = 3 − 1 = 2

and χ2 = (43−33)2

33
+ (21−33)2

33
+ (35−33)2

33
= 7.52 →

p-value = 0.023. Since the p-value is less than 5%,

we reject H0. The data provide convincing evidence

that some options are preferred over others.

6.43 (a) H0 : p = 0.38. HA : p 6= 0.38. Inde-

pendence (random sample) and the success-failure

condition are satisfied. Z = −20.5 → p-value ≈ 0.

Since the p-value is very small, we reject H0. The

data provide strong evidence that the proportion of

Americans who only use their cell phones to access

the internet is different than the Chinese proportion

of 38%, and the data indicate that the proportion is

lower in the US. (b) If in fact 38% of Americans used

their cell phones as a primary access point to the in-

ternet, the probability of obtaining a random sample

of 2,254 Americans where 17% or less or 59% or more

use their only their cell phones to access the inter-

net would be approximately 0. (c) (0.1545, 0.1855).

We are 95% confident that approximately 15.5% to

18.6% of all Americans primarily use their cell phones

to browse the internet.

6.45 (a) Since there are 3 independent random sam-

ples here, we do a test for homogeneity. df = 2.

(b) Goodness of fit test, df = 2. (c) Goodness of fit

test, df = 4.
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7 Inference for numerical data

7.1 (a) df = 6− 1 = 5, t?5 = 2.02 (column with two

tails of 0.10, row with df = 5). (b) df = 21− 1 = 20,

t?20 = 2.53 (column with two tails of 0.02, row with

df = 20). (c) df = 28, t?28 = 2.05. (d) df = 11,

t?11 = 3.11.

7.3 (a) 0.085, do not reject H0. (b) 0.003, reject H0.

(c) 0.438, do not reject H0. (d) 0.042, reject H0.

7.5 The mean is the midpoint: x̄ = 20. Identify the

margin of error: ME = 1.015, then use t?35 = 2.03

and SE = s/
√
n in the formula for margin of error

to identify s = 3.

7.7 (a) H0: µ = 8 (New Yorkers sleep 8 hrs per

night on average.) HA: µ 6= 8 (New Yorkers sleep

less or more than 8 hrs per night on average.) (b) In-

dependence: The sample is random. The min/max

suggest there are no concerning outliers. T = −1.75.

df = 25 − 1 = 24. (c) p-value = 0.093. If in fact

the true population mean of the amount New York-

ers sleep per night was 8 hours, the probability of

getting a random sample of 25 New Yorkers where

the average amount of sleep is 7.73 hours per night

or less (or 8.27 hours or more) is 0.093. (d) Since

p-value > 0.05, do not reject H0. The data do not

provide strong evidence that New Yorkers sleep more

or less than 8 hours per night on average. (e) Yes,

since we did not rejected H0.

7.9 T is either -2.09 or 2.09. Then x̄ is one of the
following:

−2.09 =
x̄− 60

8√
20

→ x̄ = 56.26

2.09 =
x̄− 60

8√
20

→ x̄ = 63.74

7.11 (a) Identify: H0: µ = 5. HA: µ < 5. We’ll

use α = 0.05. Choose: 1-sample t-test. Check: This

is a random sample, so the observations are inde-

pendent. To proceed, we assume the distribution of

years of piano lessons is approximately normal. Cal-

culate: SE = 2.2/
√

20 = 0.4919. The test statistic

is T = (4.6 − 5)/SE = −0.81. df = 20 − 1 = 19.

The one-tail p-value is about 0.21. Conclude: p-value

> α = 0.05, so we do not reject H0. That is, we do

not have sufficiently strong evidence to reject Geor-

gianna’s claim.

(b) Identify: estimate average hours a child takes pi-

ano lessons in this city with 95% confidence. Choose:

1-sample t-interval. Check: same as in part (a). Cal-

culate: Using SE = 0.4919 and t?df=19 = 2.093, the

confidence interval is (3.57, 5.63). Conclude: We are

95% confident that the average number of years a

child takes piano lessons in this city is 3.57 to 5.63

years. Do not have evidence that average is not 5

because 5 is in the interval.

(c) They agree, since we did not reject the null hy-

pothesis and the null value of 5 was in the t-interval.

7.13 If the sample is large, then the margin of error

will be about 1.96× 100/
√
n. We want this value to

be less than 10, which leads to n ≥ 384.16, meaning

we need a sample size of at least 385 (round up for

sample size calculations!).

7.15 Paired, data are recorded in the same cities at

two different time points. The temperature in a city

at one point is not independent of the temperature

in the same city at another time point.

7.17 (a) Since it’s the same students at the begin-

ning and the end of the semester, there is a pairing

between the datasets, for a given student their be-

ginning and end of semester grades are dependent.

(b) Since the subjects were sampled randomly, each

observation in the men’s group does not have a spe-

cial correspondence with exactly one observation in

the other (women’s) group. (c) Since it’s the same

subjects at the beginning and the end of the study,

there is a pairing between the datasets, for a subject

student their beginning and end of semester artery

thickness are dependent. (d) Since it’s the same sub-

jects at the beginning and the end of the study, there

is a pairing between the datasets, for a subject stu-

dent their beginning and end of semester weights are

dependent.



499

7.19 (a) For each observation in one data set, there

is exactly one specially corresponding observation in

the other data set for the same geographic location.

The data are paired. (b) H0 : µdiff = 0 (There is no

difference in average number of days exceeding 90°F
in 1948 and 2018 for NOAA stations.) HA : µdiff 6= 0

(There is a difference.) (c) Locations were randomly

sampled, so independence is reasonable. The sample

size is at least 30, so we’re just looking for partic-

ularly extreme outliers: none are present (the ob-

servation off left in the histogram would be con-

sidered a clear outlier, but not a particularly ex-

treme one). Therefore, the conditions are satisfied.

(d) SE = 17.2/
√

197 = 1.23. T = 2.9−0
1.23

= 2.36 with

degrees of freedom df = 197− 1 = 196. This leads to

a one-tail area of 0.0096 and a p-value of about 0.019.

(e) Since the p-value is less than 0.05, we reject H0.

The data provide strong evidence that NOAA sta-

tions observed more 90°F days in 2018 than in 1948.

(f) Type 1 Error, since we may have incorrectly re-

jected H0. This error would mean that NOAA sta-

tions did not actually observe a decrease, but the

sample we took just so happened to make it appear

that this was the case. (g) No, since we rejected H0,

which had a null value of 0.

7.21 Identify: we want to estimate the average dif-

ference in number of days exceeding 90°F for (2018 -

1948) with 90% confidence. Choose: 1-sample t-

interval with paired data. Check: ndiff = 197 ≥ 30

and the locations are randomly sampled. Calculate:

average SEdiff = 1.23 and df = 196. t? ≈ 1.65.

2.9 ± 1.65 × 1.23 → (0.87, 4.93). Conclude: We are

90% confident that there was an increase of 0.87 to

4.93 in the average difference of days that hit 90°F
in 2018 relative to 1948 for NOAA stations. We

have evidence that the average difference of days that

hit 90°F increased, because the interval is entirely

above 0.

7.23 Identify:H0: µ0.99 = µ1 and HA: µ0.99 6= µ1;

Let α = 0.05. Choose: 2-sample t-test. Check: In-

dependence: Both samples are random and repre-

sent less than 10% of their respective populations.

Also, we have no reason to think that the 0.99 carats

are not independent of the 1 carat diamonds since

they are both sampled randomly. Normal popula-

tions: The sample distributions are not very skewed,

hence we find it reasonable that the underlying pop-

ulation distributions are nearly normal. Calculate:

T = −2.82, df = 42.5, p-value = 0.007. Con-

clude: Since p-value < 0.05, reject H0. The data

provide convincing evidence that the average stan-

dardized price of 0.99 carats and 1 carat diamonds

are different.

7.25 (a) Chicken fed linseed weighed an average of

218.75 grams while those fed horsebean weighed an

average of 160.20 grams. Both distributions are rela-

tively symmetric with no apparent outliers. There is

more variability in the weights of chicken fed linseed.

(b) H0 : µls = µhb. HA : µls 6= µhb.

We leave the conditions to you to consider.

T = 3.02, df = min(11, 9) = 9 → p-value = 0.014.

Since p-value < 0.05, reject H0. The data provide

strong evidence that there is a significant difference

between the average weights of chickens that were fed

linseed and horsebean.

(c) Type 1 Error, since we rejected H0.

(d) Yes, since p-value > 0.01, we would not have re-

jected H0.

7.27 H0 : µC = µS . HA : µC 6= µS . T = 3.27,

df = 11 → p-value = 0.007. Since p-value < 0.05,

reject H0. The data provide strong evidence that the

average weight of chickens that were fed casein is dif-

ferent than the average weight of chickens that were

fed soybean (with weights from casein being higher).

Since this is a randomized experiment, the observed

difference can be attributed to the diet.

7.29 Let µdiff = µpre−post. H0 : µdiff = 0: Treat-

ment has no effect. HA : µdiff 6= 0: Treatment has

an effect on P.D.T. scores, either positive or neg-

ative. Conditions: The subjects are randomly as-

signed to treatments, so independence within and

between groups is satisfied. All three sample sizes

are smaller than 30, so we look for clear outliers.

There is a borderline outlier in the first treatment

group. Since it is borderline, we will proceed, but

we should report this caveat with any results. For

all three groups: df = 13. T1 = 1.89 → p-value =

0.081, T2 = 1.35→ p-value = 0.200), T3 = −1.40→
(p-value = 0.185). We do not reject the null hypoth-

esis for any of these groups. As earlier noted, there

is some uncertainty about if the method applied is

reasonable for the first group.

7.31 H0 : µT = µC . HA : µT 6= µC . T = 2.24,

df = 21 → p-value = 0.036. Since p-value < 0.05,

reject H0. The data provide strong evidence that

the average food consumption by the patients in the

treatment and control groups are different. Further-

more, the data indicate patients in the distracted

eating (treatment) group consume more food than

patients in the control group.

7.33 False. While it is true that paired analysis re-

quires equal sample sizes, only having the equal sam-

ple sizes isn’t, on its own, sufficient for doing a paired

test. Paired tests require that there be a special cor-

respondence between each pair of observations in the

two groups.

7.35 (a) We are building a distribution of sample

statistics, in this case the sample mean. Such a dis-

tribution is called a sampling distribution. (b) Be-

cause we are dealing with the distribution of sample

means, we need to check to see if the Central Limit

Theorem applies. Our sample size is greater than 30,

and we are told that random sampling is employed.

With these conditions met, we expect that the dis-
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tribution of the sample mean will be nearly normal

and therefore symmetric. (c) Because we are dealing

with a sampling distribution, we measure its variabil-

ity with the standard error. SE = 18.2/
√

45 = 2.713.

(d) The sample means will be more variable with the

smaller sample size.

7.37 Independence: it is a random sample, so we

can assume that the students in this sample are in-

dependent of each other with respect to number of

exclusive relationships they have been in. Notice

that there are no students who have had no exclu-

sive relationships in the sample, which suggests some

student responses are likely missing (perhaps only

positive values were reported). The sample size is at

least 30, and there are no particularly extreme out-

liers, so the normality condition is reasonable. 90%

CI: (2.97, 3.43). We are 90% confident that under-

graduate students have been in 2.97 to 3.43 exclusive

relationships, on average.

7.39 First, the hypotheses should be about the pop-
ulation mean (µ), not the sample mean. Second, the
null hypothesis should have an equal sign and the
alternative hypothesis should be about the null hy-
pothesized value, not the observed sample mean. The
correct way to set up these hypotheses is shown be-
low:

H0 : µ = 10 hours

HA : µ 6= 10 hours

A two-sided test allows us to consider the possibility

that the data show us something that we would find

surprising.

7.41 (a) These data are paired. For example, the

Friday the 13th in say, September 1991, would prob-

ably be more similar to the Friday the 6th in Septem-

ber 1991 than to Friday the 6th in another month or

year.

(b) Let µdiff = µsixth − µthirteenth. H0 : µdiff = 0.

HA : µdiff 6= 0.

(c) Independence: The months selected are not ran-

dom. However, if we think these dates are roughly

equivalent to a simple random sample of all such Fri-

day 6th/13th date pairs, then independence is rea-

sonable. To proceed, we must make this strong as-

sumption, though we should note this assumption in

any reported results. Normality: With fewer than 10

observations, we would need to see clear outliers to

be concerned. There is a borderline outlier on the

right of the histogram of the differences, so we would

want to report this in formal analysis results.

(d) T = 4.93 for df = 10− 1 = 9 → p-value = 0.001.

(e) Since p-value < 0.05, reject H0. The data provide

strong evidence that the average number of cars at

the intersection is higher on Friday the 6th than on

Friday the 13th. (We should exercise caution about

generalizing the interpetation to all intersections or

roads.)

(f) If the average number of cars passing the inter-

section actually was the same on Friday the 6th and

13th, then the probability that we would observe a

test statistic so far from zero is less than 0.01.

(g) We might have made a Type 1 Error, i.e. incor-

rectly rejected the null hypothesis.

8 Introduction to linear regression

8.1 (a) The residual plot will show randomly dis-

tributed residuals around 0. The variance is also ap-

proximately constant. (b) The residuals will show

a fan shape, with higher variability for smaller x.

There will also be many points on the right above

the line. There is trouble with the model being fit

here.

8.3 (a) Strong relationship, but a straight line would

not fit the data. (b) Strong relationship, and a linear

fit would be reasonable. (c) Weak relationship, and

trying a linear fit would be reasonable. (d) Moder-

ate relationship, but a straight line would not fit the

data. (e) Strong relationship, and a linear fit would

be reasonable. (f) Weak relationship, and trying a

linear fit would be reasonable.

8.5 (a) Exam 2 since there is less of a scatter in the

plot of final exam grade versus exam 2. Notice that

the relationship between Exam 1 and the Final Exam

appears to be slightly nonlinear. (b) Exam 2 and the

final are relatively close to each other chronologically,

or Exam 2 may be cumulative so has greater similari-

ties in material to the final exam. Answers may vary.

8.7 (a) r = −0.7 → (4). (b) r = 0.45 → (3).

(c) r = 0.06 → (1). (d) r = 0.92 → (2).

8.9 (a) The relationship is positive, weak, and pos-

sibly linear. However, there do appear to be some

anomalous observations along the left where sev-

eral students have the same height that is notably

far from the cloud of the other points. Addition-

ally, there are many students who appear not to

have driven a car, and they are represented by a

set of points along the bottom of the scatterplot.

(b) There is no obvious explanation why simply be-

ing tall should lead a person to drive faster. How-

ever, one confounding factor is gender. Males tend

to be taller than females on average, and personal ex-

periences (anecdotal) may suggest they drive faster.

If we were to follow-up on this suspicion, we would

find that sociological studies confirm this suspicion.

(c) Males are taller on average and they drive faster.

The gender variable is indeed an important confound-

ing variable.
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8.11 (a) There is a somewhat weak, positive, pos-

sibly linear relationship between the distance trav-

eled and travel time. There is clustering near the

lower left corner that we should take special note of.

(b) Changing the units will not change the form, di-

rection or strength of the relationship between the

two variables. If longer distances measured in miles

are associated with longer travel time measured in

minutes, longer distances measured in kilometers will

be associated with longer travel time measured in

hours. (c) Changing units doesn’t affect correlation:

r = 0.636.

8.13 (a) There is a moderate, positive, and lin-

ear relationship between shoulder girth and height.

(b) Changing the units, even if just for one of the vari-

ables, will not change the form, direction or strength

of the relationship between the two variables.

8.15 In each part, we can write the woman’s age as

a linear function of the spouse’s age.

(a) ageW = ageS + 3.

(b) ageW = ageS − 2.

(c) ageW = 2× ageS .

Since the slopes are positive and these are perfect

linear relationships, the correlation will be exactly 1

in all three parts. An alternative way to gain insight

into this solution is to create a mock data set, e.g.

5 women aged 26, 27, 28, 29, and 30, then find the

spouses ages for each women in each part and create

a scatterplot.

8.17 Correlation: no units. Intercept: kg. Slope:

kg/cm.

8.19 Over-estimate. Since the residual is calculated

as observed − predicted, a negative residual means

that the predicted value is higher than the observed

value.

8.21 (a) There is a positive, very strong, linear as-

sociation between the number of tourists and spend-

ing. (b) Explanatory: number of tourists (in thou-

sands). Response: spending (in millions of US dol-

lars). (c) We can predict spending for a given number

of tourists using a regression line. This may be use-

ful information for determining how much the coun-

try may want to spend in advertising abroad, or to

forecast expected revenues from tourism. (d) Even

though the relationship appears linear in the scatter-

plot, the residual plot actually shows a nonlinear re-

lationship. This is not a contradiction: residual plots

can show divergences from linearity that can be diffi-

cult to see in a scatterplot. A simple linear model is

inadequate for modeling these data. It is also impor-

tant to consider that these data are observed sequen-

tially, which means there may be a hidden structure

not evident in the current plots but that is important

to consider.

8.23 (a) First calculate the slope: b = r × sy/sx =

0.636 × 113/99 = 0.726. Next, make use of the

fact that the regression line passes through the point

(x̄, ȳ): ȳ = a+b× x̄. Plug in x̄, ȳ, and b, and solve for

a: 51. Solution: ̂travel time = 51+0.726×distance.
(b) b: For each additional mile in distance, the

model predicts an additional 0.726 minutes in travel

time. a: When the distance traveled is 0 miles,

the travel time is expected to be 51 minutes. It

does not make sense to have a travel distance of 0

miles in this context. Here, the y-intercept serves

only to adjust the height of the line and is mean-

ingless by itself. (c) R2 = 0.6362 = 0.40. About

40% of the variability in travel time is accounted for

by the model, i.e. explained by the distance trav-

eled. (d) ̂travel time = 51 + 0.726 × distance =

51+0.726×103 ≈ 126 minutes. (Note: we should be

cautious in our predictions with this model since we

have not yet evaluated whether it is a well-fit model.)

(e) ei = yi − ŷi = 168 − 126 = 42 minutes. A pos-

itive residual means that the model underestimates

the travel time. (f) No, this calculation would require

extrapolation.

8.25 (a) ̂murder = −29.901 + 2.559 × poverty%.

(b) Expected murder rate in metropolitan areas with

no poverty is -29. 901 per million. This is obvi-

ously not a meaningful value, it just serves to ad-

just the height of the regression line. (c) For each

additional percentage increase in poverty, we expect

murders per million to be higher on average by 2.559.

(d) Poverty level explains 70.52% of the variability in

murder rates in metropolitan areas. (e)
√

0.7052 =

0.8398.

8.27 (a) There is an outlier in the bottom right.

Since it is far from the center of the data, it is a

point with high leverage. It is also an influential

point since, without that observation, the regression

line would have a very different slope.

(b) There is an outlier in the bottom right. Since it is

far from the center of the data, it is a point with high

leverage. However, it does not appear to be affecting

the line much, so it is not an influential point.

(c) The observation is in the center of the data (in

the x-axis direction), so this point does not have high

leverage. This means the point won’t have much ef-

fect on the slope of the line and so is not an influential

point.
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8.29 (a) There is a negative, moderate-to-strong,

somewhat linear relationship between percent of fam-

ilies who own their home and the percent of the pop-

ulation living in urban areas in 2010. There is one

outlier: a state where 100% of the population is ur-

ban. The variability in the percent of homeownership

also increases as we move from left to right in the plot.

(b) The outlier is located in the bottom right corner,

horizontally far from the center of the other points,

so it is a point with high leverage. It is an influen-

tial point since excluding this point from the analysis

would greatly affect the slope of the regression line.

8.31 (a) The relationship is positive, linear, and

moderate. Due to the clear non-constant variance

in the residuals, a linear model is not appropriate

for modeling the relationship between hours worked

and income. (b) Neither are a particularly: For the

logged model, the scatterplot and residual plot show

more constant variance in the residuals. However, the

scatterplot with the logged model looks to have a bit

of curvature. (c) For each hour increase hours works

we would expect the income to increase on average

by a factor of e0.058 ≈ 1.06, i.e. by 6%.

8.33 (a) The relationship is positive, moderate-to-

strong, and linear. There are a few outliers but no

points that appear to be influential.

(b) ̂weight = −105.0113 + 1.0176× height.
Slope: For each additional centimeter in height, the

model predicts the average weight to be 1.0176 addi-

tional kilograms (about 2.2 pounds).

Intercept: People who are 0 centimeters tall are ex-

pected to weigh - 105.0113 kilograms. This is obvi-

ously not possible. Here, the y- intercept serves only

to adjust the height of the line and is meaningless by

itself.

(c) H0: The true slope coefficient of height is zero

(β = 0).

HA: The true slope coefficient of height is different

than zero (β 6= 0).

The p-value for the two-sided alternative hypothesis

(β 6= 0) is incredibly small, so we reject H0. The data

provide convincing evidence that height and weight

are positively correlated. The true slope parameter

is indeed greater than 0.

(d) R2 = 0.722 = 0.52. Approximately 52% of the

variability in weight can be explained by the height

of individuals.

8.35 (a) H0: β = 0. HA: β 6= 0. The p-value, as re-

ported in the table, is incredibly small and is smaller

than 0.05, so we reject H0. The data provide con-

vincing evidence that women’s and spouses’ heights

are positively correlated.

(b) ̂heightS = 43.5755 + 0.2863× heightW .

(c) Slope: For each additional inch in woman’s

height, the spouse’s height is expected to be an addi-

tional 0.2863 inches, on average. Intercept: Women

who are 0 inches tall are predicted to have spouses

who are 43.5755 inches tall. The intercept here is

meaningless, and it serves only to adjust the height

of the line.

(d) The slope is positive, so r must also be positive.

r =
√

0.09 = 0.30.

(e) 63.2612. Since R2 is low, the prediction based on

this regression model is not very reliable.

(f) No, we should avoid extrapolating.

8.37 (a) H0 : β = 0;HA : β 6= 0 (b) The p-

value for this test is approximately 0, therefore we

reject H0. The data provide convincing evidence

that poverty percentage is a significant predictor of

murder rate. (c) n = 20, df = 18, T ∗18 = 2.10;

2.559±2.10×0.390 = (1.74, 3.378); For each percent-

age point poverty is higher, murder rate is expected

to be higher on average by 1.74 to 3.378 per million.

(d) Yes, we rejected H0 and the confidence interval

does not include 0.

8.39 (a) True. (b) False, correlation is a measure

of the linear association between any two numerical

variables.

8.41 There is an upwards trend. However, the vari-

ability is higher for higher calorie counts, and it looks

like there might be two clusters of observations above

and below the line on the right, so we should be cau-

tious about fitting a linear model to these data.

8.43 (a) r = −0.72 → (2) (b) r = 0.07 → (4)

(c) r = 0.86→ (1) (d) r = 0.99→ (3)

8.45 (a) There is a weak-to-moderate, positive, lin-

ear association between height and volume. There

also appears to be some non-constant variance since

the volume of trees is more variable for taller trees.

(b) There is a very strong, positive association be-

tween diameter and volume. The relationship may

include slight curvature. (c) Since the relationship is

stronger between volume and diameter, using diam-

eter would be preferred. However, as mentioned in

part (b), the relationship between volume and diam-

eter may not be, and so we may benefit from a model

that properly accounts for nonlinearity.
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Appendix B

Data sets within the text

Each data set within the text is described in this appendix. For those data sets that are in multiple
sections in a chapter, only the first section is listed in that chapter. If a data set is not listed here,
e.g. Section 3.2.10 lists imagined probabilities for whether a parking garage will fill up and whether
there is a sporting event that same evening for an unnamed college, it may not be listed in this
data appendix. When a raw data set is available vs just a description, there is a corresponding page
for the data set at openintro.org/data. That webpage also includes many more data sets than
are covered in this textbook, and each data set on the website includes a description, it’s source, a
detailed overview of each data set’s variables, and download options.

Chapter 1: Data collection

1.1 stent30, stent365 → The stent data is split across two data sets, one for the 0-30 day and
one for the 0-365 day results.
Chimowitz MI, Lynn MJ, Derdeyn CP, et al. 2011. Stenting versus Aggressive Medical
Therapy for Intracranial Arterial Stenosis. New England Journal of Medicine 365:993-1003.
www.nejm.org/doi/full/10.1056/NEJMoa1105335.
NY Times article: www.nytimes.com/2011/09/08/health/research/08stent.html.

1.2 loan50, loans full schema→ This data comes from Lending Club (lendingclub.com), which
provides a large set of data on the people who received loans through their platform. The data
used in the textbook comes from a sample of the loans made in Q1 (Jan, Feb, March) 2018.

1.2 county, county complete → These data come from several government sources. For those
variables included in the county data set, only the most recent data is reported, as of what
was available in late 2018. Data prior to 2011 is all from census.gov, where the specific Quick
Facts page providing the data is no longer available. The more recent data comes from USDA
(ers.usda.gov), Bureau of Labor Statistics (bls.gov/lau), SAIPE (census.gov/did/www/saipe),
and American Community Survey (census.gov/programs-surveys/acs).

1.4 The study in mind regarding chocolate and heart attack patients:
Janszky et al. 2009. Chocolate consumption and mortality following a first acute myocardial
infarction: the Stockholm Heart Epidemiology Program. Journal of Internal Medicine 266:3,
p248-257.

1.4 The Nurses’ Health Study was mentioned. For more information on this data set, see
www.channing.harvard.edu/nhs

1.5 The study we had in mind during the introduction of Section 1.5.1 was
Anturane Reinfarction Trial Research Group. 1980. Sulfinpyrazone in the prevention of sudden
death after myocardial infarction. New England Journal of Medicine 302(5):250-256.

http://www.openintro.org/redirect.php?go=data&referrer=ahss3_pdf
http://www.openintro.org/redirect.php?go=data_stent30&referrer=ahss3_pdf
http://www.openintro.org/redirect.php?go=data_stent365&referrer=ahss3_pdf
http://www.openintro.org/redirect.php?go=textbook-nejm_stent_study&referrer=ahss3_pdf
http://www.openintro.org/redirect.php?go=textbook-nytimes_stent_study&referrer=ahss3_pdf
http://www.openintro.org/redirect.php?go=data_loan50&referrer=ahss3_pdf
http://www.openintro.org/redirect.php?go=data_loans_full_schema&referrer=ahss3_pdf
http://www.openintro.org/redirect.php?go=lendingclub-info-download-data&referrer=ahss3_pdf
http://www.openintro.org/redirect.php?go=data_county&referrer=ahss3_pdf
http://www.openintro.org/redirect.php?go=data_county_complete&referrer=ahss3_pdf
http://www.openintro.org/redirect.php?go=census_gov&referrer=ahss3_pdf
http://www.openintro.org/redirect.php?go=ers_usda_gov-data_products-county_level_data_sets&referrer=ahss3_pdf
http://www.openintro.org/redirect.php?go=ers_usda_gov-data_products-county_level_data_sets&referrer=ahss3_pdf
http://www.openintro.org/redirect.php?go=bls_gov-lau&referrer=ahss3_pdf
http://www.openintro.org/redirect.php?go=census_gov-did-www-saipe&referrer=ahss3_pdf
http://www.openintro.org/redirect.php?go=census_gov-programs_surveys-acs&referrer=ahss3_pdf
http://www.openintro.org/redirect.php?go=textbook-2008_chocolate_health_study&referrer=ahss3_pdf
http://www.openintro.org/redirect.php?go=textbook-2008_chocolate_health_study&referrer=ahss3_pdf
http://www.openintro.org/redirect.php?go=textbook-channing_nurse_study&referrer=ahss3_pdf
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Chapter 2: Summarizing data

2.1 county → This data set is described in the data for Chapter 1.

2.1 email50, email → These data represent emails sent to David Diez. Each data set includes
21 variables. The email50 data set is a random sample of 50 emails from email.

2.2 loan50, county → These data sets are described in the data for Chapter 1.
email50, email → These data sets are described in the data for Section 2.1.

2.2 2019 mean and median income. →
https://data.census.gov/cedsci/table?hidePreview=true&tid=ACSST1Y2019.S1901

2.2 possum → The brushtail possum statistics are based on a sample of possums from Australia
and New Guinea. The original source of this data is as follows:
Lindenmayer DB, et al. 1995. Morphological variation among columns of the mountain brush-
tail possum, Trichosurus caninus Ogilby (Phalangeridae: Marsupiala). Australian Journal of
Zoology 43: 449-458.

2.3 SAT and ACT score distributions → The SAT score data comes from the 2018 distribution,
which is provided at
reports.collegeboard.org/pdf/2018-total-group-sat-suite-assessments-annual-report.pdf

The ACT score data is available at
act.org/content/dam/act/unsecured/documents/cccr2018/P 99 999999 N S N00 ACT-GCPR National.pdf

We also acknowledge that the actual ACT score distribution is not nearly normal. However,
since the topic is very accessible, we decided to keep the context and examples.

2.3 nba players 19 → Summary information from the NBA players for the 2018-2019 season.
Data were retrieved from www.nba.com/players.

2.4 loans full schema → This data set is described in the data for Chapter 1.

2.5 malaria → Lyke et al. 2017. PfSPZ vaccine induces strain-transcending T cells and durable
protection against heterologous controlled human malaria infection.
PNAS 114(10):2711-2716. www.pnas.org/content/114/10/2711

Chapter 3: Probability and probability distributions

3.1 email → This data set is described in the data for Chapter 2.

3.1 playing cards → A table describing the 52 cards in a standard deck.

3.2 Machine learning on fashion. → This is a simulated data set, not based on any specific machine
learning classifier.

3.2 smallpox → Fenner F. 1988. Smallpox and Its Eradication (History of International Public
Health, No. 6). Geneva: World Health Organization. ISBN 92-4-156110-6.

3.2 family college → A simulated data set based on real population summaries at
nces.ed.gov/pubs2001/2001126.pdf.

3.2 Mammogram screening, probabilities. → The probabilities reported were obtained using stud-
ies reported at www.breastcancer.org and www.ncbi.nlm.nih.gov/pmc/articles/PMC1173421.

3.4 stocks 18 → Monthly returns for Caterpillar, Exxon Mobil Corp, and Google for November
2015 to October 2018.

3.5 Blood type prevalence. → The fraction of people with O+ blood is about 38% according to
https://www.redcrossblood.org/donate-blood/blood-types/o-blood-type.html
We used 35% for simplicity in the examples.

http://www.openintro.org/redirect.php?go=data_county&referrer=ahss3_pdf
http://www.openintro.org/redirect.php?go=data_email50&referrer=ahss3_pdf
http://www.openintro.org/redirect.php?go=data_email&referrer=ahss3_pdf
http://www.openintro.org/redirect.php?go=data_email50&referrer=ahss3_pdf
http://www.openintro.org/redirect.php?go=data_email&referrer=ahss3_pdf
http://www.openintro.org/redirect.php?go=data_loan50&referrer=ahss3_pdf
http://www.openintro.org/redirect.php?go=data_county&referrer=ahss3_pdf
http://www.openintro.org/redirect.php?go=data_email50&referrer=ahss3_pdf
http://www.openintro.org/redirect.php?go=data_email&referrer=ahss3_pdf
http://www.openintro.org/redirect.php?go=data-census-family-income&referrer=ahss3_pdf
https://data.census.gov/cedsci/table?hidePreview=true&tid=ACSST1Y2019.S1901
http://www.openintro.org/redirect.php?go=data_possum&referrer=ahss3_pdf
http://www.openintro.org/redirect.php?go=textbook-collegeboard_sat_2018_score_distribution&referrer=ahss3_pdf
http://www.openintro.org/redirect.php?go=textbook-act_2018_score_distribution&referrer=ahss3_pdf
http://www.openintro.org/redirect.php?go=data_nba_players_19&referrer=ahss3_pdf
http://www.openintro.org/redirect.php?go=data-nba_players_19&referrer=ahss3_pdf
http://www.openintro.org/redirect.php?go=data_loans_full_schema&referrer=ahss3_pdf
http://www.openintro.org/redirect.php?go=data_malaria&referrer=ahss3_pdf
http://www.openintro.org/redirect.php?go=lyke-ishizuka-2017&referrer=ahss3_pdf
http://www.openintro.org/redirect.php?go=data_email&referrer=ahss3_pdf
http://www.openintro.org/redirect.php?go=data_playing_cards&referrer=ahss3_pdf
http://www.openintro.org/redirect.php?go=data_smallpox&referrer=ahss3_pdf
http://www.openintro.org/redirect.php?go=data_family_college&referrer=ahss3_pdf
http://www.openintro.org/redirect.php?go=textbook-student_parent_college_2001&referrer=ahss3_pdf
http://www.openintro.org/redirect.php?go=textbook-breastCancerDotOrg_20090831b&referrer=ahss3_pdf
http://www.openintro.org/redirect.php?go=textbook-ncbi_nih_breast_cancer&referrer=ahss3_pdf
http://www.openintro.org/redirect.php?go=data_stocks_18&referrer=ahss3_pdf
http://www.openintro.org/redirect.php?go=textbook-american_red_cross_o_positive_rate&referrer=ahss3_pdf
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Chapter 4: Sampling distributions

4.1 Blood type prevalence. → This data set is described in the data for Chapter 3.

4.2 run17, run17samp→ These data set represent the full population and a sample of the runners
and their run times in the 2017 Cherry Blossom Run in Washington, DC. For more details,
see www.cherryblossom.org.

4.2 poker → The full data set includes poker winnings (and losses) for 50 days by a professional
poker player, which represents their first 50 days trying to play for a living. Anonymity has
been requested by the player.

Chapter 5: Foundations for inference

5.1 email → This data set is described in the data for Chapter 2.

5.1 pew energy 2018→ The actual data has more observations than were referenced in this chap-
ter. That is, we used a subsample since it helped smooth some of the examples to have a bit
more variability. The pew energy 2018 data set represents the full data set for each of the
different energy source questions, which covers solar, wind, offshore drilling, hydrolic fractur-
ing, and nuclear energy. The statistics used to construct the data are from the following page:
www.pewinternet.org/2018/05/14/majorities-see-government-efforts-to-protect-the-environment-

as-insufficient/

5.2 pew energy 2018 → See the details for this data set above in the Section 5.1 data section.

5.2 ebola survey → In New York City on October 23rd, 2014, a doctor who had recently been
treating Ebola patients in Guinea went to the hospital with a slight fever and was subsequently
diagnosed with Ebola. Soon thereafter, an NBC 4 New York/The Wall Street Journal/Marist
Poll found that 82% of New Yorkers favored a “mandatory 21-day quarantine for anyone who
has come in contact with an Ebola patient”. This poll included responses of 1,042 New York
adults between Oct 26th and 28th, 2014. Poll ID NY141026 on maristpoll.marist.edu.

5.3 transplant → This is a made up data set about the health outcomes for a hypothetical
medical consultant. Note that the data set on the website has 62 patients, not 142 patients,
so there will a difference for what is covered in this book vs the data set on the website.

5.3 Alaska residents under 5 years old. → The 2010 statistic comes from the US census:
https://data.census.gov.
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Chapter 6: Inference for categorical data

6.1 Supreme Court→ The Gallup organization began measuring the public’s view of the Supreme
Court’s job performance in 2000, and has measured it every year since then with the question:
“Do you approve or disapprove of the way the Supreme Court is handling its job?”. In 2018, the
Gallup poll randomly sampled 1,033 adults in the U.S. and found that 53% of them approved.
https://news.gallup.com/poll/237269/supreme-court-approval-highest-2009.aspx

6.1 Life on other planets→ A February 2018 Marist Poll reported: “Many Americans (68%) think
there is intelligent life on other planets”. This is up from 52% in 2005. The results were based
on a random sample of 1,033 adults in the U.S.
http://maristpoll.marist.edu/212-are-americans-poised-for-an-alien-invasion

6.1 Congressional approval rating. → This survey data is from
news.gallup.com/poll/237176/snapshot-congressional-job-approval-july.aspx

6.1 Tire inspection. → This is a hypothetical scenario not based on real data.

6.1 Toohey poll. → This is a hypothetical scenario not based on a real person or real data.

6.1 Support for nuclear energy. → The results are from the following Gallup poll:
www.gallup.com/poll/182180/support-nuclear-energy.aspx

6.2 cpr → Böttiger et al. Efficacy and safety of thrombolytic therapy after initially unsuccessful
cardiopulmonary resuscitation: a prospective clinical trial. The Lancet, 2001.

6.2 gear company → This is a hypothetical scenario not based on real data.

6.2 healthcare law survey→ Pew research survey on the Affordable Care Act (aka Obamacare)
that ran the survey question with two variants.
http://www.people-press.org/2012/03/26/public-remains-split-on-health-care-bill-opposed-
to-mandate/

6.2 fish oil 18 → Manson JE, et al. 2018. Marine n-3 Fatty Acids and Prevention of Cardio-
vascular Disease and Cancer. NEJMoa1811403.

6.3 jury → Simulated data set of registered voter proportions and representation on juries from
a population.

6.3 M&Ms → Rick Wicklin collected a sample of 712 candies, or about 1.5 pounds, and counted
how many there were of each color.
https://qz.com/918008/the-color-distribution-of-mms-as-determined-by-a-phd-in-statistics

6.4 gsearch → Simulated (fake) data set for Google search experiment.

6.4 ask → Experiment results from asking about iPods, where the original source is:
Minson JA, Ruedy NE, Schweitzer ME. There is such a thing as a stupid question: Question
disclosure in strategic communication.
opim.wharton.upenn.edu/DPlab/papers/workingPapers/

Minson working Ask%20(the%20Right%20Way)%20and%20You%20Shall%20Receive.pdf

6.4 Obama and Congressional approval by political affiliation. → This survey was completed by
Pew Research and the full results may be found at:
http://www.people-press.org/2012/03/14/romney-leads-gop-contest-trails-in-matchup-with-obama

6.4 Attitudes on climate change → A Pew Research poll published in May of 2021 looks at how
Americans’ attitudes about climate change differ by generation, party and other factors.
https://www.pewresearch.org/fact-tank/2021/05/26/key-findings-how-americans-attitudes-about-climate-change-differ-

by-generation-party-and-other-factors/
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Chapter 7: Inference for numerical data

7.1 Risso’s dolphins → Endo T and Haraguchi K. 2009. High mercury levels in hair samples from
residents of Taiji, a Japanese whaling town. Marine Pollution Bulletin 60(5):743-747.

Taiji was featured in the movie The Cove, and it is a significant source of dolphin and whale
meat in Japan. Thousands of dolphins pass through the Taiji area annually, and we will assume
these 19 dolphins represent a simple random sample from those dolphins.

7.1 Croaker white fish→ www.fda.gov/food/foodborneillnesscontaminants/metals/ucm115644.htm

7.1 run17samp → This data set is described in the data for Chapter 4.

7.2 textbooks, ucla textbooks f18→ Data were collected by OpenIntro staff in 2010 and again
in 2018. For the 2018 sample, we sampled 201 UCLA courses. Of those, 68 required books
could be found on Amazon. The websites where information was retrieved:
sa.ucla.edu/ro/public/soc, ucla.verbacompare.com, and amazon.com.

7.2 sat improve → This is a hypothetical (fake) data set for SAT improvement from an SAT
preparation company.

7.3 Jennifer-John study. → Bertrand M, Mullainathan S. 2004. Science faculty’s subtle gender
biases favor male students. PNAS October 9, 2012 109 (41) 16474-16479.
https://www.pnas.org/content/109/41/16474

7.3 resume→ Study for racial bias in hiring, where the study’s data is available in the resume data
set. This data set is explored in great detail in the logistic regression section of the OpenIntro
Statistics textbook (free PDF). The original source for this data is:
Bertrand M, Mullainathan S. 2004. Are Emily and Greg More Employable than Lakisha and
Jamal? A Field Experiment on Labor Market Discrimination. The American Economic Review
94:4 (991-1013). www.nber.org/papers/w9873

7.3 Exams variants. → This is a simulated (fake) data set for exam performance of students for
two different exam variations.

7.3 ncbirths → A random sample of 1000 NC births. A sample of that random sample was used
for the example in the section.

7.3 stem cells→Menard C, et al. 2005. Transplantation of cardiac-committed mouse embryonic
stem cells to infarcted sheep myocardium: a preclinical study. The Lancet: 366:9490, p1005-
1012. https://www.thelancet.com/journals/lancet/article/PIIS0140-6736(05)67380-1/fulltext
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Chapter 8: Introduction to linear regression

8.1 simulated scatter → Fake data used for the first three plots. The perfect linear plot uses
group 4 data, where group variable in the data set (Figure 8.1). The group of 3 imperfect
linear plots use groups 1-3 (Figure 8.2). The sinusoidal curve uses group 5 data (Figure 8.3).
The group of 3 scatterplots with residual plots use groups 6-8 (Figure 8.8). The correlation
plots uses groups 9-19 data (Figures 8.9 and 8.10).

8.1 possum → This data is described in the data for Chapter 2.

8.1 simulated scatter→ The plots for things that can go wrong uses groups 20-23 (Figure 8.26).

8.2 elmhurst→ These data were sampled from a table of data for all freshman from the 2011 class
at Elmhurst College that accompanied an article titled What Students Really Pay to Go to
College published online by The Chronicle of Higher Education: chronicle.com/article/What-
Students-Really-Pay-to-Go/131435.

8.2 textbooks, ucla textbooks f18 → This data is described in the data for Chapter 7.

8.2 loan50 → This data set is described in the data for Chapter 1.

8.2 mariokart → Auction data from Ebay (ebay.com) for the game Mario Kart for the Nintendo
Wii. This data set was collected in early October, 2009.

8.2 simulated scatter → The plots for types of outliers uses groups 24-29 (Figure 8.19).

8.3 county, county complete → These data sets are described in the data for Chapter 1.

8.4 midterms house → Data was retrieved from Wikipedia.
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Appendix C

Distribution tables

C.1 Random Number Table

Column
Row 1-5 6-10 11-15 16-20 21-25 26-30 31-35 36-40

1 44394 76100 85973 26853 07080 91603 00476 19681
2 61578 75037 54792 74216 31952 31235 31258 57886
3 18529 73285 95291 49606 67174 95905 33679 75811
4 81238 18321 71085 08284 39318 31434 26173 07440
5 11173 58878 25516 15058 48639 52723 95864 89673
6 96737 95194 14419 22202 92867 73525 94382 29927
7 63514 55066 65162 96016 91723 21160 24285 33264
8 35087 57036 10001 39424 50536 77380 45042 48180
9 00148 73933 49369 32403 53850 16291 93619 27557
10 28999 76232 32637 95697 63679 54506 11299 94294
11 37911 50834 10927 74075 26558 42311 36483 71820
12 33624 82379 03625 58336 27390 00586 06344 89625
13 93282 63059 10830 89432 26917 31555 51793 18718
14 57429 71933 80329 56521 97594 92651 14819 86546
15 65029 24328 06826 61448 54760 09351 73930 99564
16 14779 23173 97183 59835 69580 94653 55095 80666
17 52072 12187 35360 82925 44923 44532 18251 96991
18 76282 91849 17138 59554 35476 67007 02484 10122
19 46561 33015 04577 02178 32915 35912 48974 92985
20 70623 36097 48780 06921 60683 22461 36175 61281
21 03605 08541 17546 85790 48413 69382 89785 80206
22 46147 07603 92057 87609 52670 96255 96660 83167
23 09547 77804 95099 22158 53279 23161 72675 92804
24 12899 05005 86667 72331 09114 28187 97404 26750
25 21223 38353 56970 48965 58371 02697 61417 54746
26 35770 35697 32281 53514 10854 16778 56447 46965
27 04243 65817 81819 64381 83509 44316 56316 47742
28 56989 05587 79995 36598 02316 81627 50104 47720
29 53233 48698 59304 63566 25352 03322 29938 82306
30 20232 30909 77126 50041 96500 24033 77422 20150
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C.2 Normal Probability Table

A normal probability table may be used to find percentiles of a normal distribution using a
Z-score, or vice-versa. Such a table lists Z-scores and the corresponding percentiles. An abbreviated
probability table is provided in Figure C.1 that we’ll use for the examples in this appendix. A full
table may be found on page 512.

Second decimal place of Z
Z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0.0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359

0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753

0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141

0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517

0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879

0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224

0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549

0.7 0.7580 0.7611 0.7642 0.7673 0.7704 0.7734 0.7764 0.7794 0.7823 0.7852

0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133

0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389

1.0 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621

1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830

...
...

...
...

...
...

...
...

...
...

...

Figure C.1: A section of the normal probability table. The percentile for a normal
random variable with Z = 1.00 has been highlighted, and the percentile closest to
0.8000 has also been highlighted.

When using a normal probability table to find a percentile for Z (rounded to two decimals),
identify the proper row in the normal probability table up through the first decimal, and then
determine the column representing the second decimal value. The intersection of this row and
column is the percentile of the observation. For instance, the percentile of Z = 0.45 is shown in row
0.4 and column 0.05 in Figure C.1: 0.6736, or the 67.36th percentile.

negative Z positive Z

Figure C.2: The area to the left of Z represents the percentile of the observation.
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EXAMPLE C.1

SAT scores follow a normal distribution, N(1100, 200). Ann earned a score of 1300 on her SAT with
a corresponding Z-score of Z = 1. She would like to know what percentile she falls in among all
SAT test-takers.

Ann’s percentile is the percentage of people who earned a lower SAT score than her. We shade
the area representing those individuals in the following graph:

−3 −2 −1 0 1 2 3

The total area under the normal curve is always equal to 1, and the proportion of people who scored
below Ann on the SAT is equal to the area shaded in the graph. We find this area by looking in
row 1.0 and column 0.00 in the normal probability table: 0.8413. In other words, Ann is in the 84th

percentile of SAT takers.

EXAMPLE C.2

How do we find an upper tail area?

The normal probability table always gives the area to the left. This means that if we want the area
to the right, we first find the lower tail and then subtract it from 1. For instance, 84.13% of SAT
takers scored below Ann, which means 15.87% of test takers scored higher than Ann.

We can also find the Z-score associated with a percentile. For example, to identify Z for the
80th percentile, we look for the value closest to 0.8000 in the middle portion of the table: 0.7995.
We determine the Z-score for the 80th percentile by combining the row and column Z values: 0.84.

EXAMPLE C.3

Find the SAT score for the 80th percentile.

We look for the are to the value in the table closest to 0.8000. The closest value is 0.7995, which
corresponds to Z = 0.84, where 0.8 comes from the row value and 0.04 comes from the column value.
Next, we set up the equation for the Z-score and the unknown value x as follows, and then we solve
for x:

Z = 0.84 =
x− 1100

200
→ x = 1268

The College Board scales scores to increments of 10, so the 80th percentile is 1270. (Reporting 1268
would have been perfectly okay for our purposes.)

For additional details about working with the normal distribution and the normal probability
table, see Section 2.3, which starts on page 101.
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Negative Z

Second decimal place of Z
0.09 0.08 0.07 0.06 0.05 0.04 0.03 0.02 0.01 0.00 Z

0.0002 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 −3.4
0.0003 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0005 0.0005 0.0005 −3.3
0.0005 0.0005 0.0005 0.0006 0.0006 0.0006 0.0006 0.0006 0.0007 0.0007 −3.2
0.0007 0.0007 0.0008 0.0008 0.0008 0.0008 0.0009 0.0009 0.0009 0.0010 −3.1
0.0010 0.0010 0.0011 0.0011 0.0011 0.0012 0.0012 0.0013 0.0013 0.0013 −3.0

0.0014 0.0014 0.0015 0.0015 0.0016 0.0016 0.0017 0.0018 0.0018 0.0019 −2.9
0.0019 0.0020 0.0021 0.0021 0.0022 0.0023 0.0023 0.0024 0.0025 0.0026 −2.8
0.0026 0.0027 0.0028 0.0029 0.0030 0.0031 0.0032 0.0033 0.0034 0.0035 −2.7
0.0036 0.0037 0.0038 0.0039 0.0040 0.0041 0.0043 0.0044 0.0045 0.0047 −2.6
0.0048 0.0049 0.0051 0.0052 0.0054 0.0055 0.0057 0.0059 0.0060 0.0062 −2.5

0.0064 0.0066 0.0068 0.0069 0.0071 0.0073 0.0075 0.0078 0.0080 0.0082 −2.4
0.0084 0.0087 0.0089 0.0091 0.0094 0.0096 0.0099 0.0102 0.0104 0.0107 −2.3
0.0110 0.0113 0.0116 0.0119 0.0122 0.0125 0.0129 0.0132 0.0136 0.0139 −2.2
0.0143 0.0146 0.0150 0.0154 0.0158 0.0162 0.0166 0.0170 0.0174 0.0179 −2.1
0.0183 0.0188 0.0192 0.0197 0.0202 0.0207 0.0212 0.0217 0.0222 0.0228 −2.0

0.0233 0.0239 0.0244 0.0250 0.0256 0.0262 0.0268 0.0274 0.0281 0.0287 −1.9
0.0294 0.0301 0.0307 0.0314 0.0322 0.0329 0.0336 0.0344 0.0351 0.0359 −1.8
0.0367 0.0375 0.0384 0.0392 0.0401 0.0409 0.0418 0.0427 0.0436 0.0446 −1.7
0.0455 0.0465 0.0475 0.0485 0.0495 0.0505 0.0516 0.0526 0.0537 0.0548 −1.6
0.0559 0.0571 0.0582 0.0594 0.0606 0.0618 0.0630 0.0643 0.0655 0.0668 −1.5

0.0681 0.0694 0.0708 0.0721 0.0735 0.0749 0.0764 0.0778 0.0793 0.0808 −1.4
0.0823 0.0838 0.0853 0.0869 0.0885 0.0901 0.0918 0.0934 0.0951 0.0968 −1.3
0.0985 0.1003 0.1020 0.1038 0.1056 0.1075 0.1093 0.1112 0.1131 0.1151 −1.2
0.1170 0.1190 0.1210 0.1230 0.1251 0.1271 0.1292 0.1314 0.1335 0.1357 −1.1
0.1379 0.1401 0.1423 0.1446 0.1469 0.1492 0.1515 0.1539 0.1562 0.1587 −1.0

0.1611 0.1635 0.1660 0.1685 0.1711 0.1736 0.1762 0.1788 0.1814 0.1841 −0.9
0.1867 0.1894 0.1922 0.1949 0.1977 0.2005 0.2033 0.2061 0.2090 0.2119 −0.8
0.2148 0.2177 0.2206 0.2236 0.2266 0.2296 0.2327 0.2358 0.2389 0.2420 −0.7
0.2451 0.2483 0.2514 0.2546 0.2578 0.2611 0.2643 0.2676 0.2709 0.2743 −0.6
0.2776 0.2810 0.2843 0.2877 0.2912 0.2946 0.2981 0.3015 0.3050 0.3085 −0.5

0.3121 0.3156 0.3192 0.3228 0.3264 0.3300 0.3336 0.3372 0.3409 0.3446 −0.4
0.3483 0.3520 0.3557 0.3594 0.3632 0.3669 0.3707 0.3745 0.3783 0.3821 −0.3
0.3859 0.3897 0.3936 0.3974 0.4013 0.4052 0.4090 0.4129 0.4168 0.4207 −0.2
0.4247 0.4286 0.4325 0.4364 0.4404 0.4443 0.4483 0.4522 0.4562 0.4602 −0.1
0.4641 0.4681 0.4721 0.4761 0.4801 0.4840 0.4880 0.4920 0.4960 0.5000 −0.0
∗For Z ≤ −3.50, the probability is less than or equal to 0.0002.



513

Y

Positive Z

Second decimal place of Z
Z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0.0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359

0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753

0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141

0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517

0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879

0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224

0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549

0.7 0.7580 0.7611 0.7642 0.7673 0.7704 0.7734 0.7764 0.7794 0.7823 0.7852

0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133

0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389

1.0 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621

1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830

1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015

1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177

1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0.9319

1.5 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 0.9406 0.9418 0.9429 0.9441

1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545

1.7 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.9616 0.9625 0.9633

1.8 0.9641 0.9649 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 0.9699 0.9706

1.9 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756 0.9761 0.9767

2.0 0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817

2.1 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0.9857

2.2 0.9861 0.9864 0.9868 0.9871 0.9875 0.9878 0.9881 0.9884 0.9887 0.9890

2.3 0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.9916

2.4 0.9918 0.9920 0.9922 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936

2.5 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952

2.6 0.9953 0.9955 0.9956 0.9957 0.9959 0.9960 0.9961 0.9962 0.9963 0.9964

2.7 0.9965 0.9966 0.9967 0.9968 0.9969 0.9970 0.9971 0.9972 0.9973 0.9974

2.8 0.9974 0.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9979 0.9980 0.9981

2.9 0.9981 0.9982 0.9982 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 0.9986

3.0 0.9987 0.9987 0.9987 0.9988 0.9988 0.9989 0.9989 0.9989 0.9990 0.9990

3.1 0.9990 0.9991 0.9991 0.9991 0.9992 0.9992 0.9992 0.9992 0.9993 0.9993

3.2 0.9993 0.9993 0.9994 0.9994 0.9994 0.9994 0.9994 0.9995 0.9995 0.9995

3.3 0.9995 0.9995 0.9995 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9997

3.4 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9998
∗For Z ≥ 3.50, the probability is greater than or equal to 0.9998.
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C.3 ttt-Probability Table

A ttt-probability table may be used to find tail areas of a t-distribution using a T-score, or vice-
versa. Such a table lists T-scores and the corresponding percentiles. A partial ttt-table is shown
in Figure C.3, and the complete table starts on page 516. Each row in the t-table represents a
t-distribution with different degrees of freedom. The columns correspond to tail probabilities. For
instance, if we know we are working with the t-distribution with df = 18, we can examine row
18, which is highlighted in Figure C.3. If we want the value in this row that identifies the T-score
(cutoff) for an upper tail of 10%, we can look in the column where one tail is 0.100. This cutoff
is 1.33. If we had wanted the cutoff for the lower 10%, we would use -1.33. Just like the normal
distribution, all t-distributions are symmetric.

one tail 0.100 0.050 0.025 0.010 0.005
two tails 0.200 0.100 0.050 0.020 0.010
df 1 3.08 6.31 12.71 31.82 63.66

2 1.89 2.92 4.30 6.96 9.92
3 1.64 2.35 3.18 4.54 5.84
...

...
...

...
...

17 1.33 1.74 2.11 2.57 2.90
18 1.33 1.73 2.10 2.55 2.88
19 1.33 1.73 2.09 2.54 2.86
20 1.33 1.72 2.09 2.53 2.85

...
...

...
...

...
400 1.28 1.65 1.97 2.34 2.59
500 1.28 1.65 1.96 2.33 2.59
∞ 1.28 1.64 1.96 2.33 2.58

Figure C.3: An abbreviated look at the t-table. Each row represents a different
t-distribution. The columns describe the cutoffs for specific tail areas. The row
with df = 18 has been highlighted.

EXAMPLE C.4

What proportion of the t-distribution with 18 degrees of freedom falls below -2.10?

Just like a normal probability problem, we first draw the picture and shade the area below -2.10:

−4 −2 0 2 4

To find this area, we first identify the appropriate row: df = 18. Then we identify the column
containing the absolute value of -2.10; it is the third column. Because we are looking for just one
tail, we examine the top line of the table, which shows that a one tail area for a value in the third
row corresponds to 0.025. That is, 2.5% of the distribution falls below -2.10.

In the next example we encounter a case where the exact T-score is not listed in the table.
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EXAMPLE C.5

A t-distribution with 20 degrees of freedom is shown in the left panel of Figure C.4. Estimate the
proportion of the distribution falling above 1.65.

We identify the row in the t-table using the degrees of freedom: df = 20. Then we look for 1.65;
it is not listed. It falls between the first and second columns. Since these values bound 1.65, their
tail areas will bound the tail area corresponding to 1.65. We identify the one tail area of the first
and second columns, 0.050 and 0.10, and we conclude that between 5% and 10% of the distribution
is more than 1.65 standard deviations above the mean. If we like, we can identify the precise area
using statistical software: 0.0573.

−4 −2 0 2 4 −4 −2 0 2 4

Figure C.4: Left: The t-distribution with 20 degrees of freedom, with the area
above 1.65 shaded. Right: The t-distribution with 475 degrees of freedom, with
the area further than 2 units from 0 shaded.

EXAMPLE C.6

A t-distribution with 475 degrees of freedom is shown in the right panel of Figure C.4. Estimate the
proportion of the distribution falling more than 2 units from the mean (above or below).

As before, first identify the appropriate row: df = 475. This row does not exist! When this happens,
we use the next smaller row, which in this case is df = 400. Next, find the columns that capture
2.00; because 1.97 < 3 < 2.34, we use the third and fourth columns. Finally, we find bounds for the
tail areas by looking at the two tail values: 0.02 and 0.05. We use the two tail values because we
are looking for two symmetric tails in the t-distribution.

GUIDED PRACTICE C.7

What proportion of the t-distribution with 19 degrees of freedom falls above -1.79 units?1

EXAMPLE C.8

Find the value of t?18 using the t-table, where t?18 is the cutoff for the t-distribution with 18 degrees
of freedom where 95% of the distribution lies between -t?18 and +t?18.

For a 95% confidence interval, we want to find the cutoff t?18 such that 95% of the t-distribution is
between -t?18 and t?18; this is the same as where the two tails have a total area of 0.05. We look in
the t-table on page 514, find the column with area totaling 0.05 in the two tails (third column), and
then the row with 18 degrees of freedom: t?18 = 2.10.

1We find the shaded area above -1.79 (we leave the picture to you). The small left tail is between 0.025 and 0.05,
so the larger upper region must have an area between 0.95 and 0.975.
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−3 −2 −1 0 1 2 3

One Tail

−3 −2 −1 0 1 2 3

One Tail

−3 −2 −1 0 1 2 3

Two Tails

one tail 0.100 0.050 0.025 0.010 0.005
two tails 0.200 0.100 0.050 0.020 0.010
df 1 3.08 6.31 12.71 31.82 63.66

2 1.89 2.92 4.30 6.96 9.92
3 1.64 2.35 3.18 4.54 5.84
4 1.53 2.13 2.78 3.75 4.60
5 1.48 2.02 2.57 3.36 4.03
6 1.44 1.94 2.45 3.14 3.71
7 1.41 1.89 2.36 3.00 3.50
8 1.40 1.86 2.31 2.90 3.36
9 1.38 1.83 2.26 2.82 3.25

10 1.37 1.81 2.23 2.76 3.17

11 1.36 1.80 2.20 2.72 3.11
12 1.36 1.78 2.18 2.68 3.05
13 1.35 1.77 2.16 2.65 3.01
14 1.35 1.76 2.14 2.62 2.98
15 1.34 1.75 2.13 2.60 2.95
16 1.34 1.75 2.12 2.58 2.92
17 1.33 1.74 2.11 2.57 2.90
18 1.33 1.73 2.10 2.55 2.88
19 1.33 1.73 2.09 2.54 2.86
20 1.33 1.72 2.09 2.53 2.85

21 1.32 1.72 2.08 2.52 2.83
22 1.32 1.72 2.07 2.51 2.82
23 1.32 1.71 2.07 2.50 2.81
24 1.32 1.71 2.06 2.49 2.80
25 1.32 1.71 2.06 2.49 2.79
26 1.31 1.71 2.06 2.48 2.78
27 1.31 1.70 2.05 2.47 2.77
28 1.31 1.70 2.05 2.47 2.76
29 1.31 1.70 2.05 2.46 2.76
30 1.31 1.70 2.04 2.46 2.75
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−3 −2 −1 0 1 2 3

One Tail

−3 −2 −1 0 1 2 3

One Tail

−3 −2 −1 0 1 2 3

Two Tails

one tail 0.100 0.050 0.025 0.010 0.005
two tails 0.200 0.100 0.050 0.020 0.010
df 31 1.31 1.70 2.04 2.45 2.74

32 1.31 1.69 2.04 2.45 2.74
33 1.31 1.69 2.03 2.44 2.73
34 1.31 1.69 2.03 2.44 2.73
35 1.31 1.69 2.03 2.44 2.72
36 1.31 1.69 2.03 2.43 2.72
37 1.30 1.69 2.03 2.43 2.72
38 1.30 1.69 2.02 2.43 2.71
39 1.30 1.68 2.02 2.43 2.71
40 1.30 1.68 2.02 2.42 2.70

41 1.30 1.68 2.02 2.42 2.70
42 1.30 1.68 2.02 2.42 2.70
43 1.30 1.68 2.02 2.42 2.70
44 1.30 1.68 2.02 2.41 2.69
45 1.30 1.68 2.01 2.41 2.69
46 1.30 1.68 2.01 2.41 2.69
47 1.30 1.68 2.01 2.41 2.68
48 1.30 1.68 2.01 2.41 2.68
49 1.30 1.68 2.01 2.40 2.68
50 1.30 1.68 2.01 2.40 2.68

60 1.30 1.67 2.00 2.39 2.66
70 1.29 1.67 1.99 2.38 2.65
80 1.29 1.66 1.99 2.37 2.64
90 1.29 1.66 1.99 2.37 2.63

100 1.29 1.66 1.98 2.36 2.63
150 1.29 1.66 1.98 2.35 2.61
200 1.29 1.65 1.97 2.35 2.60
300 1.28 1.65 1.97 2.34 2.59
400 1.28 1.65 1.97 2.34 2.59
500 1.28 1.65 1.96 2.33 2.59

∞ 1.28 1.65 1.96 2.33 2.58
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C.4 Chi-Square Probability Table

A chi-square probability table may be used to find tail areas of a chi-square distribution. The
chi-square table is partially shown in Figure C.5, and the complete table may be found on page 519.
When using a chi-square table, we examine a particular row for distributions with different degrees
of freedom, and we identify a range for the area (e.g. 0.025 to 0.05). Note that the chi-square table
provides upper tail values, which is different than the normal and t-distribution tables.

Upper tail 0.3 0.2 0.1 0.05 0.02 0.01 0.005 0.001
df 2 2.41 3.22 4.61 5.99 7.82 9.21 10.60 13.82

3 3.66 4.64 6.25 7.81 9.84 11.34 12.84 16.27

4 4.88 5.99 7.78 9.49 11.67 13.28 14.86 18.47

5 6.06 7.29 9.24 11.07 13.39 15.09 16.75 20.52

6 7.23 8.56 10.64 12.59 15.03 16.81 18.55 22.46

7 8.38 9.80 12.02 14.07 16.62 18.48 20.28 24.32

Figure C.5: A section of the chi-square table. A complete table is in Appendix C.4.

EXAMPLE C.9

Figure C.6(a) shows a chi-square distribution with 3 degrees of freedom and an upper shaded tail
starting at 6.25. Use Figure C.5 to estimate the shaded area.

This distribution has three degrees of freedom, so only the row with 3 degrees of freedom (df) is
relevant. This row has been italicized in the table. Next, we see that the value – 6.25 – falls in the
column with upper tail area 0.1. That is, the shaded upper tail of Figure C.6(a) has area 0.1.

This example was unusual, in that we observed the exact value in the table. In the next examples,
we encounter situations where we cannot precisely estimate the tail area and must instead provide
a range of values.

EXAMPLE C.10

Figure C.6(b) shows the upper tail of a chi-square distribution with 2 degrees of freedom. The area
above value 4.3 has been shaded; find this tail area.

The cutoff 4.3 falls between the second and third columns in the 2 degrees of freedom row. Because
these columns correspond to tail areas of 0.2 and 0.1, we can be certain that the area shaded in
Figure C.6(b) is between 0.1 and 0.2.

EXAMPLE C.11

Figure C.6(c) shows an upper tail for a chi-square distribution with 5 degrees of freedom and a cutoff
of 5.1. Find the tail area.

Looking in the row with 5 df, 5.1 falls below the smallest cutoff for this row (6.06). That means we
can only say that the area is greater than 0.3.

EXAMPLE C.12

Figure C.6(d) shows a cutoff of 11.7 on a chi-square distribution with 7 degrees of freedom. Find
the area of the upper tail.

The value 11.7 falls between 9.80 and 12.02 in the 7 df row. Thus, the area is between 0.1 and 0.2.
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0 5 10 15 20 25

(a)

0 5 10 15 20 25

(b)

0 5 10 15 20 25

(c)

0 5 10 15 20 25

(d)

Figure C.6: (a) Chi-square distribution with 3 degrees of freedom, area above 6.25
shaded. (b) 2 degrees of freedom, area above 4.3 shaded. (c) 5 degrees of freedom,
area above 5.1 shaded. (d) 7 degrees of freedom, area above 11.7 shaded.

Upper tail 0.3 0.2 0.1 0.05 0.02 0.01 0.005 0.001
df 1 1.07 1.64 2.71 3.84 5.41 6.63 7.88 10.83

2 2.41 3.22 4.61 5.99 7.82 9.21 10.60 13.82

3 3.66 4.64 6.25 7.81 9.84 11.34 12.84 16.27

4 4.88 5.99 7.78 9.49 11.67 13.28 14.86 18.47

5 6.06 7.29 9.24 11.07 13.39 15.09 16.75 20.52

6 7.23 8.56 10.64 12.59 15.03 16.81 18.55 22.46

7 8.38 9.80 12.02 14.07 16.62 18.48 20.28 24.32

8 9.52 11.03 13.36 15.51 18.17 20.09 21.95 26.12

9 10.66 12.24 14.68 16.92 19.68 21.67 23.59 27.88

10 11.78 13.44 15.99 18.31 21.16 23.21 25.19 29.59

11 12.90 14.63 17.28 19.68 22.62 24.72 26.76 31.26

12 14.01 15.81 18.55 21.03 24.05 26.22 28.30 32.91

13 15.12 16.98 19.81 22.36 25.47 27.69 29.82 34.53

14 16.22 18.15 21.06 23.68 26.87 29.14 31.32 36.12

15 17.32 19.31 22.31 25.00 28.26 30.58 32.80 37.70

16 18.42 20.47 23.54 26.30 29.63 32.00 34.27 39.25

17 19.51 21.61 24.77 27.59 31.00 33.41 35.72 40.79

18 20.60 22.76 25.99 28.87 32.35 34.81 37.16 42.31

19 21.69 23.90 27.20 30.14 33.69 36.19 38.58 43.82

20 22.77 25.04 28.41 31.41 35.02 37.57 40.00 45.31

25 28.17 30.68 34.38 37.65 41.57 44.31 46.93 52.62

30 33.53 36.25 40.26 43.77 47.96 50.89 53.67 59.70

40 44.16 47.27 51.81 55.76 60.44 63.69 66.77 73.40

50 54.72 58.16 63.17 67.50 72.61 76.15 79.49 86.66
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Index

5-number summary, 95

accurate, 259
Addition Rule of disjoint outcomes, 140
alternative hypothesis, 274, 284
anecdotal evidence, 28
ask, 506
associated, 20, 22
average, 27

bar chart
segmented, 119
side-by-side, 119

bar chart, 116
Bayes’ Theorem, 167, 164–167
Bayesian statistics, 167
bias, 255
bimodal, 69
binomial coefficient, 201, 212
binomial distribution, 212
binomial formula, 201, 212
bivariate, 59, 69
blind, 47
blocked experiment, 48, 48–50, 51
blocking, 48, 53
blocks, 48
box plot, 80, 95

side-by-side box plot, 91

case, 16
categorical, 19, 22, 131
census, 37
center, 95
Central Limit Theorem, 222, 234, 234–236, 239

proportion, 222
chi-square distribution, 328
χ2 goodness of fit test, 326–338
chi-square probability table, 518
χ2-statistic, 338
chi-square table, 329, 518
χ2 test for homogeneity, 343–346, 353
χ2 test for independence, 347–350, 353
cluster random sample, 43
clusters, 40, 43
code comment, 256
cohort, 30
collections, 140

column totals, 116
combining random variables, 190
comparing distributions, 95
complement, 143, 147, 147
completely randomized experiment, 48, 48–50,

51
condition, 154
conditional probability, 154, 154–155, 167, 168
conditions are met, 284
confidence interval, 253, 263, 263–269, 270

interpretation, 269
confidence level, 266, 270
confounded, 34
confounder, 33
confounding factor, 33, 43
confounding variable, 33
contingency table, 116

column proportion, 117
column totals, 116
row proportions, 117
row totals, 116

continuous, 19, 22
control, 47
control group, 12, 14, 46
convenience sample, 36
correlation, 428, 428–429, 431
county, 503, 504, 508
county complete, 503, 508
cpr, 506
critical value, 267

data, 11, 503–508
approval ratings, 347
baby smoke, 402–404
Congress approval rating, 300–301
county, 17–21, 29, 89–92, 456
CPR and blood thinner, 312
dolphins and mercury, 369
email, 116–140, 143
email50, 59–92
health care, 316
loan50, 16–17, 59
loans, 116–121
malaria vaccine, 125–128
medical consultant, 273–278
midterm elections, 469–472
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photo classify, 152–155
possum, 422–426
racial make-up of jury, 328, 332
run17samp, 230
SAT prep company, 387, 390
search algorithm, 344
smallpox, 156–163
stem cells, heart function, 406
stroke, 12–14, 19
supreme court, 295
textbooks, 383–385

data density, 65
data matrix, 17
decision errors, 284
deck of cards, 141
degrees of freedom (df)

t-distribution, 363
chi-square, 328, 338

dependent, 20, 22, 29, 168
descriptive statistics, 69
deviation, 76
df, see degrees of freedom (df)
direct control, 47
discrete, 19, 22, 223
discrete probability distribution, 190, 215
disjoint, 139, 139–141, 147
distribution, 61, 69

Bernoulli, 193, 193–194
binomial, 207, 200–211

normal approximation, 208–211
geometric, 195, 196, 195–197
normal, 101, 219

dot plot, 63, 69
double-blind, 47

ebola survey, 505
effect size, 290
elmhurst, 508
email, 504, 505
email50, 504
empirical rule, 77, 108
error, 221, 232, 255
estimate, 254
event, 140, 140–141
E(X), 180
expectation, 180–181
expected count, 353
expected value, 180
experiment, 30
explained variance, 443, 451
explanatory variable, 29, 423, 431
exponentially, 195
extrapolation, 443, 451

face card, 141
factor, 46, 51
factorial, 201
failure, 193, 200
false negative, 165

false positive, 165
family college, 504
finite population correction factor, 222
first quartile, 80
fish oil 18, 506
five-number summary, 80
frequency, 63
frequency histogram, 64
frequency table, 64

gambler’s fallacy, 160
gear company, 506
General Addition Rule, 142, 147
General Multiplication Rule, 157, 168
geometric distribution, 198
Greek

beta (β), 463
mu (µ), 74
sigma (σ), 77

gsearch, 506

healthcare law survey, 506
heterogeneous, 40
high leverage, 448
histogram, 64

cumulative frequency, 66
hollow histogram, 91
homogeneous, 40
hypotheses, 284
hypothesis test, 253, 275, 284

logic of, 284
hypothesis testing, 273–282

decision errors, 280–281
p-value, 277
significance level, 277, 282
statistically significant, 277

independent, 21, 22, 29, 144, 147, 168, 190,
198, 212, 215

independent and identically distributed (iid), 195
indicator variable, 450
inference, 254, 260
inferential statistics, 69
influential point, 448, 451
intensity map, 92, 92
interquartile range (IQR), 80, 81, 95

joint probability, 153, 153–154
jury, 506

Law of Large Numbers, 138, 147, 175
leaf, 62
least squares regression, 437

extrapolation, 442–443
interpreting parameters, 441
R-squared (R2), 443, 443–444

least squares regression line, 451
left skewed, 69, 95
levels, 19, 46, 51
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linear combination, 185
linear regression, 419
linear transformations of data, 95
loan50, 503, 504, 508
loans full schema, 503, 504
logic of a hypothesis test, 284
lower variability, 260
lurking variable, 33

machine learning (ML), 152
malaria, 504
margin of error, 268, 270, 300, 300–301, 307,

373
marginal probability, 153, 153–154
mariokart, 508
matched pairs, 50, 48–50
matched-pairs experiment, 51
mean, 27, 30, 73, 95, 190

average, 73
weighted mean, 74

median, 75, 95
midterm election, 469
midterms house, 508
minimum sample size, 307
modality

bimodal, 68
multimodal, 68
unimodal, 68

mode, 68, 95
mosaic plot, 120
multimodal, 69
Multiplication Rule for independent events, 145
mutually exclusive, 139, 139–141, 147, 168

n choose x, 201
nba players 19, 504
ncbirths, 507
negative association, 21, 60, 69
nominal, 19
non-response, 37
non-response bias, 37
nonlinear, 60
normal, 307
normal approximation, 227
normal curve, 101
normal distribution, 101, 113, 219

standard, 102
normal probability plot, 109
normal probability table, 510
null hypothesis, 274, 284
null value, 275
numerical, 19, 22

observational study, 30
observational unit, 16
one-sample t-interval, see t-interval for a mean
one-sample t-test, see t-test for a mean
one-sided, 275
ordinal, 19

outcome, 138
outcome of interest, 154
outlier, 63, 69, 81, 86, 95, 451

p-value, 276, 277, 284
paired, 69, 383
paired t-interval, see also t-interval for a mean of

differences, 388–391
paired t-test, see also t-test for a mean of differ-

ences, 384–388
paired data, 59, 383–391
parameter, 27, 30, 102, 254, 274, 26–463
patients, 46
percentile, 104, 511
pew energy 2018, 505
pie chart, 121
placebo, 30, 47
placebo effect, 47
playing cards, 504
point estimate, 254, 260, 274, 307, 254–307

single proportion, 295
poker, 505
pooled sample proportion, 317, 322
population, 26, 30, 26–38
population mean, 255
positive association, 21, 60, 69
possum, 504, 508
power, 282, 285
power analysis, 282
practically significant, 283
precise, 259
prediction, 431
primary, 163
probability, 138, 147, 136–167, 254
probability distribution, 178
probability of a success, 193, 200
probability of failure 1− p, 198
probability of success p , 198
probability sample, see sample
probability table, 104
proportion, 27, 30
prospective study, 35

quartile
first quartile (Q1), 80
second quartile (Q2, median), 80
third quartile (Q3), 80

R, 256
R-squared, 451
random assignment, 53
random noise, 126
random numbers, 172

psuedo-random numbers, 172
random process, 138, 138–139
random sampling, 53
random variable, 180, 177–189

combine, 190
randomization, 127
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randomized experiment, 30
range, 76, 95
relative frequency, 67, 138, 147, 175
replication, 51
representative, 37
residual, 424, 424–427, 431
residual plot, 425, 431
response bias, 37
response variable, 29, 423, 431
resume, 507
retrospective studies, 35
right skewed, 69, 95
robust estimates, 87
row totals, 116
rule of complements, 147
run17, 505
run17samp, 505, 507

sample, 26, 30, 26–38
cluster sampling, 40
convenience sample, 36
multistage cluster sampling, 40
multistage sampling, 40
non-response, 37
non-response bias, 37
random sample, 35–38
simple random sampling, 38
strata, 40
stratified sampling, 40
systematic sampling, 38

sample mean, 255
sample proportion, 194, 270
sample space, 143
sample statistic, 86
sampling distribution, 219, 231, 239, 256
sampling error, 255
sat improve, 507
scatterplot, 20, 59, 69, 431
SD, see standard deviation
SE, see standard error
second quartile, 80
secondary, 163
sets, 140
shape, 67
shape of the sampling distribution, 307
side-by-side box plot, 91
significance level, 277, 277, 282, 284
significant, 14
simple random sample, 36, 43
simulated scatter, 508
simulation, 127, 172, 172–175, 279
single-blind, 47
skew

left skewed, 67
right skewed, 67
strongly skewed guideline, 236
symmetric, 67

slope, 451

smallpox, 504
spread, 80, 95
standard deviation, 76, 95, 182, 190
standard deviation of the residuals, 425
standard error, 258, 260, 307

single mean, 233
single proportion, 294

standard normal distribution, 102
standard units, 79
statistic, 27, 30, 26–30
statistically significant, 14, 128, 277, 284
stem, 62
stem-and-leaf plot, 62, 69

split stem-and-leaf plot, 62
stem cells, 507
stent30, 503
stent365, 503
stocks 18, 504
strata, 40, 43
stratified random sample, 43
stratifying, 53
study participants, 46
success, 193, 200
success-failure condition, 222, 227, 294
suits, 141
summary statistic, 13, 14, 20, 86
symmetric, 67, 69
systematic random sample, 43

t-distribution, 363–366
t-interval

for a difference of means, 399, 397–402, 409
for a mean, 370, 367–372, 379
for a mean of differences, 389, 388–391, 392
for a slope, 467, 477, 465–477

t-probability table, 514
T-statistic, 375
t-table, 364, 514
t-test

for a difference of means, 405, 402–408, 409
for a mean, 376, 374–378, 379
for a mean of differences, 386, 384–388, 392
for a slope, 473, 469–475, 477

table proportions, 153
tail, 67
test statistic, 104, 284
textbooks, 507, 508
the first success on the xth trial, 198
third quartile, 80
time series, 464
time series data, 236
transform, 458, 460
transformation, 456, 458, 460
transplant, 505
treatment, 50
treatment group, 12, 14, 46
tree diagram, 163, 163–167
trial, 193, 200
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two-proportion Z-interval, see Z-interval for a dif-
ference of proportions

two-proportion Z-test, see Z-test for a difference
of proportions

two-sample t-interval, see t-interval for a differ-
ence of means

two-sample t-test, see t-test for a difference of
means

two-sided, 275
two-way table, 353
Type I Error, 281, 284
Type II Error, 281, 284

ucla textbooks f18, 507, 508
unbiased, 223, 260
unconditional probability, 168
undercoverage bias, 36
unimodal, 69
unit of observation, 16
univariate, 61, 69

variability, 76, 80
variable, 16, 27
variance, 76, 182
Venn diagrams, 141
volunteer sample, 37
volunteers, 46

weighted mean, 74
whiskers, 81
with replacement, 159
without replacement, 158, 168

y-intercept, 451

Z-interval
for a difference of proportions, 313, 312–315,

322
for a proportion, 297, 295–299, 307

Z-score, 79, 95, 113, 227
Z-test

for a difference of proportions, 319, 316–321,
322

for a proportion, 304, 302–306, 307
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Appendix D

Technology reference, Formulas,
and Inference guide



D.1 Technology reference

Instructions for the TI-83/84 and the Casio fx-9750GII, and their associated videos.

Summarizing 1-variable statistics

Entering data page 83

Calculating summary statistics. page 84

Drawing a box plot page 84

Finding normal probabilities

Finding area under the normal curve page 110

Finding a Z-score that corresponds to a percentile page 112

Binomial probabilities

Computing the binomial coefficient page 205

Computing the binomial formula page 206

Computing cumulative binomial probabilities page 206

Inference for a single proportion

1-proportion Z-interval page 299

1-proportion Z-test page 306

Inference for a difference of proportions

2-proportion Z-interval page 315

2-proportion Z-test page 321

Chi-square for one-way tables

Finding area under chi-square curve page 331

Chi-square goodness of fit test page 337

Chi-square for two-way tables

Entering data in a two-way table page 351

Chi-square test for homogeneity and independence page 351

Finding the expected counts page 351

Inference for a single mean

1-sample t-test page 378

1-sample t-interval page 372

Inference for a mean of differences

1-sample t-test with paired data page 388

1-sample t-interval with paired data page 391

Inference for a difference of means

2-sample t-interval page 401

2-sample t-test page 407

The least squares regression line

Finding the y-intercept, slope, r, and R2 page 445

What to do if you get Dim Mismatch page 446

Inference for the slope of a regression line

t-interval for the slope see Graphing Calculator Guides at openintro.org/ahss

t-test for the slope see Graphing Calculator Guides at openintro.org/ahss

http://www.openintro.org/redirect.php?go=ti_all&referrer=ahss3_pdf
http://www.openintro.org/redirect.php?go=casio_all&referrer=ahss3_pdf
http://www.openintro.org/redirect.php?go=ahss&referrer=ahss3_pdf
http://www.openintro.org/redirect.php?go=ahss&referrer=ahss3_pdf


D.2 Formulas

Descriptive Statistics

x̄ =
1

n

∑
xi =

∑
xi
n

sx =

√
1

n− 1

∑
(xi − x̄)2

r =
1

n− 1

∑(xi − x̄
sx

)(yi − ȳ
sy

)

ŷ = a+ bx

ȳ = a+ bx̄

b = r
sy
sx

s =

√∑
(yi − ŷi)2

n− 2

Probability

P (A ∪B) = P (A) + P (B)− P (A ∩B)

P (A|B) =
P (A ∩B)

P (B)

µX = E(X) =
∑

xi · P (xi)

σX =
√∑

(xi − µx)2 · P (xi)

µx̄ = µ σx̄ =
σ√
n

If X has a binomial distribution with

parameters n and p, then:

P (X = x) =

(
n

x

)
px(1− p)n−x

µX = np σX =
√
np(1− p)

µp̂ = p σp̂ =

√
p(1− p)

n

Inferential Statistics

standardized test statistic:
point estimate− null value

SE of estimate

confidence interval: point estimate ± critical value× SE of estimate

parameter point estimate SE of estimate

single proportion p p̂
√

p̂(1−p̂)
n when H0: p = p0, use

√
p0(1−p0)

n

diff. of proportions p1 − p2 p̂1 − p̂2

√
p̂1(1−p̂1)

n1
+ p̂2(1−p̂2)

n2
when H0: p1 = p2, use

√
p̂c(1−p̂c)

√
1
n1

+ 1
n2

single mean µ x̄ s√
n

mean of differences µdiff x̄diff
sdiff√
ndiff

difference of means µ1 − µ2 x̄1 − x̄2

√
s21
n1

+
s22
n2

slope of reg. line β b s
sx
√
n−1

Chi-square test statistic =
∑ (observed−expected)2

expected



D.3 Inference Guide
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INFERENCE GUIDE
 

CONFIDENCE INTERVALS 
 

Use confidence intervals to estimate a parameter with a 
particular confidence level, C. 
 
IDENTIFY:  Identify the parameter and the confidence level.  
 

CHOOSE:  Choose and name the appropriate interval. 
 

CHECK:  Check that conditions for the procedure are met. 
 

CALCULATE: 

𝐂𝐈:  𝐩𝐨𝐢𝐧𝐭  𝐞𝐬𝐭𝐢𝐦𝐚𝐭𝐞 ±  𝐜𝐫𝐢𝐭𝐢𝐜𝐚𝐥 𝐯𝐚𝐥𝐮𝐞 ×  𝑺𝑬 𝐨𝐟 𝐞𝐬𝐭𝐢𝐦𝐚𝐭𝐞 

 

𝑑𝑓 = (if applicable)  
( ____ , ____ )   
 

CONCLUDE: 
We are C% confident that the true [parameter] is between 
____ and  ____ .  (Put the parameter in context.) 
 

We have evidence that […], because […].  OR 
We do not have evidence that […], because […]. 
 

  
  
  When the parameter is:  a single proportion p 
 

CHOOSE:  1-Proportion Z-Interval to estimate 𝑝, or 
                  1-Proportion Z-Test to test 𝐻0: 𝑝 = 𝑝0. 
 

CHECK:   
- Data come from a random sample or process. 
- for CI:  𝑛𝑝̂ ≥ 10 and 𝑛(1 − 𝑝̂) ≥ 10. 

for Test:  𝑛𝑝0 ≥ 10 and 𝑛(1 − 𝑝0) ≥ 10. 
 

 

CALCULATE:     (1-PropZInt or 1-PropZTest) 

point estimate: sample proportion 𝑝̂ 

SE of estimate:  for CI, use √
𝑝(1−𝑝)

𝑛
  ; for Test, use √

𝑝0(1−𝑝0)

𝑛
 

 
 
 

 

  When the parameter is:  a difference of proportions p1-p2 

 

CHOOSE: 2-Proportion Z-Interval to estimate 𝑝1 − 𝑝2, or 
                 2-Proportion Z-Test to test 𝐻0: 𝑝1 = 𝑝2. 
 

CHECK:   
- Data come from 2 independent random samples or  

2 randomly assigned treatments. 
- 𝑛1𝑝̂1 ≥ 10,  𝑛1(1 − 𝑝̂1) ≥ 10,  

𝑛2𝑝̂2 ≥ 10,  𝑛2(1 − 𝑝̂2) ≥ 10. 
Note:  use 𝑝̂𝑐, the pooled proportion, in place of  𝑝̂1 and  𝑝̂2 
when checking condition for the 2-Proportion Z-Test 

 
CALCULATE:    (2-PropZInt or 2-PropZTest) 

point estimate: difference of sample proportions  𝑝̂1 − 𝑝̂2 
 
 

SE of estimate:    

CI, use√
𝑝1(1−𝑝1)

𝑛1
+

𝑝2(1−𝑝2)

𝑛2
  ;     Test, use√𝑝̂𝑐(1 − 𝑝𝑐̂) √

1

𝑛1
+

1

𝑛2
  

 

HYPOTHESIS TESTS 
 

Use hypothesis tests to test 𝐻0  versus  𝐻𝐴 at a particular 
significance level, α. 
 
IDENTIFY:  Identify the hypotheses and the significance level. 
 

CHOOSE:  Choose and name the appropriate test. 
 

CHECK:  Check that conditions for the procedure are met. 
 

CALCULATE: 

𝐬𝐭𝐚𝐧𝐝𝐚𝐫𝐝𝐢𝐳𝐞𝐝 𝐭𝐞𝐬𝐭 𝐬𝐭𝐚𝐭𝐢𝐬𝐭𝐢𝐜 =
𝐩𝐨𝐢𝐧𝐭 𝐞𝐬𝐭𝐢𝐦𝐚𝐭𝐞 −  𝐧𝐮𝐥𝐥 𝐯𝐚𝐥𝐮𝐞

𝑺𝑬 𝐨𝐟 𝐞𝐬𝐭𝐢𝐦𝐚𝐭𝐞
 

𝑑𝑓 = (if applicable) 
p-value =  
 

CONCLUDE: 
p-value < α, so we reject 𝐻0.   
We have evidence that [𝐻𝐴].  (Put 𝐻𝐴 in context.) 

OR 
p-value > α, so we do NOT reject 𝐻0.   
We do NOT have evidence that [𝐻𝐴].  (Put 𝐻𝐴 in context.) 
 
 

 
  When the parameter is:  a single mean μ 
 

CHOOSE:  1-Sample T-Interval to estimate 𝜇, or 
                  1-Sample T-Test to test 𝐻0: 𝜇 = 𝜇0. 
 

CHECK:   
- Data come from a random sample or process. 
- 𝑛 ≥ 30, OR population known to be nearly normal, OR  

population could to be nearly normal because  
data has no excessive skew or outliers (draw graph). 
 

CALCULATE:     (TInterval or T-Test) 

point estimate: sample mean 𝑥̅ 

SE of estimate:  
𝑠

√𝑛
 

𝑑𝑓 = 𝑛 − 1 
 

 
 

  When the parameter is:  a difference of means μ1-μ2 
 

CHOOSE: 2-Sample T-Interval to estimate 𝜇1 − 𝜇2, or 
                 2-Sample T-Test to test 𝐻0: 𝜇1 = 𝜇2. 
 

CHECK:   
- Data come from 2 independent random samples or  

2 randomly assigned treatments. 
- 𝑛1 ≥ 30  and 𝑛2 ≥ 30, OR both populations known to be 

nearly normal, OR both populations could be nearly 
normal because both data sets have no excessive skew 
or outliers (draw 2 graphs). 
 

CALCULATE:     (2-SampTInt or 2-SampTTest) 

point estimate: difference of sample means 𝑥̅1 − 𝑥̅2 

SE of estimate:  √
𝑠1

2

𝑛1
+

𝑠2
2

𝑛2
     

𝑑𝑓:  use technology 
 



  When the parameter is: a mean of differences μdiff 

CHOOSE:  1-Sample T-Interval to estimate	𝜇abcc, or 
1-Sample T-Test to test 𝐻<:	𝜇abcc = 0.

CHECK: 
- There is paired data from a random sample or matched

pairs experiment.
- 𝑛abcc ≥ 30, OR population of differences known to be

nearly normal, OR population of differences could be
nearly normal because observed differences have no
excessive skew or outliers (draw graph of differences).

CALCULATE:    (TInterval or T-Test) 
point estimate:  mean of sample difference 𝑥̅abcc 
SE of estimate: 

_deff
VNdeff

𝑑𝑓 = 𝑛abcc − 1 

When the parameter is:  the slope β of a regression line

CHOOSE:  T-Interval for the slope to estimate 𝛽, or  
 T-Test for the slope to test 𝐻<: 𝛽 = 0.

CHECK: 
- There is (x, y) data from a random sample or experiment.
- The residual plot shows no pattern making a linear

model reasonable.  (More specifically, the residuals
should be independent, nearly normal, and have
constant standard deviation.)

CALCULATE:    (LinRegTInt or LinRegTTest) 
point estimate: sample slope 𝑏 
SE of estimate:  SE of slope (from computer output) 

𝑑𝑓 = 𝑛 − 2 

The χ2 tests for categorical variables:   chi-square statistic 	= ∑ (𝐨𝐛𝐬𝐞𝐫𝐯𝐞𝐝	M	𝐞𝐱𝐩𝐞𝐜𝐭𝐞𝐝)𝟐

𝐞𝐱𝐩𝐞𝐜𝐭𝐞𝐝

    When comparing the distribution of one categorical variable to a fixed/specified population distribution 

  CHOOSE:  χ2 Goodness of Fit Test 

  CHECK:   
- Data come from a random sample or process.
- All expected counts ≥ 5.   (To calculate expected counts for each category, multiply

 the sample size by the expected proportion under 𝐻<.) 

  CALCULATE:     (χ2GOF-Test) 
   𝜒P 	=  
   𝑑𝑓 =	# of categories – 1  

    When comparing the distribution of a categorical variable across 2 or more populations/treatments 

  CHOOSE:  χ2 Test for Homogeneity 

 CHECK:   
- Data come from 2 or more independent random samples or 2 or more randomly assigned treatments.
- All expected counts ≥ 5.   (Calculate expected counts and verify this to be true.)

  CALCULATE:     (χ2-Test, then  2ND MATRIX,EDIT,2:[B]  to find expected counts) 
			𝜒P 	= 
			𝑑𝑓	 =	(# of rows – 1)(# of cols – 1) 

    When looking for association or dependence between two categorical variables 

  CHOOSE:  χ2 Test for Independence 

  CHECK:   
- Data come from a random sample or process.
- All expected counts ≥ 5.  (Calculate expected counts and verify this to be true.)

  CALCULATE:     (χ2-Test, then  2ND MATRIX,EDIT,2:[B]  to find expected counts) 
			𝜒P 	= 
			𝑑𝑓	 =	(# of rows – 1)(# of cols – 1) 

_____________________________________________________________________________________________________________
_ 
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