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1 Introduction

This paper investigates the bootstrap method by using the statistics soft-
ware R. Generally speaking, bootstrapping is a kind of re-sampling method.
When we sample from an approximating distribution, we will get an esti-
mator from the estimating properties each time. The most common way
for the approximating distribution is the empirical distribution. One of the
significant advantages of bootstrapping is that it is very simple, without too
much complicated parameters and easy to control the stability. Moreover,
bootstrapping is especially helpful in the following cases:

1. When we need to perform power calculations, but only inadequate pilot
sample is available.

2. When the underlying distribution is known but the sample size is so
small that cannot fully represent the forthright statistical inference.

3. When the distribution of the given statistics is very abstract or un-
known.

2 The Simulation of X

Initially we use a normal distribution simulation for an autoregressive model
with order 1,

Xt = φXt−1 +Wt, (1)
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Figure 1: Sequence Xt

where the Wt are individually independent white noise. We start with

X1 ∼ N(0, 1)

φ = 0.57

and let the sequence X1, X2, . . . be defined by equation (1) where the Wt are
randomly chosen real numbers with the command rnorm(1). This produces
a sequence shown in Figure 1, where 100 sample points were used.

3 Autoregession

Next, we try to estimate the coefficient φ from the sequence X1, X2, . . .
alone. This is accomplished via the R function ar, and produces an estimated
coefficient φ̂. We repeat this process of generating a sequenceX1, X2, . . . from
(1) and estimating the coefficient φ to get a sequence of estimates φ̂1, φ̂2, . . . .
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Figure 2: Distribution of φ̂n for normally distribution white noise

When we repeat this process for a large number of repetitions (eg, N = 1000),
the sample distribution of φ̂1, φ̂2, . . . should be close to normal. From the
graph of the distribution shown in Figure 2, we can see that it is very close
to normal, with a mean of 0.5395119 and variance of 0.007056072.

We now repeat this process for student’s t-distribution white noise (gen-
erated with the command rt(1,4,0)) with φ = 0.9. In order to observe the
normal discribution in the sequence φ̂1, φ̂2, . . . , the sample size had to be
increased from 100 to 1000. As we can see from Figure 3, the distribu-
tion is nearly symmetric about its mean of 0.8955467. The variation was
0.0002029488. The Central Limit Theorem tells us that the mean and sum
of N independent and identically distributed random variables will be closely
to normal when N is large.
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Figure 3: Distribution of φ̂n for student’s t-distribution white noise
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4 Bootstrapping

The last step is to analyze a dataset. We are given a file containing 100
data points which is believed to follow an AR(1) model, but of which the
coefficient φ is unknown. We would like to use the bootstrap method to
simulate the distribution of φ̂. First we use mydata=scan(”bootstrap.txt”)
to read 100 items from the given file. Then using ar(mydata,order=1) we
find the estimated coefficient φ̂ = 0.9572. Because now we already know the
coefficient and each term X1, . . . , X100, we can use these to find the residu-
als e1, e2......e100 from our order 1 autoregression model. Next, we randomly
sample with replacement from the set we already have and obtain the sam-
ple innovation e∗1, e

∗
2, . . . , e

∗
100. Then we generate a bootstrapped data set

sequentially by

X∗
1 = e∗1,

X∗
t = φ̂X∗

t−1 + e∗t .

The R code used to accomplish this is:

mydata=scan(”bootstrap.txt”)
fit=ar(mydata,order=1)
phi=fit$ar
resid=fit$resid[-1]
x.star=array(dim=100)
phi.star=array(dim=999)
for(i in 1:999){

resid.star=sample(resid,replace=TRUE,size=100)
x.star[1]=resid.star[1]
for(t in 1:99){

x.star[t+1]=phi*x.star[t]+resid.star[t+1]
}
phi.star[i]=ar(x.star,order=1)$ar

}
hist(phi.star)

The whole idea of bootstrapping is that after we get the sequence e∗1, e
∗
2, . . . ,

we take the data back and obtain the sequence X∗
1 , X

∗
2 , . . . . As a result of

repeating this process, we can obtain a sequence φ̂∗
1, φ̂

∗
2, . . . of estimated co-

efficients and compare it with a normal distribution. From the histogram in

5



Histogram of phi.star

phi.star

F
re

qu
en

cy

0.6 0.7 0.8 0.9

0
10

20
30

40
50

60

Figure 4: Distribution of φ̂∗
n from bootstrapping

Figure 4 we can clearly see that the graph is not symmetric about its mean.
This result might be due to the following reasons:

1. Using the bootstrapping method oversimplified the distribution which
does not provide a comprehensive finite-sample guarantees. The error
from the first e∗1, e

∗
2, . . . sequence may lead to another in the succeeding

sequence. After 100 times, the accumulative errors make it deviate
from a normal distribution.

2. The underlying true model is not driven by normally distributed white
noise, which is common in a real life data set.
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